Model description paper
29 May 2019
Model description paper
| 29 May 2019
LSCE-FFNN-v1: a two-step neural network model for the reconstruction of surface ocean pCO2 over the global ocean
Anna Denvil-Sommer et al.
Related authors
Anna Denvil-Sommer, Marion Gehlen, and Mathieu Vrac
Ocean Sci., 17, 1011–1030, https://doi.org/10.5194/os-17-1011-2021, https://doi.org/10.5194/os-17-1011-2021, 2021
Short summary
Short summary
In this work we explored design options for a future Atlantic-scale observational network enabling the release of carbon system estimates by combining data streams from various platforms. We used outputs of a physical–biogeochemical global ocean model at sites of real-world observations to reconstruct surface ocean pCO2 by applying a non-linear feed-forward neural network. The results provide important information for future BGC-Argo deployment, i.e. important regions and the number of floats.
Bastien François and Mathieu Vrac
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-127, https://doi.org/10.5194/nhess-2022-127, 2022
Preprint under review for NHESS
Short summary
Short summary
Compound events (CEs) result from a combination of several climate phenomena. In this study, we propose a new methodology to assess the time of emergence of CEs probabilities and to quantify the contribution of marginal and dependence properties of climate phenomena to the overall CE probability changes. By applying our methodology to two case studies, we show the importance of considering both marginal and dependence properties changes for future risk assessments due to compound events.
Antoine Grisart, Mathieu Casado, Vasileios Gkinis, Bo Vinther, Philippe Naveau, Mathieu Vrac, Thomas Laepple, Bénédicte Minster, Fréderic Prié, Barbara Stenni, Elise Fourré, Hans-Christian Steen Larsen, Jean Jouzel, Martin Werner, Katy Pol, Valérie Masson-Delmotte, Maria Hoerhold, Trevor Popp, and Amaelle Landais
EGUsphere, https://doi.org/10.5194/egusphere-2022-168, https://doi.org/10.5194/egusphere-2022-168, 2022
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
This manuscript presents a compilation of high resolution (11 cm) water isotopic records including published and new measurements over the last 800 000 years on the EPICA Dome C ice core, Antarctica. Using this new water isotopes (δ18O and δD) combined dataset, we study the variability and possible influence of diffusion at multi-decadal to multi-centennial scale. We observe a stronger variability on the onset of the interglacial interval corresponding to a warm period.
Moctar Dembélé, Mathieu Vrac, Natalie Ceperley, Sander J. Zwart, Josh Larsen, Simon J. Dadson, Grégoire Mariéthoz, and Bettina Schaefli
Hydrol. Earth Syst. Sci., 26, 1481–1506, https://doi.org/10.5194/hess-26-1481-2022, https://doi.org/10.5194/hess-26-1481-2022, 2022
Short summary
Short summary
Climate change impacts on water resources in the Volta River basin are investigated under various global warming scenarios. Results reveal contrasting changes in future hydrological processes and water availability, depending on greenhouse gas emission scenarios, with implications for floods and drought occurrence over the 21st century. These findings provide insights for the elaboration of regional adaptation and mitigation strategies for climate change.
Nicolas Metzl, Claire Lo Monaco, Coraline Leseurre, Céline Ridame, Jonathan Fin, Claude Mignon, Marion Gehlen, and Thi Tuyet Trang Chau
Biogeosciences, 19, 1451–1468, https://doi.org/10.5194/bg-19-1451-2022, https://doi.org/10.5194/bg-19-1451-2022, 2022
Short summary
Short summary
During an oceanographic cruise conducted in January 2020 in the south-western Indian Ocean, we observed very low CO2 concentrations associated with a strong phytoplankton bloom that occurred south-east of Madagascar. This biological event led to a strong regional CO2 ocean sink not previously observed.
Thi Tuyet Trang Chau, Marion Gehlen, and Frédéric Chevallier
Biogeosciences, 19, 1087–1109, https://doi.org/10.5194/bg-19-1087-2022, https://doi.org/10.5194/bg-19-1087-2022, 2022
Short summary
Short summary
Air–sea CO2 fluxes and associated uncertainty over the open ocean to coastal shelves are estimated with a new ensemble-based reconstruction of pCO2 trained on observation-based data. The regional distribution and seasonality of CO2 sources and sinks are consistent with those suggested in previous studies as well as mechanisms discussed therein. The ensemble-based uncertainty field allows identifying critical regions where improvements in pCO2 and air–sea CO2 flux estimates should be a priority.
Yoann Robin and Mathieu Vrac
Earth Syst. Dynam., 12, 1253–1273, https://doi.org/10.5194/esd-12-1253-2021, https://doi.org/10.5194/esd-12-1253-2021, 2021
Short summary
Short summary
We propose a new multivariate downscaling and bias correction approach called
time-shifted multivariate bias correction, which aims to correct temporal dependencies in addition to inter-variable and spatial ones. Our method is evaluated in a
perfect model experimentcontext where simulations are used as pseudo-observations. The results show a large reduction of the biases in the temporal properties, while inter-variable and spatial dependence structures are still correctly adjusted.
Amanda R. Fay, Luke Gregor, Peter Landschützer, Galen A. McKinley, Nicolas Gruber, Marion Gehlen, Yosuke Iida, Goulven G. Laruelle, Christian Rödenbeck, Alizée Roobaert, and Jiye Zeng
Earth Syst. Sci. Data, 13, 4693–4710, https://doi.org/10.5194/essd-13-4693-2021, https://doi.org/10.5194/essd-13-4693-2021, 2021
Short summary
Short summary
The movement of carbon dioxide from the atmosphere to the ocean is estimated using surface ocean carbon (pCO2) measurements and an equation including variables such as temperature and wind speed; the choices of these variables lead to uncertainties. We introduce the SeaFlux ensemble which provides carbon flux maps calculated in a consistent manner, thus reducing uncertainty by using common choices for wind speed and a set definition of "global" coverage.
Cedric G. Ngoungue Langue, Christophe Lavaysse, Mathieu Vrac, Philippe Peyrillé, and Cyrille Flamant
Weather Clim. Dynam., 2, 893–912, https://doi.org/10.5194/wcd-2-893-2021, https://doi.org/10.5194/wcd-2-893-2021, 2021
Short summary
Short summary
This work assesses the forecast of the temperature over the Sahara, a key driver of the West African Monsoon, at a seasonal timescale. The seasonal models are able to reproduce the climatological state and some characteristics of the temperature during the rainy season in the Sahel. But, because of errors in the timing, the forecast skill scores are significant only for the first 4 weeks.
Anna Denvil-Sommer, Marion Gehlen, and Mathieu Vrac
Ocean Sci., 17, 1011–1030, https://doi.org/10.5194/os-17-1011-2021, https://doi.org/10.5194/os-17-1011-2021, 2021
Short summary
Short summary
In this work we explored design options for a future Atlantic-scale observational network enabling the release of carbon system estimates by combining data streams from various platforms. We used outputs of a physical–biogeochemical global ocean model at sites of real-world observations to reconstruct surface ocean pCO2 by applying a non-linear feed-forward neural network. The results provide important information for future BGC-Argo deployment, i.e. important regions and the number of floats.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone Alin, Luiz E. O. C. Aragão, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Alice Benoit-Cattin, Henry C. Bittig, Laurent Bopp, Selma Bultan, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Wiley Evans, Liesbeth Florentie, Piers M. Forster, Thomas Gasser, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Luke Gregor, Nicolas Gruber, Ian Harris, Kerstin Hartung, Vanessa Haverd, Richard A. Houghton, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Koji Kadono, Etsushi Kato, Vassilis Kitidis, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Gregg Marland, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Adam J. P. Smith, Adrienne J. Sutton, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Guido van der Werf, Nicolas Vuichard, Anthony P. Walker, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Xu Yue, and Sönke Zaehle
Earth Syst. Sci. Data, 12, 3269–3340, https://doi.org/10.5194/essd-12-3269-2020, https://doi.org/10.5194/essd-12-3269-2020, 2020
Short summary
Short summary
The Global Carbon Budget 2020 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Mathieu Vrac and Soulivanh Thao
Geosci. Model Dev., 13, 5367–5387, https://doi.org/10.5194/gmd-13-5367-2020, https://doi.org/10.5194/gmd-13-5367-2020, 2020
Short summary
Short summary
We propose a multivariate bias correction (MBC) method to adjust the spatial and/or inter-variable properties of climate simulations, while also accounting for their temporal dependences (e.g., autocorrelations).
It consists on a method reordering the ranks of the time series according to their multivariate distance to a reference time series.
Results show that temporal correlations are improved while spatial and inter-variable correlations are still satisfactorily corrected.
Lester Kwiatkowski, Olivier Torres, Laurent Bopp, Olivier Aumont, Matthew Chamberlain, James R. Christian, John P. Dunne, Marion Gehlen, Tatiana Ilyina, Jasmin G. John, Andrew Lenton, Hongmei Li, Nicole S. Lovenduski, James C. Orr, Julien Palmieri, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Charles A. Stock, Alessandro Tagliabue, Yohei Takano, Jerry Tjiputra, Katsuya Toyama, Hiroyuki Tsujino, Michio Watanabe, Akitomo Yamamoto, Andrew Yool, and Tilo Ziehn
Biogeosciences, 17, 3439–3470, https://doi.org/10.5194/bg-17-3439-2020, https://doi.org/10.5194/bg-17-3439-2020, 2020
Short summary
Short summary
We assess 21st century projections of marine biogeochemistry in the CMIP6 Earth system models. These models represent the most up-to-date understanding of climate change. The models generally project greater surface ocean warming, acidification, subsurface deoxygenation, and euphotic nitrate reductions but lesser primary production declines than the previous generation of models. This has major implications for the impact of anthropogenic climate change on marine ecosystems.
Juliette Mignot, Carlos Mejia, Charles Sorror, Adama Sylla, Michel Crépon, and Sylvie Thiria
Geosci. Model Dev., 13, 2723–2742, https://doi.org/10.5194/gmd-13-2723-2020, https://doi.org/10.5194/gmd-13-2723-2020, 2020
Short summary
Short summary
The most robust representation of climate is usually obtained by averaging a large number of simulations, thereby cancelling individual model errors. Here, we work towards an objective way of selecting the least biased models over a certain region, based on physical parameters. This statistical method based on a neural classifier and multi-correspondence analysis is illustrated here for the Senegalo-Mauritanian region, but it could potentially be developed for any other region or process.
Emanuele Bevacqua, Michalis I. Vousdoukas, Theodore G. Shepherd, and Mathieu Vrac
Nat. Hazards Earth Syst. Sci., 20, 1765–1782, https://doi.org/10.5194/nhess-20-1765-2020, https://doi.org/10.5194/nhess-20-1765-2020, 2020
Short summary
Short summary
Coastal compound flooding (CF), caused by interacting storm surges and high water runoff, is typically studied based on concurring storm surge extremes with either precipitation or river discharge extremes. Globally, these two approaches show similar CF spatial patterns, especially where the CF potential is the highest. Deviations between the two approaches increase with the catchment size. The precipitation-based analysis allows for considering
local-rainfall-driven CF and CF in small rivers.
Bastien François, Mathieu Vrac, Alex J. Cannon, Yoann Robin, and Denis Allard
Earth Syst. Dynam., 11, 537–562, https://doi.org/10.5194/esd-11-537-2020, https://doi.org/10.5194/esd-11-537-2020, 2020
Short summary
Short summary
Recently, multivariate bias correction (MBC) methods designed to adjust climate simulations have been proposed. However, they use different approaches, leading potentially to different results. Therefore, this study intends to intercompare four existing MBC methods to provide end users with aid in choosing such methods for their applications. To do so, a wide range of evaluation criteria have been used to assess the ability of MBC methods to correct statistical properties of climate models.
Eric Pohl, Christophe Grenier, Mathieu Vrac, and Masa Kageyama
Hydrol. Earth Syst. Sci., 24, 2817–2839, https://doi.org/10.5194/hess-24-2817-2020, https://doi.org/10.5194/hess-24-2817-2020, 2020
Short summary
Short summary
Existing approaches to quantify the emergence of climate change require several user choices that make these approaches less objective. We present an approach that uses a minimum number of choices and showcase its application in the extremely sensitive, permafrost-dominated region of eastern Siberia. Designed as a Python toolbox, it allows for incorporating climate model, reanalysis, and in situ data to make use of numerous existing data sources and reduce uncertainties in obtained estimates.
Lionel Benoit, Mathieu Vrac, and Gregoire Mariethoz
Hydrol. Earth Syst. Sci., 24, 2841–2854, https://doi.org/10.5194/hess-24-2841-2020, https://doi.org/10.5194/hess-24-2841-2020, 2020
Short summary
Short summary
At subdaily resolution, rain intensity exhibits a strong variability in space and time due to the diversity of processes that produce rain (e.g., frontal storms, mesoscale convective systems and local convection). In this paper we explore a new method to simulate rain type time series conditional to meteorological covariates. Afterwards, we apply stochastic rain type simulation to the downscaling of precipitation of a regional climate model.
Florentin Breton, Mathieu Vrac, Pascal Yiou, Pradeebane Vaittinada Ayar, and Aglaé Jézéquel
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2020-26, https://doi.org/10.5194/esd-2020-26, 2020
Revised manuscript not accepted
Short summary
Short summary
We investigate North Atlantic weather seasonality over 1979–2100 by classifying year-round fields of 500 hPa geopotential height from one reanalysis dataset and 12 climate models. Generally, models have seasonal structures similar to the reanalyses. Historical winter (summer) conditions decrease (increase), due to uniform Z500 increase (i.e. uniform warming). However, relative to the increasing Z500 seasonal cycle, future seasonality (spatial patterns, seasonal cycle) appears almost stationary.
Khalil Yala, N'Dèye Niang, Julien Brajard, Carlos Mejia, Mory Ouattara, Roy El Hourany, Michel Crépon, and Sylvie Thiria
Ocean Sci., 16, 513–533, https://doi.org/10.5194/os-16-513-2020, https://doi.org/10.5194/os-16-513-2020, 2020
Short summary
Short summary
The paper is a contribution to the study of phytoplankton pigment climatology from satellite ocean-color observations in the Senegalo–Mauritanian upwelling, which is a very productive region where in situ observations are lacking. We processed the satellite data with an efficient new neural network classifier. We were able to provide the climatological cycle of diatoms. This study may have an economic impact on fisheries thanks to better knowledge of phytoplankton dynamics.
Giulia Carella, Mathieu Vrac, Hélène Brogniez, Pascal Yiou, and Hélène Chepfer
Earth Syst. Sci. Data, 12, 1–20, https://doi.org/10.5194/essd-12-1-2020, https://doi.org/10.5194/essd-12-1-2020, 2020
Short summary
Short summary
Observations of relative humidity for ice clouds over the tropical oceans from a passive microwave sounder are downscaled by incorporating the high-resolution variability derived from simultaneous co-located cloud profiles from a lidar. By providing a method to generate pseudo-observations of relative humidity at high spatial resolution, this work will help revisit some of the current key barriers in atmospheric science.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Judith Hauck, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Dorothee C. E. Bakker, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Peter Anthoni, Leticia Barbero, Ana Bastos, Vladislav Bastrikov, Meike Becker, Laurent Bopp, Erik Buitenhuis, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Kim I. Currie, Richard A. Feely, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Daniel S. Goll, Nicolas Gruber, Sören Gutekunst, Ian Harris, Vanessa Haverd, Richard A. Houghton, George Hurtt, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Jed O. Kaplan, Etsushi Kato, Kees Klein Goldewijk, Jan Ivar Korsbakken, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Danica Lombardozzi, Gregg Marland, Patrick C. McGuire, Joe R. Melton, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Craig Neill, Abdirahman M. Omar, Tsuneo Ono, Anna Peregon, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Roland Séférian, Jörg Schwinger, Naomi Smith, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco N. Tubiello, Guido R. van der Werf, Andrew J. Wiltshire, and Sönke Zaehle
Earth Syst. Sci. Data, 11, 1783–1838, https://doi.org/10.5194/essd-11-1783-2019, https://doi.org/10.5194/essd-11-1783-2019, 2019
Short summary
Short summary
The Global Carbon Budget 2019 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Jens Terhaar, James C. Orr, Marion Gehlen, Christian Ethé, and Laurent Bopp
Biogeosciences, 16, 2343–2367, https://doi.org/10.5194/bg-16-2343-2019, https://doi.org/10.5194/bg-16-2343-2019, 2019
Short summary
Short summary
A budget of anthropogenic carbon in the Arctic Ocean, the main driver of open-ocean acidification, was constructed for the first time using a high-resolution ocean model. The budget reveals that anthropogenic carbon enters the Arctic Ocean mainly by lateral transport; the air–sea flux plays a minor role. Coarser-resolution versions of the same model, typical of earth system models, store less anthropogenic carbon in the Arctic Ocean and thus underestimate ocean acidification in the Arctic Ocean.
Yoann Robin, Mathieu Vrac, Philippe Naveau, and Pascal Yiou
Hydrol. Earth Syst. Sci., 23, 773–786, https://doi.org/10.5194/hess-23-773-2019, https://doi.org/10.5194/hess-23-773-2019, 2019
Short summary
Short summary
Bias correction methods are used to calibrate climate model outputs with respect to observations. In this article, a non-stationary, multivariate and stochastic bias correction method is developed based on optimal transport, accounting for inter-site and inter-variable correlations. Optimal transport allows us to construct a joint distribution that minimizes energy spent in bias correction. Our methodology is tested on precipitation and temperatures over 12 locations in southern France.
Lionel Benoit, Mathieu Vrac, and Gregoire Mariethoz
Hydrol. Earth Syst. Sci., 22, 5919–5933, https://doi.org/10.5194/hess-22-5919-2018, https://doi.org/10.5194/hess-22-5919-2018, 2018
Short summary
Short summary
We propose a method for unsupervised classification of the space–time–intensity structure of weather radar images. The resulting classes are interpreted as rain types, i.e. pools of rain fields with homogeneous statistical properties. Rain types can in turn be used to define stationary periods for further stochastic rainfall modelling. The application of rain typing to real data indicates that non-stationarity can be significant within meteorological seasons, and even within a single storm.
Claire Waelbroeck, Sylvain Pichat, Evelyn Böhm, Bryan C. Lougheed, Davide Faranda, Mathieu Vrac, Lise Missiaen, Natalia Vazquez Riveiros, Pierre Burckel, Jörg Lippold, Helge W. Arz, Trond Dokken, François Thil, and Arnaud Dapoigny
Clim. Past, 14, 1315–1330, https://doi.org/10.5194/cp-14-1315-2018, https://doi.org/10.5194/cp-14-1315-2018, 2018
Short summary
Short summary
Recording the precise timing and sequence of events is essential for understanding rapid climate changes and improving climate model predictive skills. Here, we precisely assess the relative timing between ocean and atmospheric changes, both recorded in the same deep-sea core over the last 45 kyr. We show that decreased mid-depth water mass transport in the western equatorial Atlantic preceded increased rainfall over the adjacent continent by 120 to 980 yr, depending on the type of climate event.
Virginie Racapé, Patricia Zunino, Herlé Mercier, Pascale Lherminier, Laurent Bopp, Fiz F. Pérèz, and Marion Gehlen
Biogeosciences, 15, 4661–4682, https://doi.org/10.5194/bg-15-4661-2018, https://doi.org/10.5194/bg-15-4661-2018, 2018
Short summary
Short summary
This study of a model–data comparison investigates the relationship between transport, air–sea flux and storage rate of Cant in the North Atlantic Subpolar Ocean over the past 53 years. It reveals the key role played by Central Water for storing Cant in the subtropical region and for supplying Cant into the deep ocean. The Cant transfer to the deep ocean occurred mainly north of the OVIDE section, and just a small fraction was exported to the subtropical gyre within the lower MOC.
Guillaume Latombe, Ariane Burke, Mathieu Vrac, Guillaume Levavasseur, Christophe Dumas, Masa Kageyama, and Gilles Ramstein
Geosci. Model Dev., 11, 2563–2579, https://doi.org/10.5194/gmd-11-2563-2018, https://doi.org/10.5194/gmd-11-2563-2018, 2018
Short summary
Short summary
It is still unclear how climate conditions, and especially climate variability, influenced the spatial distribution of past human populations. Global climate models (GCMs) cannot simulate climate at sufficiently fine scale for this purpose. We propose a statistical method to obtain fine-scale climate projections for 15 000 years ago from coarse-scale GCM outputs. Our method agrees with local reconstructions from fossil and pollen data, and generates sensible climate variability maps over Europe.
Christoph Heinze, Tatiana Ilyina, and Marion Gehlen
Biogeosciences, 15, 3521–3539, https://doi.org/10.5194/bg-15-3521-2018, https://doi.org/10.5194/bg-15-3521-2018, 2018
Short summary
Short summary
The ocean becomes increasingly acidified through uptake of additional man-made CO2 from the atmosphere. This is impacting ecosystems. In order to find out whether reduced biological production of calcium carbonate shell material of biota is occurring at a large scale, we carried out a model study simulating the changes in oceanic 230Th concentrations with reduced availability of calcium carbonate particles in the water. 230Th can serve as a useful magnifying glass for acidification impacts.
Mathieu Vrac
Hydrol. Earth Syst. Sci., 22, 3175–3196, https://doi.org/10.5194/hess-22-3175-2018, https://doi.org/10.5194/hess-22-3175-2018, 2018
Short summary
Short summary
This study presents a multivariate bias correction method named R2D2 to adjust both the 1d-distributions and inter-variable/site dependence structures of climate simulations in a high-dimensional context, while providing some stochasticity. R2D2 is tested on temperature and precipitation reanalyses and illustrated on future simulations. In both cases, R2D2 is able to correct the spatial and physical dependence, opening proper use of climate simulations for impact (e.g. hydrological) models.
Adjoua Moise Famien, Serge Janicot, Abe Delfin Ochou, Mathieu Vrac, Dimitri Defrance, Benjamin Sultan, and Thomas Noël
Earth Syst. Dynam., 9, 313–338, https://doi.org/10.5194/esd-9-313-2018, https://doi.org/10.5194/esd-9-313-2018, 2018
Short summary
Short summary
This study uses the cumulative distribution function transform (CDF-t) method to provide bias-corrected data over Africa using WFDEI as a reference dataset. It is shown that CDF-t is very effective in removing the biases and reducing the high inter-GCM scattering. Differences with other bias-corrected GCM data are mainly due to the differences among the reference datasets, particularly for surface downwelling shortwave radiation, which has a significant impact in terms of simulated maize yields.
Emanuele Bevacqua, Douglas Maraun, Ingrid Hobæk Haff, Martin Widmann, and Mathieu Vrac
Hydrol. Earth Syst. Sci., 21, 2701–2723, https://doi.org/10.5194/hess-21-2701-2017, https://doi.org/10.5194/hess-21-2701-2017, 2017
Short summary
Short summary
We develop a conceptual model to quantify the risk of compound events (CEs), i.e. extreme impacts to society which are driven by statistically dependent climatic variables. Based on this model we study compound floods, i.e. joint storm surge and high river level, in Ravenna (Italy). The model includes meteorological predictors which (1) provide insight into the physical processes underlying CEs, as well as into the temporal variability, and (2) allow us to statistically downscale CEs.
Olivier Aumont, Marco van Hulten, Matthieu Roy-Barman, Jean-Claude Dutay, Christian Éthé, and Marion Gehlen
Biogeosciences, 14, 2321–2341, https://doi.org/10.5194/bg-14-2321-2017, https://doi.org/10.5194/bg-14-2321-2017, 2017
Short summary
Short summary
The marine biological carbon pump is dominated by the vertical transfer of particulate organic carbon (POC) from the surface ocean to its interior. In this study, we explore the impacts of a variable composition of this organic matter using a global ocean biogeochemical model. We show that accounting for a variable lability of POC increases POC concentrations by up to 2 orders of magnitude in the ocean's interior. Furthermore, the amount of carbon that reaches the sediments is twice as large.
Pascal Yiou, Aglaé Jézéquel, Philippe Naveau, Frederike E. L. Otto, Robert Vautard, and Mathieu Vrac
Adv. Stat. Clim. Meteorol. Oceanogr., 3, 17–31, https://doi.org/10.5194/ascmo-3-17-2017, https://doi.org/10.5194/ascmo-3-17-2017, 2017
Short summary
Short summary
The attribution of classes of extreme events, such as heavy precipitation or heatwaves, relies on the estimate of small probabilities (with and without climate change). Such events are connected to the large-scale atmospheric circulation. This paper links such probabilities with properties of the atmospheric circulation by using a Bayesian decomposition. We test this decomposition on a case of extreme precipitation in the UK, in January 2014.
Claudia Volosciuk, Douglas Maraun, Mathieu Vrac, and Martin Widmann
Hydrol. Earth Syst. Sci., 21, 1693–1719, https://doi.org/10.5194/hess-21-1693-2017, https://doi.org/10.5194/hess-21-1693-2017, 2017
Short summary
Short summary
For impact modeling, infrastructure design, or adaptation strategy planning, high-quality climate data on the point scale are often demanded. Due to the scale gap between gridbox and point scale and biases in climate models, we combine a statistical bias correction and a stochastic downscaling model and apply it to climate model-simulated precipitation. The method performs better in summer than in winter and in winter best for mild winter climate (Mediterranean) and worst for continental winter.
Marco van Hulten, Rob Middag, Jean-Claude Dutay, Hein de Baar, Matthieu Roy-Barman, Marion Gehlen, Alessandro Tagliabue, and Andreas Sterl
Biogeosciences, 14, 1123–1152, https://doi.org/10.5194/bg-14-1123-2017, https://doi.org/10.5194/bg-14-1123-2017, 2017
Short summary
Short summary
We ran a global ocean model to understand manganese (Mn), a biologically essential element. Our model shows that (i) in the deep ocean, dissolved [Mn] is mostly homogeneous ~0.10—0.15 nM. The model reproduces this with a threshold on MnO2 of 25 pM, suggesting a minimal particle concentration is needed before aggregation and removal become efficient.
(ii) The observed distinct hydrothermal signals are produced by assuming both a strong source and a strong removal of Mn near hydrothermal vents.
Jérôme Pernin, Mathieu Vrac, Cyril Crevoisier, and Alain Chédin
Adv. Stat. Clim. Meteorol. Oceanogr., 2, 115–136, https://doi.org/10.5194/ascmo-2-115-2016, https://doi.org/10.5194/ascmo-2-115-2016, 2016
Short summary
Short summary
Here, we propose a classification methodology of various space-time atmospheric datasets into discrete air mass groups homogeneous in temperature and humidity through a probabilistic point of view: both the classification process and the data are probabilistic. Unlike conventional classification algorithms, this methodology provides the probability of belonging to each class as well as the corresponding uncertainty, which can be used in various applications.
Timothée Bourgeois, James C. Orr, Laure Resplandy, Jens Terhaar, Christian Ethé, Marion Gehlen, and Laurent Bopp
Biogeosciences, 13, 4167–4185, https://doi.org/10.5194/bg-13-4167-2016, https://doi.org/10.5194/bg-13-4167-2016, 2016
Short summary
Short summary
The global coastal ocean took up 0.1 Pg C yr−1 of anthropogenic carbon during 1993–2012 based on new biogeochemical simulations with an eddying 3-D global model. That is about half of the most recent estimate, an extrapolation based on surface areas. It should not be confused with the continental shelf pump, perhaps 10 times larger, which includes natural as well as anthropogenic carbon. Coastal uptake of anthropogenic carbon is limited by its offshore transport.
Roland Séférian, Marion Gehlen, Laurent Bopp, Laure Resplandy, James C. Orr, Olivier Marti, John P. Dunne, James R. Christian, Scott C. Doney, Tatiana Ilyina, Keith Lindsay, Paul R. Halloran, Christoph Heinze, Joachim Segschneider, Jerry Tjiputra, Olivier Aumont, and Anastasia Romanou
Geosci. Model Dev., 9, 1827–1851, https://doi.org/10.5194/gmd-9-1827-2016, https://doi.org/10.5194/gmd-9-1827-2016, 2016
Short summary
Short summary
This paper explores how the large diversity in spin-up protocols used for ocean biogeochemistry in CMIP5 models contributed to inter-model differences in modeled fields. We show that a link between spin-up duration and skill-score metrics emerges from both individual IPSL-CM5A-LR's results and an ensemble of CMIP5 models. Our study suggests that differences in spin-up protocols constitute a source of inter-model uncertainty which would require more attention in future intercomparison exercises.
Elodie Gutknecht, Guillaume Reffray, Marion Gehlen, Iis Triyulianti, Dessy Berlianty, and Philippe Gaspar
Geosci. Model Dev., 9, 1523–1543, https://doi.org/10.5194/gmd-9-1523-2016, https://doi.org/10.5194/gmd-9-1523-2016, 2016
Short summary
Short summary
An operational ocean forecasting system was developed to monitor the state of the Indonesian seas in terms of circulation, biogeochemistry and fisheries (INDESO project). Here we describe the skill assessment of the physical-biogeochemical coupled model configuration. Model results reproduce the main characteristics of biogeochemical tracer distributions in space and time: phasing of chlorophyll bloom, nutrient and oxygen distributions, water mass transformation across the archipelago.
Benjamin Grouillet, Denis Ruelland, Pradeebane Vaittinada Ayar, and Mathieu Vrac
Hydrol. Earth Syst. Sci., 20, 1031–1047, https://doi.org/10.5194/hess-20-1031-2016, https://doi.org/10.5194/hess-20-1031-2016, 2016
Short summary
Short summary
This original paper provides a guideline to select statistical downscaling methods (SDMs) in climate change impact studies (CCIS) to minimize uncertainty from downscaling. Three SDMs were applied to NCEP reanalysis and 2 GCM data values. We then analyzed the sensitivity of the hydrological model to the various downscaled data via 5 hydrological indicators representing the main features of the hydrograph. Our results enable selection of the appropriate SDMs to be used to build climate scenarios.
O. Aumont, C. Ethé, A. Tagliabue, L. Bopp, and M. Gehlen
Geosci. Model Dev., 8, 2465–2513, https://doi.org/10.5194/gmd-8-2465-2015, https://doi.org/10.5194/gmd-8-2465-2015, 2015
J. Martinez-Rey, L. Bopp, M. Gehlen, A. Tagliabue, and N. Gruber
Biogeosciences, 12, 4133–4148, https://doi.org/10.5194/bg-12-4133-2015, https://doi.org/10.5194/bg-12-4133-2015, 2015
T. Roy, F. Lombard, L. Bopp, and M. Gehlen
Biogeosciences, 12, 2873–2889, https://doi.org/10.5194/bg-12-2873-2015, https://doi.org/10.5194/bg-12-2873-2015, 2015
M. Gehlen, R. Séférian, D. O. B. Jones, T. Roy, R. Roth, J. Barry, L. Bopp, S. C. Doney, J. P. Dunne, C. Heinze, F. Joos, J. C. Orr, L. Resplandy, J. Segschneider, and J. Tjiputra
Biogeosciences, 11, 6955–6967, https://doi.org/10.5194/bg-11-6955-2014, https://doi.org/10.5194/bg-11-6955-2014, 2014
Short summary
Short summary
This study evaluates potential impacts of pH reductions on North Atlantic deep-sea ecosystems in response to latest IPCC scenarios.Multi-model projections of pH changes over the seafloor are analysed with reference to a critical threshold based on palaeo-oceanographic studies, contemporary observations and model results. By 2100 under the most severe IPCC CO2 scenario, pH reductions occur over ~23% of deep-sea canyons and ~8% of seamounts – including seamounts proposed as marine protected areas.
P. Yiou, M. Boichu, R. Vautard, M. Vrac, S. Jourdain, E. Garnier, F. Fluteau, and L. Menut
Clim. Past, 10, 797–809, https://doi.org/10.5194/cp-10-797-2014, https://doi.org/10.5194/cp-10-797-2014, 2014
L. Bopp, L. Resplandy, J. C. Orr, S. C. Doney, J. P. Dunne, M. Gehlen, P. Halloran, C. Heinze, T. Ilyina, R. Séférian, J. Tjiputra, and M. Vichi
Biogeosciences, 10, 6225–6245, https://doi.org/10.5194/bg-10-6225-2013, https://doi.org/10.5194/bg-10-6225-2013, 2013
V. Cocco, F. Joos, M. Steinacher, T. L. Frölicher, L. Bopp, J. Dunne, M. Gehlen, C. Heinze, J. Orr, A. Oschlies, B. Schneider, J. Segschneider, and J. Tjiputra
Biogeosciences, 10, 1849–1868, https://doi.org/10.5194/bg-10-1849-2013, https://doi.org/10.5194/bg-10-1849-2013, 2013
V. Krumins, M. Gehlen, S. Arndt, P. Van Cappellen, and P. Regnier
Biogeosciences, 10, 371–398, https://doi.org/10.5194/bg-10-371-2013, https://doi.org/10.5194/bg-10-371-2013, 2013
Related subject area
Numerical methods
Blockworlds 0.1.0: a demonstration of anti-aliased geophysics for probabilistic inversions of implicit and kinematic geological models
Efficient high-dimensional variational data assimilation with machine-learned reduced-order models
Improved double Fourier series on a sphere and its application to a semi-implicit semi-Lagrangian shallow-water model
SciKit-GStat 1.0: a SciPy-flavored geostatistical variogram estimation toolbox written in Python
Flow-Py v1.0: a customizable, open-source simulation tool to estimate runout and intensity of gravitational mass flows
Emulation of high-resolution land surface models using sparse Gaussian processes with application to JULES
A three-dimensional variational data assimilation system for aerosol optical properties based on WRF-Chem v4.0: design, development, and application of assimilating Himawari-8 aerosol observations
Implementation of a Gaussian Markov random field sampler for forward uncertainty quantification in the Ice-sheet and Sea-level System Model v4.19
A method for assessment of the general circulation model quality using the K-means clustering algorithm: a case study with GETM v2.5
An explicit GPU-based material point method solver for elastoplastic problems (ep2-3De v1.0)
University of Warsaw Lagrangian Cloud Model (UWLCM) 2.0: Adaptation of a mixed Eulerian-Lagrangian numerical model for heterogeneous computing clusters
MagIC v5.10: a two-dimensional message-passing interface (MPI) distribution for pseudo-spectral magnetohydrodynamics simulations in spherical geometry
Machine-learning models to replicate large-eddy simulations of air pollutant concentrations along boulevard-type streets
Recalculation of error growth models' parameters for the ECMWF forecast system
How biased are our models? – a case study of the alpine region
B-flood 1.0: an open-source Saint-Venant model for flash-flood simulation using adaptive refinement
A micro-genetic algorithm (GA v1.7.1a) for combinatorial optimization of physics parameterizations in the Weather Research and Forecasting model (v4.0.3) for quantitative precipitation forecast in Korea
Prediction Error Growth in a more Realistic Atmospheric Toy Model with Three Spatiotemporal Scales
SymPKF (v1.0): a symbolic and computational toolbox for the design of parametric Kalman filter dynamics
NDCmitiQ v1.0.0: a tool to quantify and analyse greenhouse gas mitigation targets
Combining ensemble Kalman filter and reservoir computing to predict spatiotemporal chaotic systems from imperfect observations and models
The Coastline Evolution Model 2D (CEM2D) V1.1
An iterative process for efficient optimisation of parameters in geoscientific models: a demonstration using the Parallel Ice Sheet Model (PISM) version 0.7.3
Ocean Plastic Assimilator v0.2: assimilation of plastic concentration data into Lagrangian dispersion models
Development of a moving point source model for shipping emission dispersion modeling in EPISODE–CityChem v1.3
Efficient Bayesian inference for large chaotic dynamical systems
Constraining stochastic 3-D structural geological models with topology information using approximate Bayesian computation in GemPy 2.1
Retrieval of process rate parameters in the general dynamic equation for aerosols using Bayesian state estimation: BAYROSOL1.0
A discontinuous Galerkin finite-element model for fast channelized lava flows v1.0
A nested multi-scale system implemented in the large-eddy simulation model PALM model system 6.0
Extending legacy climate models by adaptive mesh refinement for single-component tracer transport: a case study with ECHAM6-HAMMOZ (ECHAM6.3-HAM2.3-MOZ1.0)
Using the Després and Lagoutière (1999) antidiffusive transport scheme: a promising and novel method against excessive vertical diffusion in chemistry-transport models
Porosity and permeability prediction through forward stratigraphic simulations using GPM™ and Petrel™: application in shallow marine depositional settings
Effects of transient processes for thermal simulations of the Central European Basin
On numerical broadening of particle size spectra: a condensational growth study using PyMPDATA 1.0
A note on precision-preserving compression of scientific data
An N-dimensional Fortran interpolation programme (NterGeo.v2020a) for geophysics sciences – application to a back-trajectory programme (Backplumes.v2020r1) using CHIMERE or WRF outputs
A framework to evaluate IMEX schemes for atmospheric models
Inequality-constrained free-surface evolution in a full Stokes ice flow model (evolve_glacier v1.1)
A fast and efficient MATLAB-based MPM solver: fMPMM-solver v1.1
Necessary conditions for algorithmic tuning of weather prediction models using OpenIFS as an example
Lossy Checkpoint Compression in Full Waveform Inversion
Development of a submerged aquatic vegetation growth model in the Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST v3.4) model
Retrieving monthly and interannual total-scale pH (pHT) on the East China Sea shelf using an artificial neural network: ANN-pHT-v1
Development of a semi-Lagrangian advection scheme for the NEMO ocean model (3.1)
Efficient multi-scale Gaussian process regression for massive remote sensing data with satGP v0.1.2
PDE-NetGen 1.0: from symbolic partial differential equation (PDE) representations of physical processes to trainable neural network representations
Simple algorithms to compute meridional overturning and barotropic streamfunctions on unstructured meshes
Development of a two-way-coupled ocean–wave model: assessment on a global NEMO(v3.6)–WW3(v6.02) coupled configuration
Surrogate-assisted Bayesian inversion for landscape and basin evolution models
Richard Scalzo, Mark Lindsay, Mark Jessell, Guillaume Pirot, Jeremie Giraud, Edward Cripps, and Sally Cripps
Geosci. Model Dev., 15, 3641–3662, https://doi.org/10.5194/gmd-15-3641-2022, https://doi.org/10.5194/gmd-15-3641-2022, 2022
Short summary
Short summary
This paper addresses numerical challenges in reasoning about geological models constrained by sensor data, especially models that describe the history of an area in terms of a sequence of events. Our method ensures that small changes in simulated geological features, such as the position of a boundary between two rock layers, do not result in unrealistically large changes to resulting sensor measurements, as occur presently using several popular modeling packages.
Romit Maulik, Vishwas Rao, Jiali Wang, Gianmarco Mengaldo, Emil Constantinescu, Bethany Lusch, Prasanna Balaprakash, Ian Foster, and Rao Kotamarthi
Geosci. Model Dev., 15, 3433–3445, https://doi.org/10.5194/gmd-15-3433-2022, https://doi.org/10.5194/gmd-15-3433-2022, 2022
Short summary
Short summary
In numerical weather prediction, data assimilation is frequently utilized to enhance the accuracy of forecasts from equation-based models. In this work we use a machine learning framework that approximates a complex dynamical system given by the geopotential height. Instead of using an equation-based model, we utilize this machine-learned alternative to dramatically accelerate both the forecast and the assimilation of data, thereby reducing need for large computational resources.
Hiromasa Yoshimura
Geosci. Model Dev., 15, 2561–2597, https://doi.org/10.5194/gmd-15-2561-2022, https://doi.org/10.5194/gmd-15-2561-2022, 2022
Short summary
Short summary
This paper proposes a new double Fourier series (DFS) method on a sphere that improves the numerical stability of a model compared with conventional DFS methods. The shallow-water model and the advection model using the new DFS method give stable results without the appearance of high-wavenumber noise near the poles. The model using the new DFS method is faster than the model using spherical harmonics (especially at high resolutions) and gives almost the same results.
Mirko Mälicke
Geosci. Model Dev., 15, 2505–2532, https://doi.org/10.5194/gmd-15-2505-2022, https://doi.org/10.5194/gmd-15-2505-2022, 2022
Short summary
Short summary
I preset SciKit-GStat, a well-documented and tested Python package for variogram estimation. The variogram is the core means of geostatistics, which almost all other methods rely on. Geostatistical interpolation and field generation are widely spread in geoscience, i.e., for data assimilation or modeling.
While SciKit-GStat focuses on effective and intuitive variogram estimation, it can interface with other prominent packages and make its variograms available for a multitude of methods.
Christopher J. L. D'Amboise, Michael Neuhauser, Michaela Teich, Andreas Huber, Andreas Kofler, Frank Perzl, Reinhard Fromm, Karl Kleemayr, and Jan-Thomas Fischer
Geosci. Model Dev., 15, 2423–2439, https://doi.org/10.5194/gmd-15-2423-2022, https://doi.org/10.5194/gmd-15-2423-2022, 2022
Short summary
Short summary
The term gravitational mass flow (GMF) covers various natural hazard processes such as snow avalanches, rockfall, landslides, and debris flows. Here we present the open-source GMF simulation tool Flow-Py. The model equations are based on simple geometrical relations in three-dimensional terrain. We show that Flow-Py is an educational, innovative GMF simulation tool with three computational experiments: 1. validation of implementation, 2. performance, and 3. expandability.
Evan Baker, Anna B. Harper, Daniel Williamson, and Peter Challenor
Geosci. Model Dev., 15, 1913–1929, https://doi.org/10.5194/gmd-15-1913-2022, https://doi.org/10.5194/gmd-15-1913-2022, 2022
Short summary
Short summary
We have adapted machine learning techniques to build a model of the land surface in Great Britain. The model was trained using data from a very complex land surface model called JULES. Our model is faster at producing simulations and predictions and can investigate many different scenarios, which can be used to improve our understanding of the climate and could also be used to help make local decisions.
Daichun Wang, Wei You, Zengliang Zang, Xiaobin Pan, Yiwen Hu, and Yanfei Liang
Geosci. Model Dev., 15, 1821–1840, https://doi.org/10.5194/gmd-15-1821-2022, https://doi.org/10.5194/gmd-15-1821-2022, 2022
Short summary
Short summary
This paper presents a 3D variational data assimilation system for aerosol optical properties, including aerosol optical thickness (AOT) retrievals and lidar-based aerosol profiles, which was developed for a size-resolved sectional model in WRF-Chem. To directly assimilate aerosol optical properties, an observation operator based on the Mie scattering theory was designed. The results show that Himawari-8 AOT assimilation can significantly improve model aerosol analyses and forecasts.
Kevin Bulthuis and Eric Larour
Geosci. Model Dev., 15, 1195–1217, https://doi.org/10.5194/gmd-15-1195-2022, https://doi.org/10.5194/gmd-15-1195-2022, 2022
Short summary
Short summary
We present and implement a stochastic solver to sample spatially and temporal varying uncertain input parameters in the Ice-sheet and Sea-level System Model, such as ice thickness or surface mass balance. We represent these sources of uncertainty using Gaussian random fields with Matérn covariance function. We generate random samples of this random field using an efficient computational approach based on solving a stochastic partial differential equation.
Urmas Raudsepp and Ilja Maljutenko
Geosci. Model Dev., 15, 535–551, https://doi.org/10.5194/gmd-15-535-2022, https://doi.org/10.5194/gmd-15-535-2022, 2022
Short summary
Short summary
A model's ability to reproduce the state of a simulated object is always a subject of discussion. A new method for the multivariate assessment of numerical model skills uses the K-means algorithm for clustering model errors. All available data that fall into the model domain and simulation period are incorporated into the skill assessment. The clustered errors are used for spatial and temporal analysis of the model accuracy. The method can be applied to different types of geoscientific models.
Emmanuel Wyser, Yury Alkhimenkov, Michel Jaboyedoff, and Yury Y. Podladchikov
Geosci. Model Dev., 14, 7749–7774, https://doi.org/10.5194/gmd-14-7749-2021, https://doi.org/10.5194/gmd-14-7749-2021, 2021
Short summary
Short summary
We propose an implementation of the material point method using graphical processing units (GPUs) to solve elastoplastic problems in three-dimensional configurations, such as the granular collapse or the slumping mechanics, i.e., landslide. The computational power of GPUs promotes fast code executions, compared to a traditional implementation using central processing units (CPUs). This allows us to study complex three-dimensional problems tackling high spatial resolution.
Piotr Dziekan and Piotr Zmijewski
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-387, https://doi.org/10.5194/gmd-2021-387, 2021
Revised manuscript accepted for GMD
Short summary
Short summary
Detailed computer simulations of clouds are important for understanding Earth's atmosphere and climate. The paper describes how UWLCM model has been adapted to work on supercomputers. A distinctive feature of UWLCM is that air flow is calculated by processors at the same time as cloud droplets are modeled by graphics cards. Thanks to that, simulations in which droplets are modeled with high fidelity do not take much more time than simulations with simplistic representation of droplets.
Rafael Lago, Thomas Gastine, Tilman Dannert, Markus Rampp, and Johannes Wicht
Geosci. Model Dev., 14, 7477–7495, https://doi.org/10.5194/gmd-14-7477-2021, https://doi.org/10.5194/gmd-14-7477-2021, 2021
Short summary
Short summary
In this work we discuss a two-dimensional distributed parallelization of MagIC, an open-source code for the numerical solution of the magnetohydrodynamics equations. Such a parallelization involves several challenges concerning the distribution of work and data. We detail our algorithm and compare it with the established, optimized, one-dimensional distribution in the context of the dynamo benchmark and discuss the merits of both implementations.
Moritz Lange, Henri Suominen, Mona Kurppa, Leena Järvi, Emilia Oikarinen, Rafael Savvides, and Kai Puolamäki
Geosci. Model Dev., 14, 7411–7424, https://doi.org/10.5194/gmd-14-7411-2021, https://doi.org/10.5194/gmd-14-7411-2021, 2021
Short summary
Short summary
This study aims to replicate computationally expensive high-resolution large-eddy simulations (LESs) with regression models to simulate urban air quality and pollutant dispersion. The model development, including feature selection, model training and cross-validation, and detection of concept drift, has been described in detail. Of the models applied, log-linear regression shows the best performance. A regression model can replace LES unless high accuracy is needed.
Hynek Bednář, Aleš Raidl, and Jiří Mikšovský
Geosci. Model Dev., 14, 7377–7389, https://doi.org/10.5194/gmd-14-7377-2021, https://doi.org/10.5194/gmd-14-7377-2021, 2021
Short summary
Short summary
Forecast errors in numerical weather prediction systems grow in time. To quantify the impacts of this growth, parametric error growth models may be employed. This study recalculates and newly defines parameters for several statistic models approximating error growth in the ECMWF forecasting system. Accurate values of parameters are important because they are used to evaluate improvements of the forecasting systems or to estimate predictability.
Denise Degen, Cameron Spooner, Magdalena Scheck-Wenderoth, and Mauro Cacace
Geosci. Model Dev., 14, 7133–7153, https://doi.org/10.5194/gmd-14-7133-2021, https://doi.org/10.5194/gmd-14-7133-2021, 2021
Short summary
Short summary
In times of worldwide energy transitions, an understanding of the subsurface is increasingly important to provide renewable energy sources such as geothermal energy. To validate our understanding of the subsurface we require data. However, the data are usually not distributed equally and introduce a potential misinterpretation of the subsurface. Therefore, in this study we investigate the influence of measurements on temperature distribution in the European Alps.
Geoffroy Kirstetter, Olivier Delestre, Pierre-Yves Lagrée, Stéphane Popinet, and Christophe Josserand
Geosci. Model Dev., 14, 7117–7132, https://doi.org/10.5194/gmd-14-7117-2021, https://doi.org/10.5194/gmd-14-7117-2021, 2021
Short summary
Short summary
The development of forecasting tools may help to limit the impacts of flash floods. Our purpose here is to demonstrate the possibility of using b-flood, which is a 2D tool based on shallow-water equations and adaptive mesh refinement.
Sojung Park and Seon K. Park
Geosci. Model Dev., 14, 6241–6255, https://doi.org/10.5194/gmd-14-6241-2021, https://doi.org/10.5194/gmd-14-6241-2021, 2021
Short summary
Short summary
One of the biggest uncertainties in numerical weather predictions (NWPs) comes from treating subgrid-scale physical processes. Physical processes, such as cumulus, microphysics, and planetary boundary layer processes, are parameterized in NWP models by empirical and theoretical backgrounds. We developed an interface between a micro-genetic algorithm and the WRF model for a combinatorial optimization of physics for heavy rainfall events in Korea. The system improved precipitation forecasts.
Hynek Bednář and Holger Kantz
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-256, https://doi.org/10.5194/gmd-2021-256, 2021
Revised manuscript accepted for GMD
Short summary
Short summary
A scale dependent error growth described by a power law or by a quadratic hypothesis is studied in Lorenz’s system with three spatiotemporal levels. The validity of power law is extended by including a saturation effect. The quadratic hypothesis can only serve as a first guess. In addition, we study the initial error growth for the ECMWF forecast system. Fitting the parameters, we conclude that there is an intrinsic limit of predictability after 22 days.
Olivier Pannekoucke and Philippe Arbogast
Geosci. Model Dev., 14, 5957–5976, https://doi.org/10.5194/gmd-14-5957-2021, https://doi.org/10.5194/gmd-14-5957-2021, 2021
Short summary
Short summary
This contributes to research on uncertainty prediction, which is important either for determining the weather today or estimating the risk in prediction. The problem is that uncertainty prediction is numerically very expensive. An alternative has been proposed wherein uncertainty is presented in a simplified form with only the dynamics of certain parameters required. This tool allows for the determination of the symbolic equations of these parameter dynamics and their numerical computation.
Annika Günther, Johannes Gütschow, and Mairi Louise Jeffery
Geosci. Model Dev., 14, 5695–5730, https://doi.org/10.5194/gmd-14-5695-2021, https://doi.org/10.5194/gmd-14-5695-2021, 2021
Short summary
Short summary
The mitigation components of the nationally determined contributions (NDCs) under the Paris Agreement are essential in our fight against climate change. Regular updates with increased ambition are requested to limit global warming to 1.5–2 °C. The new and easy-to-update open-source tool NDCmitiQ can be used to quantify the NDCs' mitigation targets and construct resulting emissions pathways. In use cases, we show target uncertainties from missing clarity, data, and methodological challenges.
Futo Tomizawa and Yohei Sawada
Geosci. Model Dev., 14, 5623–5635, https://doi.org/10.5194/gmd-14-5623-2021, https://doi.org/10.5194/gmd-14-5623-2021, 2021
Short summary
Short summary
A new method to predict chaotic systems from observation and process-based models is proposed by combining machine learning with data assimilation. Our method is robust to the sparsity of observation networks and can predict more accurately than a process-based model when it is biased. Our method effectively works when both observations and models are imperfect, which is often the case in geoscience. Therefore, our method is useful to solve a wide variety of prediction problems in this field.
Chloe Leach, Tom Coulthard, Andrew Barkwith, Daniel R. Parsons, and Susan Manson
Geosci. Model Dev., 14, 5507–5523, https://doi.org/10.5194/gmd-14-5507-2021, https://doi.org/10.5194/gmd-14-5507-2021, 2021
Short summary
Short summary
Numerical models can be used to understand how coastal systems evolve over time, including likely responses to climate change. However, many existing models are aimed at simulating 10- to 100-year time periods do not represent a vertical dimension and are thus unable to include the effect of sea-level rise. The Coastline Evolution Model 2D (CEM2D) presented in this paper is an advance in this field, with the inclusion of the vertical coastal profile against which the water level can be altered.
Steven J. Phipps, Jason L. Roberts, and Matt A. King
Geosci. Model Dev., 14, 5107–5124, https://doi.org/10.5194/gmd-14-5107-2021, https://doi.org/10.5194/gmd-14-5107-2021, 2021
Short summary
Short summary
Simplified schemes, known as parameterisations, are sometimes used to describe physical processes within numerical models. However, the values of the parameters are uncertain. This introduces uncertainty into the model outputs. We develop a simple approach to identify plausible ranges for model parameters. Using a model of the Antarctic Ice Sheet, we find that the value of one parameter can depend on the values of others. We conclude that a single optimal set of parameter values does not exist.
Axel Peytavin, Bruno Sainte-Rose, Gael Forget, and Jean-Michel Campin
Geosci. Model Dev., 14, 4769–4780, https://doi.org/10.5194/gmd-14-4769-2021, https://doi.org/10.5194/gmd-14-4769-2021, 2021
Short summary
Short summary
We present a new algorithm developed at The Ocean Cleanup to update ocean plastic models based on measurements from the field to improve future cleaning operations. Prepared in collaboration with MIT researchers, this initial study presents its use in several analytical and real test cases in which two observers in a flow field record regular observations to update a plastic forecast. We demonstrate this improves the prediction, even with inaccurate knowledge of the water flows driving plastic.
Kang Pan, Mei Qi Lim, Markus Kraft, and Epaminondas Mastorakos
Geosci. Model Dev., 14, 4509–4534, https://doi.org/10.5194/gmd-14-4509-2021, https://doi.org/10.5194/gmd-14-4509-2021, 2021
Short summary
Short summary
A new moving point source (MPS) model was developed to simulate the dispersion of emissions generated by the moving ships. Compared to the commonly used line source (LS) or fixed point source (FPS) model, the MPS model provides more emission distribution details generated by the moving ships and matches reasonably with the measurements. Therefore, the MPS model should be a valuable alternative for the environmental society to evaluate the pollutant dispersion contributed from the moving ships.
Sebastian Springer, Heikki Haario, Jouni Susiluoto, Aleksandr Bibov, Andrew Davis, and Youssef Marzouk
Geosci. Model Dev., 14, 4319–4333, https://doi.org/10.5194/gmd-14-4319-2021, https://doi.org/10.5194/gmd-14-4319-2021, 2021
Short summary
Short summary
Model predictions always contain uncertainty. But in some cases, such as weather forecasting or climate modeling, chaotic unpredictability increases the difficulty to say exactly how much uncertainty there is. We combine two recently proposed mathematical methods to show how the uncertainty can be analyzed in models that are simplifications of true weather models. The results can be extended in the future to show how forecasts from large-scale models can be improved.
Alexander Schaaf, Miguel de la Varga, Florian Wellmann, and Clare E. Bond
Geosci. Model Dev., 14, 3899–3913, https://doi.org/10.5194/gmd-14-3899-2021, https://doi.org/10.5194/gmd-14-3899-2021, 2021
Short summary
Short summary
Uncertainty is an inherent property of any model of the subsurface. We show how geological topology information – how different regions of rocks in the subsurface are connected – can be used to train uncertain geological models to reduce uncertainty. More widely, the method demonstrates the use of probabilistic machine learning (Bayesian inference) to train structural geological models on auxiliary geological knowledge that can be encoded in graph structures.
Matthew Ozon, Aku Seppänen, Jari P. Kaipio, and Kari E. J. Lehtinen
Geosci. Model Dev., 14, 3715–3739, https://doi.org/10.5194/gmd-14-3715-2021, https://doi.org/10.5194/gmd-14-3715-2021, 2021
Short summary
Short summary
Experimental research has provided large amounts of high-quality data on aerosol over the last 2 decades. However, inference of the process rates (e.g., the rates at which particles are generated) is still typically done by simple curve-fitting methods and does not assess the credibility of the estimation. The devised method takes advantage of the Bayesian framework to not only retrieve the state of the observed aerosol system but also to estimate the process rates (e.g., growth rate).
Colton J. Conroy and Einat Lev
Geosci. Model Dev., 14, 3553–3575, https://doi.org/10.5194/gmd-14-3553-2021, https://doi.org/10.5194/gmd-14-3553-2021, 2021
Short summary
Short summary
Lava flows present a natural hazard to communities around volcanoes and are usually slow-moving (< 1-5 cm/s). Lava flows during the 2018 eruption of Kilauea volcano, Hawai’i, however, reached speeds as high as 11 m/s. To investigate these dynamics we develop a new lava flow computer model that incorporates a nonlinear expression for the fluid viscosity. Model results indicate that the lava flows at Site 8 of the eruption displayed shear thickening behavior due to the flow's high bubble content.
Antti Hellsten, Klaus Ketelsen, Matthias Sühring, Mikko Auvinen, Björn Maronga, Christoph Knigge, Fotios Barmpas, Georgios Tsegas, Nicolas Moussiopoulos, and Siegfried Raasch
Geosci. Model Dev., 14, 3185–3214, https://doi.org/10.5194/gmd-14-3185-2021, https://doi.org/10.5194/gmd-14-3185-2021, 2021
Short summary
Short summary
Large-eddy simulation (LES) of the urban atmospheric boundary layer involves a large separation of turbulent scales, leading to prohibitive computational costs. An online LES–LES nesting scheme is implemented into the PALM model system 6.0 to overcome this problem. Test results show that the accuracy within the high-resolution nest domains approach the non-nested high-resolution reference results. The nesting can reduce the CPU by time up to 80 % compared to the fine-resolution reference runs.
Yumeng Chen, Konrad Simon, and Jörn Behrens
Geosci. Model Dev., 14, 2289–2316, https://doi.org/10.5194/gmd-14-2289-2021, https://doi.org/10.5194/gmd-14-2289-2021, 2021
Short summary
Short summary
Mesh adaptivity can reduce overall model error by only refining meshes in specific areas where it us necessary in the runtime. Here we suggest a way to integrate mesh adaptivity into an existing Earth system model, ECHAM6, without having to redesign the implementation from scratch. We show that while the additional computational effort is manageable, the error can be reduced compared to a low-resolution standard model using an idealized test and relatively realistic dust transport tests.
Sylvain Mailler, Romain Pennel, Laurent Menut, and Mathieu Lachâtre
Geosci. Model Dev., 14, 2221–2233, https://doi.org/10.5194/gmd-14-2221-2021, https://doi.org/10.5194/gmd-14-2221-2021, 2021
Short summary
Short summary
Representing the advection of thin polluted plumes in numerical models is a challenging task since these models usually tend to excessively diffuse these plumes in the vertical direction. This numerical diffusion process is the cause of major difficulties in representing such dense and thin polluted plumes in numerical models. We propose here, and test in an academic framework, a novel method to solve this problem through the use of an antidiffusive advection scheme in the vertical direction.
Daniel Otoo and David Hodgetts
Geosci. Model Dev., 14, 2075–2095, https://doi.org/10.5194/gmd-14-2075-2021, https://doi.org/10.5194/gmd-14-2075-2021, 2021
Short summary
Short summary
The forward stratigraphic simulation method is used to predict lithofacies, porosity, and permeability in a reservoir model. The objective of using this approach is to enhance subsurface property modelling through geologic realistic 3-D stratigraphic patterns.
Results show realistic stratigraphic sequences. Given this, we can derive spatial and geometric data as secondary data to constrain property simulation in a reservoir model. The approach can reduce the uncertainty of property modelling.
Denise Degen and Mauro Cacace
Geosci. Model Dev., 14, 1699–1719, https://doi.org/10.5194/gmd-14-1699-2021, https://doi.org/10.5194/gmd-14-1699-2021, 2021
Short summary
Short summary
In this work, we focus on improving the understanding of subsurface processes with respect to interactions with climate dynamics. We present advanced, open-source mathematical methods that enable us to investigate the influence of various model properties on the final outcomes. By relying on our approach, we have been able to showcase their importance in improving our understanding of the subsurface and highlighting the current shortcomings of currently adopted models.
Michael Olesik, Sylwester Arabas, Jakub Banaśkiewicz, Piotr Bartman, Manuel Baumgartner, and Simon Unterstrasser
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-404, https://doi.org/10.5194/gmd-2020-404, 2021
Revised manuscript accepted for GMD
Rostislav Kouznetsov
Geosci. Model Dev., 14, 377–389, https://doi.org/10.5194/gmd-14-377-2021, https://doi.org/10.5194/gmd-14-377-2021, 2021
Short summary
Short summary
Resetting of non-significant figures (precision trimming) enables efficient data compression and helps to avoid excessive use of storage space and network bandwidth while having well-constrained distortion to the data. The paper analyses accuracy losses and artifacts caused by trimming methods and by the widely used linear packing method. The paper presents several methods with implementation, evaluation, and illustrations and includes subroutines directly usable in geoscientific models.
Bertrand Bessagnet, Laurent Menut, and Maxime Beauchamp
Geosci. Model Dev., 14, 91–106, https://doi.org/10.5194/gmd-14-91-2021, https://doi.org/10.5194/gmd-14-91-2021, 2021
Short summary
Short summary
This paper presents a new interpolator useful for geophysics applications. It can explore N-dimensional meshes, grids or look-up tables. The code accepts irregular but structured grids. Written in Fortran, it is easy to implement in existing codes and very fast and portable. We have compared it with a Python library. Python is convenient but suffers from portability and is sometimes not optimized enough. As an application case, this method is applied to atmospheric sciences.
Oksana Guba, Mark A. Taylor, Andrew M. Bradley, Peter A. Bosler, and Andrew Steyer
Geosci. Model Dev., 13, 6467–6480, https://doi.org/10.5194/gmd-13-6467-2020, https://doi.org/10.5194/gmd-13-6467-2020, 2020
Anna Wirbel and Alexander Helmut Jarosch
Geosci. Model Dev., 13, 6425–6445, https://doi.org/10.5194/gmd-13-6425-2020, https://doi.org/10.5194/gmd-13-6425-2020, 2020
Short summary
Short summary
We present an open-source numerical tool to simulate the free-surface evolution of gravity-driven flows (e.g. glaciers) constrained by bed topography. No ad hoc post-processing is required to enforce positive ice thickness and mass conservation. We utilise finite elements, define benchmark tests, and showcase glaciological examples. In addition, we provide a thorough analysis of the applicability and robustness of different spatial stabilisation and time discretisation methods.
Emmanuel Wyser, Yury Alkhimenkov, Michel Jaboyedoff, and Yury Y. Podladchikov
Geosci. Model Dev., 13, 6265–6284, https://doi.org/10.5194/gmd-13-6265-2020, https://doi.org/10.5194/gmd-13-6265-2020, 2020
Short summary
Short summary
In this work, we present an efficient and fast material point method (MPM) implementation in MATLAB. We first discuss the vectorization strategies to adapt this numerical method to a MATLAB implementation. We report excellent agreement of the solver compared with classical analysis among the MPM community, such as the cantilever beam problem. The solver achieves a performance gain of 28 compared with a classical iterative implementation.
Lauri Tuppi, Pirkka Ollinaho, Madeleine Ekblom, Vladimir Shemyakin, and Heikki Järvinen
Geosci. Model Dev., 13, 5799–5812, https://doi.org/10.5194/gmd-13-5799-2020, https://doi.org/10.5194/gmd-13-5799-2020, 2020
Short summary
Short summary
This paper presents general guidelines on how to utilise computer algorithms efficiently in order to tune weather models so that they would produce better forecasts. The main conclusions are that the computer algorithms work most efficiently with a suitable cost function, certain forecast length and ensemble size. We expect that our results will facilitate the use of algorithmic methods in the tuning of weather models.
Navjot Kukreja, Jan Hückelheim, Mathias Louboutin, John Washbourne, Paul H. J. Kelly, and Gerard J. Gorman
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-325, https://doi.org/10.5194/gmd-2020-325, 2020
Revised manuscript accepted for GMD
Short summary
Short summary
Full Waveform Inversion is a PDE-constrained optimization problem that is notorious for its high computational load and memory footprint. In this paper we present a method that combines recomputation with lossy compression to accelerate the computation with minimal loss of precision in the results. We show this using experiments running FWI with a variety of compression settings on a popular academic dataset.
Tarandeep S. Kalra, Neil K. Ganju, and Jeremy M. Testa
Geosci. Model Dev., 13, 5211–5228, https://doi.org/10.5194/gmd-13-5211-2020, https://doi.org/10.5194/gmd-13-5211-2020, 2020
Short summary
Short summary
The paper covers the description of a 3-D open-source model that dynamically couples the biophysical interactions between submerged aquatic vegetation (SAV), hydrodynamics (currents, waves), sediment dynamics, and nutrient loading. Based on SAV growth model, SAV can use growth or dieback while contributing and sequestering nutrients from the water column (modifying the biological environment) and subsequently affect the hydrodynamics and sediment transport (modifying the physical environment).
Xiaoshuang Li, Richard Garth James Bellerby, Jianzhong Ge, Philip Wallhead, Jing Liu, and Anqiang Yang
Geosci. Model Dev., 13, 5103–5117, https://doi.org/10.5194/gmd-13-5103-2020, https://doi.org/10.5194/gmd-13-5103-2020, 2020
Short summary
Short summary
We have developed an ANN model to predict pH using 11 cruise datasets from 2013 to 2017,
demonstrated its reliability using three cruise datasets during 2018 and applied it to
retrieve monthly pH for the period 2000 to 2016 on the East China Sea shelf using the
ANN model in combination with input variables from the Changjiang biology Finite-Volume
Coastal Ocean Model. This approach may be a valuable tool for understanding the seasonal
variation of pH in poorly observed regions.
Christopher Subich, Pierre Pellerin, Gregory Smith, and Frederic Dupont
Geosci. Model Dev., 13, 4379–4398, https://doi.org/10.5194/gmd-13-4379-2020, https://doi.org/10.5194/gmd-13-4379-2020, 2020
Short summary
Short summary
This work presents a semi-Lagrangian advection module for the NEMO (OPA) ocean model. Semi-Lagrangian advection transports fluid properties (temperature, salinity, velocity) between time steps by following fluid motion and interpolating from upstream locations of fluid parcels.
This method is commonly used in atmospheric models to extend time step size, but it has not previously been applied to operational ocean models. Overcoming this required a new approach for solid boundaries (coastlines).
Jouni Susiluoto, Alessio Spantini, Heikki Haario, Teemu Härkönen, and Youssef Marzouk
Geosci. Model Dev., 13, 3439–3463, https://doi.org/10.5194/gmd-13-3439-2020, https://doi.org/10.5194/gmd-13-3439-2020, 2020
Short summary
Short summary
We describe a new computer program that is able produce maps of carbon dioxide or other quantities based on data collected by satellites that orbit the Earth. When working with such data there is often too much data in one area and none in another. The program is able to describe the fields even when data is not available. To be able to do so, new computational methods were developed. The program is also able to describe how uncertain the estimated carbon dioxide or other fields are.
Olivier Pannekoucke and Ronan Fablet
Geosci. Model Dev., 13, 3373–3382, https://doi.org/10.5194/gmd-13-3373-2020, https://doi.org/10.5194/gmd-13-3373-2020, 2020
Short summary
Short summary
Learning physics from data using a deep neural network is a challenge that requires an appropriate but unknown network architecture. The package introduced here helps to design an architecture by translating known physical equations into a network, which the experimenter completes to capture unknown physical processes. A test bed is introduced to illustrate how this learning allows us to focus on truly unknown physical processes in the hope of making better use of data and digital resources.
Dmitry Sidorenko, Sergey Danilov, Nikolay Koldunov, Patrick Scholz, and Qiang Wang
Geosci. Model Dev., 13, 3337–3345, https://doi.org/10.5194/gmd-13-3337-2020, https://doi.org/10.5194/gmd-13-3337-2020, 2020
Short summary
Short summary
Computation of barotropic and meridional overturning streamfunctions for models formulated on unstructured meshes is commonly preceded by interpolation to a regular mesh. This operation destroys the original conservation, which can be then be artificially imposed to make the computation possible. An elementary method is proposed that avoids interpolation and preserves conservation in a strict model sense.
Xavier Couvelard, Florian Lemarié, Guillaume Samson, Jean-Luc Redelsperger, Fabrice Ardhuin, Rachid Benshila, and Gurvan Madec
Geosci. Model Dev., 13, 3067–3090, https://doi.org/10.5194/gmd-13-3067-2020, https://doi.org/10.5194/gmd-13-3067-2020, 2020
Short summary
Short summary
Within the framework of the Copernicus Marine Environment Monitoring Service (CMEMS), an objective is to demonstrate the contribution of coupling the high-resolution analysis and forecasting system with a wave model. This study describes the necessary steps and discusses the various choices made for coupling a wave model and an oceanic model for global-scale applications.
Rohitash Chandra, Danial Azam, Arpit Kapoor, and R. Dietmar Müller
Geosci. Model Dev., 13, 2959–2979, https://doi.org/10.5194/gmd-13-2959-2020, https://doi.org/10.5194/gmd-13-2959-2020, 2020
Short summary
Short summary
Forward landscape and sedimentary basin evolution models pose a major challenge in the development of efficient inference and optimization methods. Bayesian inference provides a methodology for estimation and uncertainty quantification of free model parameters. In this paper, we present an application of a surrogate-assisted Bayesian parallel tempering method where that surrogate mimics a landscape evolution model. We use the method for parameter estimation and uncertainty quantification.
Cited articles
Aumont, O. and Bopp, L.: Globalizing results from ocean in situ iron
fertilization studies, Global Biogeochem. Cy., 20, GB2017,
https://doi.org/10.1029/2005GB002591, 2006.
Bakker, D. C. E., Pfeil, B., Landa, C. S., Metzl, N., O'Brien, K. M., Olsen,
A., Smith, K., Cosca, C., Harasawa, S., Jones, S. D., Nakaoka, S.-I., Nojiri,
Y., Schuster, U., Steinhoff, T., Sweeney, C., Takahashi, T., Tilbrook, B.,
Wada, C., Wanninkhof, R., Alin, S. R., Balestrini, C. F., Barbero, L., Bates,
N. R., Bianchi, A. A., Bonou, F., Boutin, J., Bozec, Y., Burger, E. F., Cai,
W.-J., Castle, R. D., Chen, L., Chierici, M., Currie, K., Evans, W.,
Featherstone, C., Feely, R. A., Fransson, A., Goyet, C., Greenwood, N.,
Gregor, L., Hankin, S., Hardman-Mountford, N. J., Harlay, J., Hauck, J.,
Hoppema, M., Humphreys, M. P., Hunt, C. W., Huss, B., Ibánhez, J. S. P.,
Johannessen, T., Keeling, R., Kitidis, V., Körtzinger, A., Kozyr, A.,
Krasakopoulou, E., Kuwata, A., Landschützer, P., Lauvset, S. K.,
Lefèvre, N., Lo Monaco, C., Manke, A., Mathis, J. T., Merlivat, L.,
Millero, F. J., Monteiro, P. M. S., Munro, D. R., Murata, A., Newberger, T.,
Omar, A. M., Ono, T., Paterson, K., Pearce, D., Pierrot, D., Robbins, L. L.,
Saito, S., Salisbury, J., Schlitzer, R., Schneider, B., Schweitzer, R.,
Sieger, R., Skjelvan, I., Sullivan, K. F., Sutherland, S. C., Sutton, A. J.,
Tadokoro, K., Telszewski, M., Tuma, M., van Heuven, S. M. A. C., Vandemark,
D., Ward, B., Watson, A. J., and Xu, S.: A multi-decade record of
high-quality fCO2 data in version 3 of the Surface Ocean
CO2 Atlas (SOCAT), Earth Syst. Sci. Data, 8, 383–413,
https://doi.org/10.5194/essd-8-383-2016, 2016.
Bishop, C. M.: Neural Networks for Pattern Recognition, Oxford University
Press, Cambridge, UK, 1995.
Bishop, C. M.: Pattern Recognition and Machine Learning, Springer, Berlin,
2006.
Bittig, H.C., Steinhoff, T., Claustre, H., Fiedler, B., Williams, N.L.,
Sauzède, R., Körtzinger, A., and Gattuso, J.-P.: An Alternative to
Static Climatologies: Robust Estimation of Open Ocean CO2 Variables
and Nutrient Concentrations From T, S, and O2 Data Using Bayesian
Neural Networks, Front. Mar. Sci., 5, 328, https://doi.org/10.3389/fmars.2018.00328,
2018.
Chollet, F.: Keras, available at: https://keras.io (last access: 12 May
2019), 2015.
Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J.,
Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Le
Quéré, C., Myneni, R. B., Piao, S., and Thornton, P.: Carbon and
other biogeochemical cycles, in: Climate Change 2013: The Physical Science
Basis. Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin,
D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia,
Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge,
United Kingdom and New York, NY, USA, 2013.
Donlon, C. J., Martin, M., Stark, J. D., Roberts-Jones, J., Fiedler, E., and
Wimmer, W.: The Operational Sea Surface Temperature and Sea Ice analysis
(OSTIA), Remote Sens. Environ., 116, 140–158,
https://doi.org/10.1016/j.rse.2010.10.017, 2011.
Fay, A. R. and McKinley, G. A.: Global open-ocean biomes: mean and temporal
variability, Earth Syst. Sci. Data, 6, 273–284,
https://doi.org/10.5194/essd-6-273-2014, 2014.
Fay, A. R., McKinley, G. A., and Lovenduski, N. S.: Southern Ocean carbon
trends: Sensitivity to methods, Geophys. Res. Lett., 41, 6833–6840,
https://doi.org/10.1002/2014GL061324, 2014.
Feely, R. A., Wanninkhof, R., Takahashi, T., and Tans, P.: Influence of El
Niño on the equatorial Pacific contribution to atmospheric CO2
accumulation, Nature, 398, 597–601, 1999.
Friedrich, T. and Oschlies, A.: Neural network-based estimates of North
Atlantic surface pCO2 from satellite data: A methodological
study, J. Geophys. Res., 114, C03020, https://doi.org/10.1029/2007JC004646, 2009.
Guinehut, S., Dhomps, A.-L., Larnicol, G., and Le Traon, P.-Y.: High
resolution 3-D temperature and salinity fields derived from in situ and
satellite observations, Ocean Sci., 8, 845–857, https://doi.org/10.5194/os-8-845-2012,
2012.
Heinze, C., Meyer, S., Goris, N., Anderson, L., Steinfeldt, R., Chang, N., Le
Quéré, C., and Bakker, D. C. E.: The ocean carbon sink – impacts,
vulnerabilities and challenges, Earth Syst. Dynam., 6, 327–358,
https://doi.org/10.5194/esd-6-327-2015, 2015.
Hinton, G., Srivastava, N., and Swersky, K.: Lecture 6a: Overview of
mini-batch gradient descent, Neural Networks for Machine Learning, Slides,
available at:
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
(last access: 12 May 2019), 2012.
Iida, Y., Kojima, A., Takatani, Y., Nakano, T., Midorikawa, T., and Ishii,
M.: Trends in pCO2 and sea-air CO2 flux over the
global open oceans for the last two decades, J. Oceanogr., 71, 637–661,
https://doi.org/10.1007/s10872-015-0306-4, 2015.
Kallache, M., Vrac, M., Naveau, P., and Michelangeli, P.-A.: Non-stationary
probabilistic downscaling of extreme precipitation, J. Geophys. Res., 116,
D05113, https://doi.org/10.1029/2010JD014892, 2011.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L.,
Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M.,
Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang,
J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D.: The NCEP/NCAR
40-year reanalysis project, B. Am. Meteorol. Soc., 77, 437–471, 1996.
Körtzinger, A.: Determination of carbon dioxide partial pressure
(pCO2), in: Methods of Seawater Analysis, 3rd edn., edited
by: Grasshoff, K., Kremling, K., and Ehrhardt, M., Wiley-VCH Verlag GmbH,
Weinheim, Germany, https://doi.org/10.1002/9783527613984.ch9, 1999.
Landschützer, P., Gruber, N., Bakker, D. C. E., Schuster, U., Nakaoka,
S., Payne, M. R., Sasse, T. P., and Zeng, J.: A neural network-based estimate
of the seasonal to inter-annual variability of the Atlantic Ocean carbon
sink, Biogeosciences, 10, 7793–7815, https://doi.org/10.5194/bg-10-7793-2013, 2013.
Landschützer, P., Gruber, N., Bakker, D. C. E., and Schuster, U.: Recent
variability of the global ocean carbon sink, Global Biogeochem. Cy., 28,
927–949, https://doi.org/10.1002/2014GB004853, 2014.
Landschützer, P., Gruber, N., and Bakker, D. C. E.: Decadal variations
and trends of the global ocean carbon sink, Global Biogeochem. Cy., 30,
1396–1417, https://doi.org/10.1002/2015GB005359, 2016.
Laruelle, G. G., Landschützer, P., Gruber, N., Tison, J.-L., Delille, B.,
and Regnier, P.: Global high-resolution monthly pCO2
climatology for the coastal ocean derived from neural network interpolation,
Biogeosciences, 14, 4545–4561, https://doi.org/10.5194/bg-14-4545-2017, 2017.
Lefèvre, N., Watson, A. J., and Watson, A. R.: A comparison of multiple
regression and neural network techniques for mapping in situ
pCO2 data, Tellus B, 57, 375–384,
https://doi.org/10.3402/tellusb.v57i5.16565, 2005.
Le Quéré, C., Aumont, O., Bopp, L., Bousquet, P., Ciais, P., Francey,
R., Heimann, M., Keeling, C. D., Keeling, R. F., Kheshgi, H., Peylin, P.,
Piper, S. C., Prentice, I. C., and Rayner, P. J.: Two decades of ocean
CO2 sink and variability, Tellus B, 55, 649–656,
https://doi.org/10.1034/j.1600-0889.2003.00043.x, 2003.
Le Quéré, C., Takahashi, T., Buitenhuis, E. T., Rödenbeck, C.,
and Sutherland, S. C.: Impact of climate change and variability on the global
oceanic sink of CO2, Glob. Biogeochem. Cy., 24, GB4007,
https://doi.org/10.1029/2009GB003599, 2010.
Menemenlis, D., Campin, J., Heimbach, P., Hill, C., Lee, T., Nguyen, A.,
Schodlok, M., and Zhang, H.: ECCO2: High resolution global ocean and sea ice
data synthesis, Mercator Ocean Quarterly Newsletter, 31, 13–21, 2008.
Nakaoka, S., Telszewski, M., Nojiri, Y., Yasunaka, S., Miyazaki, C., Mukai,
H., and Usui, N.: Estimating temporal and spatial variation of ocean surface
pCO2 in the North Pacific using a self-organizing map neural
network technique, Biogeosciences, 10, 6093–6106,
https://doi.org/10.5194/bg-10-6093-2013, 2013.
Orr, J. C., Monfray, P., Maier-Reimer, E., Mikolajewicz, U., Palmer, J.,
Taylor, N. K., Toggweiler, J. R., Sarmiento, J. L., Quere, C. L., Gruber, N.,
Sabine, C. L., Key, R. M., and Boutin, J.: Estimates of anthropogenic carbon
uptake from four three-dimensional global ocean models, Global Biogeochem.
Cy., 15, 43–60, https://doi.org/10.1029/2000GB001273, 2001.
Peylin, P., Bousquet, P., Le Quèrè, C., Sitch, S., Friedlingstein,
P., McKinley, G., Gruber, N., Rayner, P., and Ciais, P.: Multiple constraints
on regional CO2 flux variations over land and oceans, Global
Biogeochem. Cy., 19, GB1011, https://doi.org/10.1029/2003GB002214, 2005.
Peylin, P., Law, R. M., Gurney, K. R., Chevallier, F., Jacobson, A. R., Maki,
T., Niwa, Y., Patra, P. K., Peters, W., Rayner, P. J., Rödenbeck, C., van
der Laan-Luijkx, I. T., and Zhang, X.: Global atmospheric carbon budget:
results from an ensemble of atmospheric CO2 inversions,
Biogeosciences, 10, 6699–6720, https://doi.org/10.5194/bg-10-6699-2013, 2013.
Rödenbeck, C.: Estimating CO2 sources and sinks from atmospheric
mixing ratio measurements using a global inversion of atmospheric transport,
Technical Report 6, Max Planck Institute for Biogeochemistry, Jena, available
at:
http://www.bgc-jena.mpg.de/uploads/Publications/TechnicalReports/tech_report6.pdf
(last access: 12 May 2019), 2005.
Rödenbeck, C., Bakker, D. C. E., Metzl, N., Olsen, A., Sabine, C.,
Cassar, N., Reum, F., Keeling, R. F., and Heimann, M.: Interannual sea–air
CO2 flux variability from an observation-driven ocean mixed-layer
scheme, Biogeosciences, 11, 4599–4613, https://doi.org/10.5194/bg-11-4599-2014, 2014.
Rödenbeck, C., Bakker, D. C. E., Gruber, N., Iida, Y., Jacobson, A. R.,
Jones, S., Landschützer, P., Metzl, N., Nakaoka, S., Olsen, A., Park,
G.-H., Peylin, P., Rodgers, K. B., Sasse, T. P., Schuster, U., Shutler, J.
D., Valsala, V., Wanninkhof, R., and Zeng, J.: Data-based estimates of the
ocean carbon sink variability – first results of the Surface Ocean
pCO2 Mapping intercomparison (SOCOM), Biogeosciences, 12,
7251–7278, https://doi.org/10.5194/bg-12-7251-2015, 2015.
Rodgers, K. B., Key, R. M., Gnanadesikan, A., Sarmiento, J. L., Aumont, O.,
Bopp, L., Doney, S. C., Dunne, J. P., Glover, D. M., Ishida, A., Ishii, M.,
Jacobson, A. R., Lo Monaco, C., Maier-Reimer, E., Mercier, H., Metzl, N.,
Pérez, F. F., Rios, A. F., Wanninkhof, R., Wetzel, P., Winn, C. D., and
Yamanaka, Y.: Using altimetry to help explain patchy changes in hydrographic
carbon measurements, J. Geophys. Res., 114, C09013,
https://doi.org/10.1029/2008JC005183, 2009.
Rumelhart, D. E., Hinton, G. E., and Williams, R. J.: Learning internal
representations by backpropagating errors, Nature, 323, 533–536, 1986.
Sauzède, R., Claustre, H., Uitz, J., Jamet, C., Dall'Olmo, G.,
D'Ortenzio, F., Gentili, B., Poteau, A., and Schmechtig, C.: A neural
network-based method for merging ocean color and Argo data to extend surface
bio-optical properties to depth: Retrieval of the particulate backscattering
coefficient, J. Geophys. Res.-Oceans, 121, 2552–2571,
https://doi.org/10.1002/2015JC011408, 2016.
Schuster, U., McKinley, G. A., Bates, N., Chevallier, F., Doney, S. C., Fay,
A. R., González-Dávila, M., Gruber, N., Jones, S., Krijnen, J.,
Landschützer, P., Lefèvre, N., Manizza, M., Mathis, J., Metzl, N.,
Olsen, A., Rios, A. F., Rödenbeck, C., Santana-Casiano, J. M., Takahashi,
T., Wanninkhof, R., and Watson, A. J.: An assessment of the Atlantic and
Arctic sea–air CO2 fluxes, 1990–2009, Biogeosciences, 10, 607–627,
https://doi.org/10.5194/bg-10-607-2013, 2013.
Takahashi, T., Sutherland, S. C., Sweeney, C., Poisson, A., Metzl, N.,
Tilbrook, B., Bates, N., Wanninkhof, R., Feely, R. A., Sabine, C., Olafsson,
J., and Nojiri, Y.: Global sea-air CO2 flux based on climatological
surface ocean pCO2, and seasonal biological and temperature
effects, Deep.-Sea Res. Pt. II, 49, 1601–1622,
https://doi.org/10.1016/S0967-0645(02)00003-6, 2002.
Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A.,
Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson,
A., Bakker, D. C. E., Schuster, U., Metzl, N., Yoshikawa-Inoue, H., Ishii,
M., Midorikawa, T., Nojiri, Y., Körtzinger, A., Steinhoff, T., Hoppema,
M., Olafsson, J., Arnarson, T. S., Tilbrook, B., Johannessen, T., Olsen, A.,
Bellerby, R., Wong, C. S., Delille, B., Bates, N. R., and de Baar, H. J. W.:
Climatological mean and decadal change in surface ocean
pCO2, and net sea-air CO2 flux over the global
oceans, Deep.-Sea Res. Pt. II, 56, 554–577,
https://doi.org/10.1016/j.dsr2.2008.12.009, 2009.
Telszewski, M., Chazottes, A., Schuster, U., Watson, A. J., Moulin, C.,
Bakker, D. C. E., González-Dávila, M., Johannessen, T.,
Körtzinger, A., Lüger, H., Olsen, A., Omar, A., Padin, X. A.,
Ríos, A. F., Steinhoff, T., Santana-Casiano, M., Wallace, D. W. R., and
Wanninkhof, R.: Estimating the monthly pCO2 distribution in
the North Atlantic using a self-organizing neural network, Biogeosciences, 6,
1405–1421, https://doi.org/10.5194/bg-6-1405-2009, 2009.
Wanninkhof, R.: Relationship between wind speed and gas exchange over the
ocean, J. Geophys. Res., 97, 7373–7382, https://doi.org/10.1029/92JC00188, 1992.
Weiss, R.: Carbon dioxide in water and seawater: the solubility of a
non-ideal gas, Mar. Chem., 2, 203–205, https://doi.org/10.1016/0304-4203(74)90015-2,
1974.
Short summary
This work is dedicated to a new model that reconstructs the surface ocean partial pressure of carbon dioxide (pCO2) over the global ocean on a monthly 1°×1° grid. The model is based on a feed-forward neural network and represents the nonlinear relationships between pCO2 and the ocean drivers. Reconstructed pCO2 has a satisfying accuracy compared to independent observational data and shows a good agreement in seasonal and interannual variability with three existing mapping methods.
This work is dedicated to a new model that reconstructs the surface ocean partial pressure of...