Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.240
IF5.240
IF 5-year value: 5.768
IF 5-year
5.768
CiteScore value: 8.9
CiteScore
8.9
SNIP value: 1.713
SNIP1.713
IPP value: 5.53
IPP5.53
SJR value: 3.18
SJR3.18
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 51
h5-index51
GMD | Articles | Volume 12, issue 8
Geosci. Model Dev., 12, 3523–3539, 2019
https://doi.org/10.5194/gmd-12-3523-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Geosci. Model Dev., 12, 3523–3539, 2019
https://doi.org/10.5194/gmd-12-3523-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Development and technical paper 13 Aug 2019

Development and technical paper | 13 Aug 2019

A parallel workflow implementation for PEST version 13.6 in high-performance computing for WRF-Hydro version 5.0: a case study over the midwestern United States

Jiali Wang et al.

Related authors

Fast domain-aware neural network emulation of a planetary boundary layer parameterization in a numerical weather forecast model
Jiali Wang, Prasanna Balaprakash, and Rao Kotamarthi
Geosci. Model Dev., 12, 4261–4274, https://doi.org/10.5194/gmd-12-4261-2019,https://doi.org/10.5194/gmd-12-4261-2019, 2019
Short summary

Related subject area

Hydrology
The latest improvements with SURFEX v8.0 of the Safran–Isba–Modcou hydrometeorological model for France
Patrick Le Moigne, François Besson, Eric Martin, Julien Boé, Aaron Boone, Bertrand Decharme, Pierre Etchevers, Stéphanie Faroux, Florence Habets, Matthieu Lafaysse, Delphine Leroux, and Fabienne Rousset-Regimbeau
Geosci. Model Dev., 13, 3925–3946, https://doi.org/10.5194/gmd-13-3925-2020,https://doi.org/10.5194/gmd-13-3925-2020, 2020
Short summary
A multirate mass transfer model to represent the interaction of multicomponent biogeochemical processes between surface water and hyporheic zones (SWAT-MRMT-R 1.0)
Yilin Fang, Xingyuan Chen, Jesus Gomez Velez, Xuesong Zhang, Zhuoran Duan, Glenn E. Hammond, Amy E. Goldman, Vanessa A. Garayburu-Caruso, and Emily B. Graham
Geosci. Model Dev., 13, 3553–3569, https://doi.org/10.5194/gmd-13-3553-2020,https://doi.org/10.5194/gmd-13-3553-2020, 2020
Short summary
MFIT 1.0.0: Multi-Flow Inversion of Tracer breakthrough curves in fractured and karst aquifers
Jacques Bodin
Geosci. Model Dev., 13, 2905–2924, https://doi.org/10.5194/gmd-13-2905-2020,https://doi.org/10.5194/gmd-13-2905-2020, 2020
Short summary
Simulator for Hydrologic Unstructured Domains (SHUD v1.0): numerical modeling of watershed hydrology with the finite volume method
Lele Shu, Paul A. Ullrich, and Christopher J. Duffy
Geosci. Model Dev., 13, 2743–2762, https://doi.org/10.5194/gmd-13-2743-2020,https://doi.org/10.5194/gmd-13-2743-2020, 2020
Short summary
HydroMix v1.0: a new Bayesian mixing framework for attributing uncertain hydrological sources
Harsh Beria, Joshua R. Larsen, Anthony Michelon, Natalie C. Ceperley, and Bettina Schaefli
Geosci. Model Dev., 13, 2433–2450, https://doi.org/10.5194/gmd-13-2433-2020,https://doi.org/10.5194/gmd-13-2433-2020, 2020
Short summary

Cited articles

Arnault, J., Wagner, S., Rummler, T., Fersch, B., Bliefernicht, J., Andresen, S., and Kunstmann, H.: Role of runoff–infiltration partitioning and resolved overland flow on land–atmosphere feedbacks: A case study with the WRF-Hydro coupled modeling system for West Africa, J. Hydrometeorol., 17, 1489–1516, 2016. 
Beven, K. and Freer, J.: Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology, J. Hydrol., 249, 11–29, 2001. 
Campos, E. and Wang, J.: Numerical simulation and analysis of the April 2013 Chicago Floods, J. Hydrol., 531, 454–474, 2015. 
Chen, F. and Dudhia, J.: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system, Part I: Model implementation and sensitivity, Mon. Weather Rev., 129, 569–585, 2001. 
Cuntz, M., Mai, J., Samaniego, L., Clark, M., Wulfmeyer, V., Branch, O., Attinger, S., and Thober, S.: The impact of standard and hard-coded parameters on the hydrologic fluxes in the Noah-MP land surface model, J. Geophys. Res.-Atmos., 121, 10676–10700, https://doi.org/10.1002/2016JD025097, 2016. 
Publications Copernicus
Download
Short summary
WRF-Hydro needs to be calibrated to optimize its output with respect to observations. However, when applied to a relatively large domain, both WRF-Hydro simulations and calibrations require intensive computing resources and are best performed in parallel. This study ported an independent calibration tool (parameter estimation tool – PEST) to high-performance computing clusters and adapted it to work with WRF-Hydro. The results show significant speedup for model calibration.
WRF-Hydro needs to be calibrated to optimize its output with respect to observations. However,...
Citation