Articles | Volume 11, issue 11
https://doi.org/10.5194/gmd-11-4537-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-11-4537-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A protocol for an intercomparison of biodiversity and ecosystem services models using harmonized land-use and climate scenarios
HyeJin Kim
CORRESPONDING AUTHOR
German Centre for Integrative Biodiversity Research (iDiv)
Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
Institute of Biology, Martin Luther University Halle Wittenberg, Am
Kirchtor 1, 06108 Halle (Saale), Germany
Isabel M. D. Rosa
German Centre for Integrative Biodiversity Research (iDiv)
Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
Institute of Biology, Martin Luther University Halle Wittenberg, Am
Kirchtor 1, 06108 Halle (Saale), Germany
Rob Alkemade
PBL Netherlands
Environmental Assessment Agency, the Hague, the Netherlands
Environmental System Analysis Group, Wageningen University,
Wageningen, the Netherlands
Paul Leadley
Ecologie Systématique Evolution,
Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91400,
Orsay, France
George Hurtt
Department of Geographical Sciences, University of
Maryland, College Park, MD 20740, USA
Alexander Popp
Potsdam Institute for
Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam,
Germany
Detlef P. van Vuuren
PBL Netherlands
Environmental Assessment Agency, the Hague, the Netherlands
Copernicus Institute for Sustainable Development, Utrecht
University, Utrecht, the Netherlands
Peter Anthoni
Karlsruhe Institute of
Technology, Dept. Meteorology and Climate/Atmospheric Environmental Research,
Kreuzeckbahnstr. 19, 82467 Garmisch-Partenkirchen, Germany
Almut Arneth
Karlsruhe Institute of
Technology, Dept. Meteorology and Climate/Atmospheric Environmental Research,
Kreuzeckbahnstr. 19, 82467 Garmisch-Partenkirchen, Germany
Daniele Baisero
C/O Global Mammal Assessment program, Department of Biology and
Biotechnologies, Sapienza Università di Roma, Viale dell'Univerisità
32, 00185, Rome, Italy
Emma Caton
Department of Life Sciences, Natural
History Museum, London SW7 5BD, UK
Rebecca Chaplin-Kramer
The Natural Capital Project,
Stanford University, 371 Serra Mall, Stanford, CA 94305, USA
Louise Chini
Department of Geographical Sciences, University of
Maryland, College Park, MD 20740, USA
Adriana De Palma
Department of Life Sciences, Natural
History Museum, London SW7 5BD, UK
Fulvio Di Fulvio
International Institute for Applied Systems Analysis, Schlossplatz
1, Laxenburg 2361, Austria
Moreno Di Marco
CSIRO Land and Water, GPO Box 2583,
Brisbane QLD 4001, Australia
Felipe Espinoza
Department of Life Sciences, Natural
History Museum, London SW7 5BD, UK
Simon Ferrier
CSIRO Land and Water, GPO Box 1700,
Canberra ACT 2601, Australia
Shinichiro Fujimori
Kyoto University, Department of
Environmental Engineering, 361, C1-3, Kyoto University Katsura Campus,
Nishikyo-ku, Kyoto-city, 615-8540 Japan
Ricardo E. Gonzalez
Department of Life Sciences, Imperial College London, Silwood Park, Ascot SL5 7PY, UK
Maya Gueguen
Univ. Grenoble Alpes, CNRS, Univ. Savoie Mont Blanc, Laboratoire d'Écologie Alpine (LECA), 38000 Grenoble, France
Carlos Guerra
German Centre for Integrative Biodiversity Research (iDiv)
Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
Institute of Biology, Martin Luther University Halle Wittenberg, Am
Kirchtor 1, 06108 Halle (Saale), Germany
Mike Harfoot
UN Environment, World
Conservation Monitoring Centre, 219 Huntingdon Road, Cambridge, CB3 0DL, UK
Thomas D. Harwood
CSIRO Land and Water, GPO Box 1700,
Canberra ACT 2601, Australia
Tomoko Hasegawa
Center for Social and Environmental Systems Research, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
Vanessa Haverd
CSIRO Oceans and Atmosphere, Canberra, 2601, Australia
Petr Havlík
International Institute for Applied Systems Analysis, Schlossplatz
1, Laxenburg 2361, Austria
Stefanie Hellweg
Institute of Environmental Engineering, ETH Zurich, 8093 Zurich, Switzerland
Samantha L. L. Hill
Department of Life Sciences, Natural
History Museum, London SW7 5BD, UK
UN Environment, World
Conservation Monitoring Centre, 219 Huntingdon Road, Cambridge, CB3 0DL, UK
Akiko Hirata
Forestry and Forest Products Research Institute, Forest Research and Management Organization, 1 Matsunosato, Tsukuba, Ibaraki, 305-8687, Japan
Andrew J. Hoskins
CSIRO Land and Water, GPO Box 1700,
Canberra ACT 2601, Australia
Jan H. Janse
PBL Netherlands
Environmental Assessment Agency, the Hague, the Netherlands
Netherlands Inst. of Ecology NIOO-KNAW, Wageningen, the Netherlands
Walter Jetz
Ecology and Evolutionary Biology, Yale University, 165 Prospect St, New Haven, CT 06511, USA
Justin A. Johnson
Institute on the Environment, University of Minnesota, 1954 Buford Ave. St. Paul, MN 55105, USA
Andreas Krause
Karlsruhe Institute of
Technology, Dept. Meteorology and Climate/Atmospheric Environmental Research,
Kreuzeckbahnstr. 19, 82467 Garmisch-Partenkirchen, Germany
David Leclère
International Institute for Applied Systems Analysis, Schlossplatz
1, Laxenburg 2361, Austria
Ines S. Martins
German Centre for Integrative Biodiversity Research (iDiv)
Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
Institute of Biology, Martin Luther University Halle Wittenberg, Am
Kirchtor 1, 06108 Halle (Saale), Germany
Tetsuya Matsui
Forestry and Forest Products Research Institute, Forest Research and Management Organization, 1 Matsunosato, Tsukuba, Ibaraki, 305-8687, Japan
Cory Merow
Ecology and Evolutionary Biology, Yale University, 165 Prospect St, New Haven, CT 06511, USA
Michael Obersteiner
International Institute for Applied Systems Analysis, Schlossplatz
1, Laxenburg 2361, Austria
Haruka Ohashi
Forestry and Forest Products Research Institute, Forest Research and Management Organization, 1 Matsunosato, Tsukuba, Ibaraki, 305-8687, Japan
Benjamin Poulter
NASA GSFC, Biospheric Science Lab., Greenbelt, MD 20771, USA
Andy Purvis
Department of Life Sciences, Natural
History Museum, London SW7 5BD, UK
Department of Life Sciences, Imperial College London, Silwood Park, Ascot SL5 7PY, UK
Benjamin Quesada
Karlsruhe Institute of
Technology, Dept. Meteorology and Climate/Atmospheric Environmental Research,
Kreuzeckbahnstr. 19, 82467 Garmisch-Partenkirchen, Germany
Universidad del Rosario, Faculty of Natural Sciences and Mathematics, Kr 26 No 63B-48, Bogotá D.C, Colombia
Carlo Rondinini
C/O Global Mammal Assessment program, Department of Biology and
Biotechnologies, Sapienza Università di Roma, Viale dell'Univerisità
32, 00185, Rome, Italy
Aafke M. Schipper
PBL Netherlands
Environmental Assessment Agency, the Hague, the Netherlands
Institute for Water and Wetland Research, P.O. Box 9010, 6500 GL Nijmegen, the Netherlands
Richard Sharp
The Natural Capital Project,
Stanford University, 371 Serra Mall, Stanford, CA 94305, USA
Kiyoshi Takahashi
Center for Social and Environmental Systems Research, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
Wilfried Thuiller
Univ. Grenoble Alpes, CNRS, Univ. Savoie Mont Blanc, Laboratoire d'Écologie Alpine (LECA), 38000 Grenoble, France
Nicolas Titeux
German Centre for Integrative Biodiversity Research (iDiv)
Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
Helmholtz Centre for
Environmental Research – UFZ, Department of Community Ecology,
Theodor-Lieser-Strasse 4, 06210 Halle, Germany
Piero Visconti
Institute of Zoology, Zoological Society of London, Regent's Park,
London, NW1 4RY, UK
Centre for Biodiversity and Environment
Research, University College London, Gower Street, London, C1E6BT, UK
Christopher Ware
CSIRO Land and Water, GPO Box 1700,
Canberra ACT 2601, Australia
Florian Wolf
German Centre for Integrative Biodiversity Research (iDiv)
Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
Institute of Biology, Martin Luther University Halle Wittenberg, Am
Kirchtor 1, 06108 Halle (Saale), Germany
German Centre for Integrative Biodiversity Research (iDiv)
Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
Institute of Biology, Martin Luther University Halle Wittenberg, Am
Kirchtor 1, 06108 Halle (Saale), Germany
CIBIO/InBIO, Centro de Investigação em Biodiversidade e
Recursos Genéticos, Cátedra REFER-Biodiveridade, Universidade do
Porto, Campus Agrário de Vairão, R. Padre Armando Quintas, 4485-661
Vairão, Portugal
Related authors
No articles found.
Rubaya Pervin, Scott Robeson, Mallory Barnes, Stephen Sitch, Anthony Walker, Ben Poulter, Fabienne Maignan, Qing Sun, Thomas Colligan, Sönke Zaehle, Kashif Mahmud, Peter Anthoni, Almut Arneth, Vivek Arora, Vladislav Bastrikov, Liam Bogucki, Bertrand Decharme, Christine Delire, Stefanie Falk, Akihiko Ito, Etsushi Kato, Daniel Kennedy, Jürgen Knauer, Michael O’Sullivan, Wenping Yuan, and Natasha MacBean
EGUsphere, https://doi.org/10.5194/egusphere-2025-2841, https://doi.org/10.5194/egusphere-2025-2841, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Drylands contribute more than a third of the global vegetation productivity. Yet, these regions are not well represented in global vegetation models. Here, we tested how well 15 global models capture annual changes in dryland vegetation productivity. Models that didn’t have vegetation change over time or fire have lower variability in vegetation productivity. Models need better representation of grass cover types and their coverage. Our work highlights where and how these models need to improve.
Benjamin F. Meyer, João P. Darela-Filho, Konstantin Gregor, Allan Buras, Qiao-Lin Gu, Andreas Krause, Daijun Liu, Phillip Papastefanou, Sijeh Asuk, Thorsten E. E. Grams, Christian S. Zang, and Anja Rammig
Geosci. Model Dev., 18, 4643–4666, https://doi.org/10.5194/gmd-18-4643-2025, https://doi.org/10.5194/gmd-18-4643-2025, 2025
Short summary
Short summary
Climate change has increased the likelihood of drought events across Europe, potentially threatening the European forest carbon sink. Dynamic vegetation models with mechanistic plant hydraulic architecture are needed to model these developments. We evaluate the plant hydraulic architecture version of LPJ-GUESS and show its ability to capture species-specific evapotranspiration responses to drought and to reproduce flux observations of both gross primary production and evapotranspiration.
Lucia S. Layritz, Konstantin Gregor, Andreas Krause, Stefan Kruse, Benjamin F. Meyer, Thomas A. M. Pugh, and Anja Rammig
Biogeosciences, 22, 3635–3660, https://doi.org/10.5194/bg-22-3635-2025, https://doi.org/10.5194/bg-22-3635-2025, 2025
Short summary
Short summary
Disturbances, such as fire, can change which vegetation grows in a forest, affecting water and carbon flows and, thus, the climate. Disturbances are expected to increase with climate change, but it is uncertain by how much. Using a simulation model, we studied how future climate, disturbances, and their combined effect impact northern (high-latitude) forest ecosystems. Our findings highlight the importance of considering these factors and the need to better understand how disturbances will change in the future.
Ida Bagus Mandhara Brasika, Pierre Friedlingstein, Stephen Sitch, Michael O'Sullivan, Maria Carolina Duran-Rojas, Thais Michele Rosan, Kees Klein Goldewijk, Julia Pongratz, Clemens Schwingshackl, Louise P. Chini, and George C. Hurtt
Biogeosciences, 22, 3547–3561, https://doi.org/10.5194/bg-22-3547-2025, https://doi.org/10.5194/bg-22-3547-2025, 2025
Short summary
Short summary
Indonesia is the world's third-highest carbon emitter from land use change. However, there are uncertainties in the carbon emissions of Indonesia. Our best estimate of carbon emissions from land use change in Indonesia is 0.12 ± 0.02 PgC/yr with a steady trend. Despite many uncertainties created by drivers, models, and products, we also found robust agreements between these models and products. All agree that Indonesian carbon emissions from LULCC (land use and land cover change) have had no decreasing trend for the last 2 decades.
Carolina Natel, David Martín Belda, Peter Anthoni, Neele Haß, Sam Rabin, and Almut Arneth
Geosci. Model Dev., 18, 4317–4333, https://doi.org/10.5194/gmd-18-4317-2025, https://doi.org/10.5194/gmd-18-4317-2025, 2025
Short summary
Short summary
We developed fast machine learning models to predict forest regrowth and carbon dynamics under climate change. These models mimic the outputs of a complex vegetation model but run 95 % faster, enabling global analyses and supporting climate solutions in large modeling frameworks such as LandSyMM.
Yue Li, Gang Tang, Eleanor O’Rourke, Samar Minallah, Martim Mas e Braga, Sophie Nowicki, Robin S. Smith, David M. Lawrence, George C. Hurtt, Daniele Peano, Gesa Meyer, Birgit Hassler, Jiafu Mao, Yongkang Xue, and Martin Juckes
EGUsphere, https://doi.org/10.5194/egusphere-2025-3207, https://doi.org/10.5194/egusphere-2025-3207, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Land and Land Ice Theme Opportunities describe a list that contains 25 variable groups with 716 variables, which are potentially available to the broad scientific audience for performing analysis in land-atmosphere coupling, hydrological processes and freshwater systems, glacier and ice sheet mass balance and their influence on the sea levels, land use, and plant phenology.
Qing Ying, Benjamin Poulter, Jennifer D. Watts, Kyle A. Arndt, Anna-Maria Virkkala, Lori Bruhwiler, Youmi Oh, Brendan M. Rogers, Susan M. Natali, Hilary Sullivan, Amanda Armstrong, Eric J. Ward, Luke D. Schiferl, Clayton D. Elder, Olli Peltola, Annett Bartsch, Ankur R. Desai, Eugénie Euskirchen, Mathias Göckede, Bernhard Lehner, Mats B. Nilsson, Matthias Peichl, Oliver Sonnentag, Eeva-Stiina Tuittila, Torsten Sachs, Aram Kalhori, Masahito Ueyama, and Zhen Zhang
Earth Syst. Sci. Data, 17, 2507–2534, https://doi.org/10.5194/essd-17-2507-2025, https://doi.org/10.5194/essd-17-2507-2025, 2025
Short summary
Short summary
We present daily methane (CH4) fluxes of northern wetlands at 10 km resolution during 2016–2022 (WetCH4) derived from a novel machine learning framework. We estimated an average annual CH4 emission of 22.8 ± 2.4 Tg CH4 yr−1 (15.7–51.6 Tg CH4 yr−1). Emissions were intensified in 2016, 2020, and 2022, with the largest interannual variation coming from Western Siberia. Continued, all-season tower observations and improved soil moisture products are needed for future improvement of CH4 upscaling.
Bernhard Lehner, Mira Anand, Etienne Fluet-Chouinard, Florence Tan, Filipe Aires, George H. Allen, Philippe Bousquet, Josep G. Canadell, Nick Davidson, Meng Ding, C. Max Finlayson, Thomas Gumbricht, Lammert Hilarides, Gustaf Hugelius, Robert B. Jackson, Maartje C. Korver, Liangyun Liu, Peter B. McIntyre, Szabolcs Nagy, David Olefeldt, Tamlin M. Pavelsky, Jean-Francois Pekel, Benjamin Poulter, Catherine Prigent, Jida Wang, Thomas A. Worthington, Dai Yamazaki, Xiao Zhang, and Michele Thieme
Earth Syst. Sci. Data, 17, 2277–2329, https://doi.org/10.5194/essd-17-2277-2025, https://doi.org/10.5194/essd-17-2277-2025, 2025
Short summary
Short summary
The Global Lakes and Wetlands Database (GLWD) version 2 distinguishes a total of 33 non-overlapping wetland classes, providing a static map of the world’s inland surface waters. It contains cell fractions of wetland extents per class at a grid cell resolution of ~500 m. The total combined extent of all classes including all inland and coastal waterbodies and wetlands of all inundation frequencies – that is, the maximum extent – covers 18.2 × 106 km2, equivalent to 13.4 % of total global land area.
Edna Johanna Molina Bacca, Miodrag Stevanović, Benjamin Leon Bodirsky, Jonathan Cornelis Doelman, Louise Parsons Chini, Jan Volkholz, Katja Frieler, Christopher Paul Oliver Reyer, George Hurtt, Florian Humpenöder, Kristine Karstens, Jens Heinke, Christoph Müller, Jan Philipp Dietrich, Hermann Lotze-Campen, Elke Stehfest, and Alexander Popp
Earth Syst. Dynam., 16, 753–801, https://doi.org/10.5194/esd-16-753-2025, https://doi.org/10.5194/esd-16-753-2025, 2025
Short summary
Short summary
Land-use change projections are vital for impact studies. This study compares updated land-use model projections, including CO2 fertilization among other upgrades, from the MAgPIE and IMAGE models under three scenarios, highlighting differences, uncertainty hotspots, and harmonization effects. Key findings include reduced bioenergy crop demand projections and differences in grassland area allocation and sizes, with socioeconomic–climate scenarios' largest effect on variance starting in 2030.
Hanyu Liu, Felix R. Vogel, Misa Ishizawa, Zhen Zhang, Benjamin Poulter, Doug E. J. Worthy, Leyang Feng, Anna L. Gagné-Landmann, Ao Chen, Ziting Huang, Dylan C. Gaeta, Joe R. Melton, Douglas Chan, Vineet Yadav, Deborah Huntzinger, and Scot M. Miller
EGUsphere, https://doi.org/10.5194/egusphere-2025-2150, https://doi.org/10.5194/egusphere-2025-2150, 2025
Short summary
Short summary
We find that the state-of-the-art process-based methane flux models have both lower flux magnitude and reduced inter-model uncertainty compared to a previous model inter-comparison from over a decade ago. Despite these improvements, methane flux estimates from process-based models are still likely too high compared to atmospheric observations. We also find that models with simpler parameterizations often result in better agreement with atmospheric observations in high-latitude North America.
Min Feng, Joseph O. Sexton, Panshi Wang, Paul M. Montesano, Leonardo Calle, Nuno Carvalhais, Benjamin Poulter, Matthew J. Macander, Michael A. Wulder, Margaret Wooten, William Wagner, Akiko Elders, Saurabh Channan, and Christopher S. R. Neigh
EGUsphere, https://doi.org/10.5194/egusphere-2025-2268, https://doi.org/10.5194/egusphere-2025-2268, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
The boreal forest, warming fastest among forested biomes, shows a northward shift in tree cover. Using the longest, highest-resolution satellite maps, we found an 0.844 million km² increase in tree cover and a 0.45° northward shift from 1985–2020, especially in northern latitudes. Stable disturbance rates suggest climate-driven growth. Young forests' biomass may help reduce global CO2, despite uncertainties in carbon balance, disturbance, and respiration.
Konstantin Gregor, Benjamin F. Meyer, Tillmann Gaida, Victor Justo Vasquez, Karina Bett-Williams, Matthew Forrest, João P. Darela-Filho, Sam Rabin, Marcos Longo, Joe R. Melton, Johan Nord, Peter Anthoni, Vladislav Bastrikov, Thomas Colligan, Christine Delire, Michael C. Dietze, George Hurtt, Akihiko Ito, Lasse T. Keetz, Jürgen Knauer, Johannes Köster, Tzu-Shun Lin, Lei Ma, Marie Minvielle, Stefan Olin, Sebastian Ostberg, Hao Shi, Reiner Schnur, Urs Schönenberger, Qing Sun, Peter E. Thornton, and Anja Rammig
EGUsphere, https://doi.org/10.5194/egusphere-2025-1733, https://doi.org/10.5194/egusphere-2025-1733, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Geoscientific models are crucial for understanding Earth’s processes. However, they sometimes do not adhere to highest software quality standards, and scientific results are often hard to reproduce due to the complexity of the workflows. Here we gather the expertise of 20 modeling groups and software engineers to define best practices for making geoscientific models maintainable, usable, and reproducible. We conclude with an open-source example serving as a reference for modeling communities.
Jianyong Ma, Almut Arneth, Benjamin Smith, Peter Anthoni, Xu-Ri, Peter Eliasson, David Wårlind, Martin Wittenbrink, and Stefan Olin
Geosci. Model Dev., 18, 3131–3155, https://doi.org/10.5194/gmd-18-3131-2025, https://doi.org/10.5194/gmd-18-3131-2025, 2025
Short summary
Short summary
Nitrous oxide (N2O) is a powerful greenhouse gas mainly released from natural and agricultural soils. This study examines how global soil N2O emissions changed from 1961 to 2020 and identifies key factors driving these changes using an ecological model. The findings highlight croplands as the largest source, with factors like fertilizer use and climate change enhancing emissions. Rising CO2 levels, however, can partially mitigate N2O emissions through increased plant nitrogen uptake.
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter A. Raymond, Pierre Regnier, Josep G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihiko Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul B. Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joël Thanwerdas, Hanqin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido R. van der Werf, Douglas E. J. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 17, 1873–1958, https://doi.org/10.5194/essd-17-1873-2025, https://doi.org/10.5194/essd-17-1873-2025, 2025
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesise and update the budget of the sources and sinks of CH4. This edition benefits from important progress in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
Dmitry Otryakhin, David Martín Belda, and Almut Arneth
EGUsphere, https://doi.org/10.5194/egusphere-2025-1401, https://doi.org/10.5194/egusphere-2025-1401, 2025
Short summary
Short summary
We developed a methodology for comparison of simulation results by a dynamic global vegetation model (DGVM). Using this methodology, we reveal systematic differences between high- and low-resolution DGVM simulations caused by under-representation of climate variability in the low-resolution data and poor representation of shore lines and inland water bodies. In a study area covering European Union, the differences in aggregated output variables were found to be 2 %–10 %.
Zhu Deng, Philippe Ciais, Liting Hu, Adrien Martinez, Marielle Saunois, Rona L. Thompson, Kushal Tibrewal, Wouter Peters, Brendan Byrne, Giacomo Grassi, Paul I. Palmer, Ingrid T. Luijkx, Zhu Liu, Junjie Liu, Xuekun Fang, Tengjiao Wang, Hanqin Tian, Katsumasa Tanaka, Ana Bastos, Stephen Sitch, Benjamin Poulter, Clément Albergel, Aki Tsuruta, Shamil Maksyutov, Rajesh Janardanan, Yosuke Niwa, Bo Zheng, Joël Thanwerdas, Dmitry Belikov, Arjo Segers, and Frédéric Chevallier
Earth Syst. Sci. Data, 17, 1121–1152, https://doi.org/10.5194/essd-17-1121-2025, https://doi.org/10.5194/essd-17-1121-2025, 2025
Short summary
Short summary
This study reconciles national greenhouse gas (GHG) inventories with updated atmospheric inversion results to evaluate discrepancies for three principal GHG fluxes at the national level. Compared to our previous study, new satellite-based CO2 inversions were included and an updated mask of managed lands was used, improving agreement for Brazil and Canada. The proposed methodology can be regularly applied as a check to assess the gap between top-down inversions and bottom-up inventories.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Hongmei Li, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Carla F. Berghoff, Henry C. Bittig, Laurent Bopp, Patricia Cadule, Katie Campbell, Matthew A. Chamberlain, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Thomas Colligan, Jeanne Decayeux, Laique M. Djeutchouang, Xinyu Dou, Carolina Duran Rojas, Kazutaka Enyo, Wiley Evans, Amanda R. Fay, Richard A. Feely, Daniel J. Ford, Adrianna Foster, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul K. Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Etsushi Kato, Ralph F. Keeling, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Xin Lan, Siv K. Lauvset, Nathalie Lefèvre, Zhu Liu, Junjie Liu, Lei Ma, Shamil Maksyutov, Gregg Marland, Nicolas Mayot, Patrick C. McGuire, Nicolas Metzl, Natalie M. Monacci, Eric J. Morgan, Shin-Ichiro Nakaoka, Craig Neill, Yosuke Niwa, Tobias Nützel, Lea Olivier, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Zhangcai Qin, Laure Resplandy, Alizée Roobaert, Thais M. Rosan, Christian Rödenbeck, Jörg Schwinger, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Roland Séférian, Shintaro Takao, Hiroaki Tatebe, Hanqin Tian, Bronte Tilbrook, Olivier Torres, Etienne Tourigny, Hiroyuki Tsujino, Francesco Tubiello, Guido van der Werf, Rik Wanninkhof, Xuhui Wang, Dongxu Yang, Xiaojuan Yang, Zhen Yu, Wenping Yuan, Xu Yue, Sönke Zaehle, Ning Zeng, and Jiye Zeng
Earth Syst. Sci. Data, 17, 965–1039, https://doi.org/10.5194/essd-17-965-2025, https://doi.org/10.5194/essd-17-965-2025, 2025
Short summary
Short summary
The Global Carbon Budget 2024 describes the methodology, main results, and datasets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2024). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Detlef van Vuuren, Brian O'Neill, Claudia Tebaldi, Louise Chini, Pierre Friedlingstein, Tomoko Hasegawa, Keywan Riahi, Benjamin Sanderson, Bala Govindasamy, Nico Bauer, Veronika Eyring, Cheikh Fall, Katja Frieler, Matthew Gidden, Laila Gohar, Andrew Jones, Andrew King, Reto Knutti, Elmar Kriegler, Peter Lawrence, Chris Lennard, Jason Lowe, Camila Mathison, Shahbaz Mehmood, Luciana Prado, Qiang Zhang, Steven Rose, Alexander Ruane, Carl-Friederich Schleussner, Roland Seferian, Jana Sillmann, Chris Smith, Anna Sörensson, Swapna Panickal, Kaoru Tachiiri, Naomi Vaughan, Saritha Vishwanathan, Tokuta Yokohata, and Tilo Ziehn
EGUsphere, https://doi.org/10.5194/egusphere-2024-3765, https://doi.org/10.5194/egusphere-2024-3765, 2025
Short summary
Short summary
We propose a set of six plausible 21st century emission scenarios, and their multi-century extensions, that will be used by the international community of climate modeling centers to produce the next generation of climate projections. These projections will support climate, impact and mitigation researchers, provide information to practitioners to address future risks from climate change, and contribute to policymakers’ considerations of the trade-offs among various levels of mitigation.
Tuula Aalto, Aki Tsuruta, Jarmo Mäkelä, Jurek Müller, Maria Tenkanen, Eleanor Burke, Sarah Chadburn, Yao Gao, Vilma Mannisenaho, Thomas Kleinen, Hanna Lee, Antti Leppänen, Tiina Markkanen, Stefano Materia, Paul A. Miller, Daniele Peano, Olli Peltola, Benjamin Poulter, Maarit Raivonen, Marielle Saunois, David Wårlind, and Sönke Zaehle
Biogeosciences, 22, 323–340, https://doi.org/10.5194/bg-22-323-2025, https://doi.org/10.5194/bg-22-323-2025, 2025
Short summary
Short summary
Wetland methane responses to temperature and precipitation were studied in a boreal wetland-rich region in northern Europe using ecosystem models, atmospheric inversions, and upscaled flux observations. The ecosystem models differed in their responses to temperature and precipitation and in their seasonality. However, multi-model means, inversions, and upscaled fluxes had similar seasonality, and they suggested co-limitation by temperature and precipitation.
Zhen Zhang, Benjamin Poulter, Joe R. Melton, William J. Riley, George H. Allen, David J. Beerling, Philippe Bousquet, Josep G. Canadell, Etienne Fluet-Chouinard, Philippe Ciais, Nicola Gedney, Peter O. Hopcroft, Akihiko Ito, Robert B. Jackson, Atul K. Jain, Katherine Jensen, Fortunat Joos, Thomas Kleinen, Sara H. Knox, Tingting Li, Xin Li, Xiangyu Liu, Kyle McDonald, Gavin McNicol, Paul A. Miller, Jurek Müller, Prabir K. Patra, Changhui Peng, Shushi Peng, Zhangcai Qin, Ryan M. Riggs, Marielle Saunois, Qing Sun, Hanqin Tian, Xiaoming Xu, Yuanzhi Yao, Yi Xi, Wenxin Zhang, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Biogeosciences, 22, 305–321, https://doi.org/10.5194/bg-22-305-2025, https://doi.org/10.5194/bg-22-305-2025, 2025
Short summary
Short summary
This study assesses global methane emissions from wetlands between 2000 and 2020 using multiple models. We found that wetland emissions increased by 6–7 Tg CH4 yr-1 in the 2010s compared to the 2000s. Rising temperatures primarily drove this increase, while changes in precipitation and CO2 levels also played roles. Our findings highlight the importance of wetlands in the global methane budget and the need for continuous monitoring to understand their impact on climate change.
Gab Abramowitz, Anna Ukkola, Sanaa Hobeichi, Jon Cranko Page, Mathew Lipson, Martin G. De Kauwe, Samuel Green, Claire Brenner, Jonathan Frame, Grey Nearing, Martyn Clark, Martin Best, Peter Anthoni, Gabriele Arduini, Souhail Boussetta, Silvia Caldararu, Kyeungwoo Cho, Matthias Cuntz, David Fairbairn, Craig R. Ferguson, Hyungjun Kim, Yeonjoo Kim, Jürgen Knauer, David Lawrence, Xiangzhong Luo, Sergey Malyshev, Tomoko Nitta, Jerome Ogee, Keith Oleson, Catherine Ottlé, Phillipe Peylin, Patricia de Rosnay, Heather Rumbold, Bob Su, Nicolas Vuichard, Anthony P. Walker, Xiaoni Wang-Faivre, Yunfei Wang, and Yijian Zeng
Biogeosciences, 21, 5517–5538, https://doi.org/10.5194/bg-21-5517-2024, https://doi.org/10.5194/bg-21-5517-2024, 2024
Short summary
Short summary
This paper evaluates land models – computer-based models that simulate ecosystem dynamics; land carbon, water, and energy cycles; and the role of land in the climate system. It uses machine learning and AI approaches to show that, despite the complexity of land models, they do not perform nearly as well as they could given the amount of information they are provided with about the prediction problem.
Benjamin M. Sanderson, Ben B. B. Booth, John Dunne, Veronika Eyring, Rosie A. Fisher, Pierre Friedlingstein, Matthew J. Gidden, Tomohiro Hajima, Chris D. Jones, Colin G. Jones, Andrew King, Charles D. Koven, David M. Lawrence, Jason Lowe, Nadine Mengis, Glen P. Peters, Joeri Rogelj, Chris Smith, Abigail C. Snyder, Isla R. Simpson, Abigail L. S. Swann, Claudia Tebaldi, Tatiana Ilyina, Carl-Friedrich Schleussner, Roland Séférian, Bjørn H. Samset, Detlef van Vuuren, and Sönke Zaehle
Geosci. Model Dev., 17, 8141–8172, https://doi.org/10.5194/gmd-17-8141-2024, https://doi.org/10.5194/gmd-17-8141-2024, 2024
Short summary
Short summary
We discuss how, in order to provide more relevant guidance for climate policy, coordinated climate experiments should adopt a greater focus on simulations where Earth system models are provided with carbon emissions from fossil fuels together with land use change instructions, rather than past approaches that have largely focused on experiments with prescribed atmospheric carbon dioxide concentrations. We discuss how these goals might be achieved in coordinated climate modeling experiments.
Colin G. Jones, Fanny Adloff, Ben B. B. Booth, Peter M. Cox, Veronika Eyring, Pierre Friedlingstein, Katja Frieler, Helene T. Hewitt, Hazel A. Jeffery, Sylvie Joussaume, Torben Koenigk, Bryan N. Lawrence, Eleanor O'Rourke, Malcolm J. Roberts, Benjamin M. Sanderson, Roland Séférian, Samuel Somot, Pier Luigi Vidale, Detlef van Vuuren, Mario Acosta, Mats Bentsen, Raffaele Bernardello, Richard Betts, Ed Blockley, Julien Boé, Tom Bracegirdle, Pascale Braconnot, Victor Brovkin, Carlo Buontempo, Francisco Doblas-Reyes, Markus Donat, Italo Epicoco, Pete Falloon, Sandro Fiore, Thomas Frölicher, Neven S. Fučkar, Matthew J. Gidden, Helge F. Goessling, Rune Grand Graversen, Silvio Gualdi, José M. Gutiérrez, Tatiana Ilyina, Daniela Jacob, Chris D. Jones, Martin Juckes, Elizabeth Kendon, Erik Kjellström, Reto Knutti, Jason Lowe, Matthew Mizielinski, Paola Nassisi, Michael Obersteiner, Pierre Regnier, Romain Roehrig, David Salas y Mélia, Carl-Friedrich Schleussner, Michael Schulz, Enrico Scoccimarro, Laurent Terray, Hannes Thiemann, Richard A. Wood, Shuting Yang, and Sönke Zaehle
Earth Syst. Dynam., 15, 1319–1351, https://doi.org/10.5194/esd-15-1319-2024, https://doi.org/10.5194/esd-15-1319-2024, 2024
Short summary
Short summary
We propose a number of priority areas for the international climate research community to address over the coming decade. Advances in these areas will both increase our understanding of past and future Earth system change, including the societal and environmental impacts of this change, and deliver significantly improved scientific support to international climate policy, such as future IPCC assessments and the UNFCCC Global Stocktake.
Kang He, Xinyi Shen, Cory Merow, Efthymios Nikolopoulos, Rachael V. Gallagher, Feifei Yang, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci., 24, 3337–3355, https://doi.org/10.5194/nhess-24-3337-2024, https://doi.org/10.5194/nhess-24-3337-2024, 2024
Short summary
Short summary
A framework combining a fire severity classification with a regression model to predict an indicator of fire severity derived from Landsat imagery (difference normalized burning ratio, dNBR) is proposed. The results show that the proposed predictive technique is capable of providing robust fire severity prediction information, which can be used for forecasting seasonal fire severity and, subsequently, impacts on biodiversity and ecosystems under projected future climate conditions.
Felix Jäger, Jonas Schwaab, Yann Quilcaille, Michael Windisch, Jonathan Doelman, Stefan Frank, Mykola Gusti, Petr Havlik, Florian Humpenöder, Andrey Lessa Derci Augustynczik, Christoph Müller, Kanishka Balu Narayan, Ryan Sebastian Padrón, Alexander Popp, Detlef van Vuuren, Michael Wögerer, and Sonia Isabelle Seneviratne
Earth Syst. Dynam., 15, 1055–1071, https://doi.org/10.5194/esd-15-1055-2024, https://doi.org/10.5194/esd-15-1055-2024, 2024
Short summary
Short summary
Climate change mitigation strategies developed with socioeconomic models rely on the widespread (re)planting of trees to limit global warming below 2°. However, most of these models neglect climate-driven shifts in forest damage like fires. By assessing existing mitigation scenarios, we show the exposure of projected forestation areas to fire-promoting weather conditions. Our study highlights the problem of ignoring climate-driven shifts in forest damage and ways to address it.
Jens Krause, Peter Anthoni, Mike Harfoot, Moritz Kupisch, and Almut Arneth
EGUsphere, https://doi.org/10.5194/egusphere-2024-1646, https://doi.org/10.5194/egusphere-2024-1646, 2024
Short summary
Short summary
While animal biodiversity is facing a global crisis as more and more species are becoming endangered or extinct, the role of animals for the functioning of ecosystems is still not fully understood. We contribute to bridging this gap by coupling a animal population model with a vegetation and thus enable future research in this topic.
Xuanming Su, Kiyoshi Takahashi, Tokuta Yokohata, Katsumasa Tanaka, Shinichiro Fujimori, Jun'ya Takakura, Rintaro Yamaguchi, and Weiwei Xiong
EGUsphere, https://doi.org/10.5194/egusphere-2024-1640, https://doi.org/10.5194/egusphere-2024-1640, 2024
Preprint archived
Short summary
Short summary
We created a new model combining socioeconomic data and climate projections. Using multiple future scenarios, we calculated new costs for reducing emissions, estimated damage based on the latest impacts, and extended our analysis to the year 2450. Our results show different ways to control emissions and their effects on future temperatures. This highlights the importance of adapting climate policies to different economic growth scenarios for better long-term planning.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Ingrid T. Luijkx, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Peter Anthoni, Leticia Barbero, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Bertrand Decharme, Laurent Bopp, Ida Bagus Mandhara Brasika, Patricia Cadule, Matthew A. Chamberlain, Naveen Chandra, Thi-Tuyet-Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Xinyu Dou, Kazutaka Enyo, Wiley Evans, Stefanie Falk, Richard A. Feely, Liang Feng, Daniel J. Ford, Thomas Gasser, Josefine Ghattas, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Fortunat Joos, Etsushi Kato, Ralph F. Keeling, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Xin Lan, Nathalie Lefèvre, Hongmei Li, Junjie Liu, Zhiqiang Liu, Lei Ma, Greg Marland, Nicolas Mayot, Patrick C. McGuire, Galen A. McKinley, Gesa Meyer, Eric J. Morgan, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin M. O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Melf Paulsen, Denis Pierrot, Katie Pocock, Benjamin Poulter, Carter M. Powis, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Roland Séférian, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Erik van Ooijen, Rik Wanninkhof, Michio Watanabe, Cathy Wimart-Rousseau, Dongxu Yang, Xiaojuan Yang, Wenping Yuan, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, https://doi.org/10.5194/essd-15-5301-2023, 2023
Short summary
Short summary
The Global Carbon Budget 2023 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2023). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Sian Kou-Giesbrecht, Vivek K. Arora, Christian Seiler, Almut Arneth, Stefanie Falk, Atul K. Jain, Fortunat Joos, Daniel Kennedy, Jürgen Knauer, Stephen Sitch, Michael O'Sullivan, Naiqing Pan, Qing Sun, Hanqin Tian, Nicolas Vuichard, and Sönke Zaehle
Earth Syst. Dynam., 14, 767–795, https://doi.org/10.5194/esd-14-767-2023, https://doi.org/10.5194/esd-14-767-2023, 2023
Short summary
Short summary
Nitrogen (N) is an essential limiting nutrient to terrestrial carbon (C) sequestration. We evaluate N cycling in an ensemble of terrestrial biosphere models. We find that variability in N processes across models is large. Models tended to overestimate C storage per unit N in vegetation and soil, which could have consequences for projecting the future terrestrial C sink. However, N cycling measurements are highly uncertain, and more are necessary to guide the development of N cycling in models.
Giacomo Grassi, Clemens Schwingshackl, Thomas Gasser, Richard A. Houghton, Stephen Sitch, Josep G. Canadell, Alessandro Cescatti, Philippe Ciais, Sandro Federici, Pierre Friedlingstein, Werner A. Kurz, Maria J. Sanz Sanchez, Raúl Abad Viñas, Ramdane Alkama, Selma Bultan, Guido Ceccherini, Stefanie Falk, Etsushi Kato, Daniel Kennedy, Jürgen Knauer, Anu Korosuo, Joana Melo, Matthew J. McGrath, Julia E. M. S. Nabel, Benjamin Poulter, Anna A. Romanovskaya, Simone Rossi, Hanqin Tian, Anthony P. Walker, Wenping Yuan, Xu Yue, and Julia Pongratz
Earth Syst. Sci. Data, 15, 1093–1114, https://doi.org/10.5194/essd-15-1093-2023, https://doi.org/10.5194/essd-15-1093-2023, 2023
Short summary
Short summary
Striking differences exist in estimates of land-use CO2 fluxes between the national greenhouse gas inventories and the IPCC assessment reports. These differences hamper an accurate assessment of the collective progress under the Paris Agreement. By implementing an approach that conceptually reconciles land-use CO2 flux from national inventories and the global models used by the IPCC, our study is an important step forward for increasing confidence in land-use CO2 flux estimates.
Brendan Byrne, David F. Baker, Sourish Basu, Michael Bertolacci, Kevin W. Bowman, Dustin Carroll, Abhishek Chatterjee, Frédéric Chevallier, Philippe Ciais, Noel Cressie, David Crisp, Sean Crowell, Feng Deng, Zhu Deng, Nicholas M. Deutscher, Manvendra K. Dubey, Sha Feng, Omaira E. García, David W. T. Griffith, Benedikt Herkommer, Lei Hu, Andrew R. Jacobson, Rajesh Janardanan, Sujong Jeong, Matthew S. Johnson, Dylan B. A. Jones, Rigel Kivi, Junjie Liu, Zhiqiang Liu, Shamil Maksyutov, John B. Miller, Scot M. Miller, Isamu Morino, Justus Notholt, Tomohiro Oda, Christopher W. O'Dell, Young-Suk Oh, Hirofumi Ohyama, Prabir K. Patra, Hélène Peiro, Christof Petri, Sajeev Philip, David F. Pollard, Benjamin Poulter, Marine Remaud, Andrew Schuh, Mahesh K. Sha, Kei Shiomi, Kimberly Strong, Colm Sweeney, Yao Té, Hanqin Tian, Voltaire A. Velazco, Mihalis Vrekoussis, Thorsten Warneke, John R. Worden, Debra Wunch, Yuanzhi Yao, Jeongmin Yun, Andrew Zammit-Mangion, and Ning Zeng
Earth Syst. Sci. Data, 15, 963–1004, https://doi.org/10.5194/essd-15-963-2023, https://doi.org/10.5194/essd-15-963-2023, 2023
Short summary
Short summary
Changes in the carbon stocks of terrestrial ecosystems result in emissions and removals of CO2. These can be driven by anthropogenic activities (e.g., deforestation), natural processes (e.g., fires) or in response to rising CO2 (e.g., CO2 fertilization). This paper describes a dataset of CO2 emissions and removals derived from atmospheric CO2 observations. This pilot dataset informs current capabilities and future developments towards top-down monitoring and verification systems.
Andrew F. Feldman, Zhen Zhang, Yasuko Yoshida, Abhishek Chatterjee, and Benjamin Poulter
Atmos. Chem. Phys., 23, 1545–1563, https://doi.org/10.5194/acp-23-1545-2023, https://doi.org/10.5194/acp-23-1545-2023, 2023
Short summary
Short summary
We investigate the conditions under which satellite-retrieved column carbon dioxide concentrations directly hold information about surface carbon dioxide fluxes, without the use of inversion models. We show that OCO-2 column carbon dioxide retrievals, available at 1–3 month latency, can be used to directly detect and roughly estimate extreme biospheric CO2 fluxes. As such, these OCO-2 retrievals have value for rapidly monitoring extreme conditions in the terrestrial biosphere.
Jarmo S. Kikstra, Zebedee R. J. Nicholls, Christopher J. Smith, Jared Lewis, Robin D. Lamboll, Edward Byers, Marit Sandstad, Malte Meinshausen, Matthew J. Gidden, Joeri Rogelj, Elmar Kriegler, Glen P. Peters, Jan S. Fuglestvedt, Ragnhild B. Skeie, Bjørn H. Samset, Laura Wienpahl, Detlef P. van Vuuren, Kaj-Ivar van der Wijst, Alaa Al Khourdajie, Piers M. Forster, Andy Reisinger, Roberto Schaeffer, and Keywan Riahi
Geosci. Model Dev., 15, 9075–9109, https://doi.org/10.5194/gmd-15-9075-2022, https://doi.org/10.5194/gmd-15-9075-2022, 2022
Short summary
Short summary
Assessing hundreds or thousands of emission scenarios in terms of their global mean temperature implications requires standardised procedures of infilling, harmonisation, and probabilistic temperature assessments. We here present the open-source
climate-assessmentworkflow that was used in the IPCC AR6 Working Group III report. The paper provides key insight for anyone wishing to understand the assessment of climate outcomes of mitigation pathways in the context of the Paris Agreement.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Luke Gregor, Judith Hauck, Corinne Le Quéré, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Ramdane Alkama, Almut Arneth, Vivek K. Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Henry C. Bittig, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Wiley Evans, Stefanie Falk, Richard A. Feely, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Lucas Gloege, Giacomo Grassi, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Atul K. Jain, Annika Jersild, Koji Kadono, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Keith Lindsay, Junjie Liu, Zhu Liu, Gregg Marland, Nicolas Mayot, Matthew J. McGrath, Nicolas Metzl, Natalie M. Monacci, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Naiqing Pan, Denis Pierrot, Katie Pocock, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Carmen Rodriguez, Thais M. Rosan, Jörg Schwinger, Roland Séférian, Jamie D. Shutler, Ingunn Skjelvan, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Toste Tanhua, Pieter P. Tans, Xiangjun Tian, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Anthony P. Walker, Rik Wanninkhof, Chris Whitehead, Anna Willstrand Wranne, Rebecca Wright, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 14, 4811–4900, https://doi.org/10.5194/essd-14-4811-2022, https://doi.org/10.5194/essd-14-4811-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2022 describes the datasets and methodology used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, the land ecosystems, and the ocean. These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Kristine Karstens, Benjamin Leon Bodirsky, Jan Philipp Dietrich, Marta Dondini, Jens Heinke, Matthias Kuhnert, Christoph Müller, Susanne Rolinski, Pete Smith, Isabelle Weindl, Hermann Lotze-Campen, and Alexander Popp
Biogeosciences, 19, 5125–5149, https://doi.org/10.5194/bg-19-5125-2022, https://doi.org/10.5194/bg-19-5125-2022, 2022
Short summary
Short summary
Soil organic carbon (SOC) has been depleted by anthropogenic land cover change and agricultural management. While SOC models often simulate detailed biochemical processes, the management decisions are still little investigated at the global scale. We estimate that soils have lost around 26 GtC relative to a counterfactual natural state in 1975. Yet, since 1975, SOC has been increasing again by 4 GtC due to a higher productivity, recycling of crop residues and manure, and no-tillage practices.
Sayaka Yoshikawa, Kiyoshi Takahashi, Wenchao Wu, Keisuke Matsuhashi, and Nobuo Mimura
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-169, https://doi.org/10.5194/gmd-2022-169, 2022
Revised manuscript not accepted
Short summary
Short summary
Socio-economic scenarios developed worldwide require revised versions for local assessments in Japan. Moreover, global narratives may lack important region-specific drivers, national policy perspectives, and unification of government-provided data. Therefore, we present the development of several socio-economic scenarios with changes in population and land use based on the previous study as a framework for projecting climate change impacts and adaptation assessment in Japan.
David Martín Belda, Peter Anthoni, David Wårlind, Stefan Olin, Guy Schurgers, Jing Tang, Benjamin Smith, and Almut Arneth
Geosci. Model Dev., 15, 6709–6745, https://doi.org/10.5194/gmd-15-6709-2022, https://doi.org/10.5194/gmd-15-6709-2022, 2022
Short summary
Short summary
We present a number of augmentations to the ecosystem model LPJ-GUESS, which will allow us to use it in studies of the interactions between the land biosphere and the climate. The new module enables calculation of fluxes of energy and water into the atmosphere that are consistent with the modelled vegetation processes. The modelled fluxes are in fair agreement with observations across 21 sites from the FLUXNET network.
Johannes Oberpriller, Christine Herschlein, Peter Anthoni, Almut Arneth, Andreas Krause, Anja Rammig, Mats Lindeskog, Stefan Olin, and Florian Hartig
Geosci. Model Dev., 15, 6495–6519, https://doi.org/10.5194/gmd-15-6495-2022, https://doi.org/10.5194/gmd-15-6495-2022, 2022
Short summary
Short summary
Understanding uncertainties of projected ecosystem dynamics under environmental change is of immense value for research and climate change policy. Here, we analyzed these across European forests. We find that uncertainties are dominantly induced by parameters related to water, mortality, and climate, with an increasing importance of climate from north to south. These results highlight that climate not only contributes uncertainty but also modifies uncertainties in other ecosystem processes.
Daniel J. Jacob, Daniel J. Varon, Daniel H. Cusworth, Philip E. Dennison, Christian Frankenberg, Ritesh Gautam, Luis Guanter, John Kelley, Jason McKeever, Lesley E. Ott, Benjamin Poulter, Zhen Qu, Andrew K. Thorpe, John R. Worden, and Riley M. Duren
Atmos. Chem. Phys., 22, 9617–9646, https://doi.org/10.5194/acp-22-9617-2022, https://doi.org/10.5194/acp-22-9617-2022, 2022
Short summary
Short summary
We review the capability of satellite observations of atmospheric methane to quantify methane emissions on all scales. We cover retrieval methods, precision requirements, inverse methods for inferring emissions, source detection thresholds, and observations of system completeness. We show that current instruments already enable quantification of regional and national emissions including contributions from large point sources. Coverage and resolution will increase significantly in coming years.
Prabhat Raj Dahal, Maria Lumbierres, Stuart H. M. Butchart, Paul F. Donald, and Carlo Rondinini
Geosci. Model Dev., 15, 5093–5105, https://doi.org/10.5194/gmd-15-5093-2022, https://doi.org/10.5194/gmd-15-5093-2022, 2022
Short summary
Short summary
This paper describes the validation of area of habitat (AOH) maps produced for terrestrial birds and mammals. The main objective was to assess the accuracy of the maps based on independent data. We used open access data from repositories, such as ebird and gbif to check if our maps were a better reflection of species' distribution than random. When points were not available we used logistic models to validate the AOH maps. The majority of AOH maps were found to have a high accuracy.
Colm Sweeney, Abhishek Chatterjee, Sonja Wolter, Kathryn McKain, Robert Bogue, Stephen Conley, Tim Newberger, Lei Hu, Lesley Ott, Benjamin Poulter, Luke Schiferl, Brad Weir, Zhen Zhang, and Charles E. Miller
Atmos. Chem. Phys., 22, 6347–6364, https://doi.org/10.5194/acp-22-6347-2022, https://doi.org/10.5194/acp-22-6347-2022, 2022
Short summary
Short summary
The Arctic Carbon Atmospheric Profiles (Arctic-CAP) project demonstrates the utility of aircraft profiles for independent evaluation of model-derived emissions and uptake of atmospheric CO2, CH4, and CO from land and ocean. Comparison with the Goddard Earth Observing System (GEOS) modeling system suggests that fluxes of CO2 are very consistent with observations, while those of CH4 have some regional and seasonal biases, and that CO comparison is complicated by transport errors.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Corinne Le Quéré, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Rob B. Jackson, Simone R. Alin, Peter Anthoni, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Laurent Bopp, Thi Tuyet Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Kim I. Currie, Bertrand Decharme, Laique M. Djeutchouang, Xinyu Dou, Wiley Evans, Richard A. Feely, Liang Feng, Thomas Gasser, Dennis Gilfillan, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Ingrid T. Luijkx, Atul Jain, Steve D. Jones, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Sebastian Lienert, Junjie Liu, Gregg Marland, Patrick C. McGuire, Joe R. Melton, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Clemens Schwingshackl, Roland Séférian, Adrienne J. Sutton, Colm Sweeney, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco Tubiello, Guido R. van der Werf, Nicolas Vuichard, Chisato Wada, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, and Jiye Zeng
Earth Syst. Sci. Data, 14, 1917–2005, https://doi.org/10.5194/essd-14-1917-2022, https://doi.org/10.5194/essd-14-1917-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2021 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Jianyong Ma, Sam S. Rabin, Peter Anthoni, Anita D. Bayer, Sylvia S. Nyawira, Stefan Olin, Longlong Xia, and Almut Arneth
Biogeosciences, 19, 2145–2169, https://doi.org/10.5194/bg-19-2145-2022, https://doi.org/10.5194/bg-19-2145-2022, 2022
Short summary
Short summary
Improved agricultural management plays a vital role in protecting soils from degradation in eastern Africa. We simulated the impacts of seven management practices on soil carbon pools, nitrogen loss, and crop yield under different climate scenarios in this region. This study highlights the possibilities of conservation agriculture when targeting long-term environmental sustainability and food security in crop ecosystems, particularly for those with poor soil conditions in tropical climates.
Zhu Deng, Philippe Ciais, Zitely A. Tzompa-Sosa, Marielle Saunois, Chunjing Qiu, Chang Tan, Taochun Sun, Piyu Ke, Yanan Cui, Katsumasa Tanaka, Xin Lin, Rona L. Thompson, Hanqin Tian, Yuanzhi Yao, Yuanyuan Huang, Ronny Lauerwald, Atul K. Jain, Xiaoming Xu, Ana Bastos, Stephen Sitch, Paul I. Palmer, Thomas Lauvaux, Alexandre d'Aspremont, Clément Giron, Antoine Benoit, Benjamin Poulter, Jinfeng Chang, Ana Maria Roxana Petrescu, Steven J. Davis, Zhu Liu, Giacomo Grassi, Clément Albergel, Francesco N. Tubiello, Lucia Perugini, Wouter Peters, and Frédéric Chevallier
Earth Syst. Sci. Data, 14, 1639–1675, https://doi.org/10.5194/essd-14-1639-2022, https://doi.org/10.5194/essd-14-1639-2022, 2022
Short summary
Short summary
In support of the global stocktake of the Paris Agreement on climate change, we proposed a method for reconciling the results of global atmospheric inversions with data from UNFCCC national greenhouse gas inventories (NGHGIs). Here, based on a new global harmonized database that we compiled from the UNFCCC NGHGIs and a comprehensive framework presented in this study to process the results of inversions, we compared their results of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O).
Ralf Döscher, Mario Acosta, Andrea Alessandri, Peter Anthoni, Thomas Arsouze, Tommi Bergman, Raffaele Bernardello, Souhail Boussetta, Louis-Philippe Caron, Glenn Carver, Miguel Castrillo, Franco Catalano, Ivana Cvijanovic, Paolo Davini, Evelien Dekker, Francisco J. Doblas-Reyes, David Docquier, Pablo Echevarria, Uwe Fladrich, Ramon Fuentes-Franco, Matthias Gröger, Jost v. Hardenberg, Jenny Hieronymus, M. Pasha Karami, Jukka-Pekka Keskinen, Torben Koenigk, Risto Makkonen, François Massonnet, Martin Ménégoz, Paul A. Miller, Eduardo Moreno-Chamarro, Lars Nieradzik, Twan van Noije, Paul Nolan, Declan O'Donnell, Pirkka Ollinaho, Gijs van den Oord, Pablo Ortega, Oriol Tintó Prims, Arthur Ramos, Thomas Reerink, Clement Rousset, Yohan Ruprich-Robert, Philippe Le Sager, Torben Schmith, Roland Schrödner, Federico Serva, Valentina Sicardi, Marianne Sloth Madsen, Benjamin Smith, Tian Tian, Etienne Tourigny, Petteri Uotila, Martin Vancoppenolle, Shiyu Wang, David Wårlind, Ulrika Willén, Klaus Wyser, Shuting Yang, Xavier Yepes-Arbós, and Qiong Zhang
Geosci. Model Dev., 15, 2973–3020, https://doi.org/10.5194/gmd-15-2973-2022, https://doi.org/10.5194/gmd-15-2973-2022, 2022
Short summary
Short summary
The Earth system model EC-Earth3 is documented here. Key performance metrics show physical behavior and biases well within the frame known from recent models. With improved physical and dynamic features, new ESM components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.
Lei Ma, George Hurtt, Lesley Ott, Ritvik Sahajpal, Justin Fisk, Rachel Lamb, Hao Tang, Steve Flanagan, Louise Chini, Abhishek Chatterjee, and Joseph Sullivan
Geosci. Model Dev., 15, 1971–1994, https://doi.org/10.5194/gmd-15-1971-2022, https://doi.org/10.5194/gmd-15-1971-2022, 2022
Short summary
Short summary
We present a global version of the Ecosystem Demography (ED) model which can track vegetation 3-D structure and scale up ecological processes from individual vegetation to ecosystem scale. Model evaluation against multiple benchmarking datasets demonstrated the model’s capability to simulate global vegetation dynamics across a range of temporal and spatial scales. With this version, ED has the potential to be linked with remote sensing observations to address key scientific questions.
Philippe Ciais, Ana Bastos, Frédéric Chevallier, Ronny Lauerwald, Ben Poulter, Josep G. Canadell, Gustaf Hugelius, Robert B. Jackson, Atul Jain, Matthew Jones, Masayuki Kondo, Ingrid T. Luijkx, Prabir K. Patra, Wouter Peters, Julia Pongratz, Ana Maria Roxana Petrescu, Shilong Piao, Chunjing Qiu, Celso Von Randow, Pierre Regnier, Marielle Saunois, Robert Scholes, Anatoly Shvidenko, Hanqin Tian, Hui Yang, Xuhui Wang, and Bo Zheng
Geosci. Model Dev., 15, 1289–1316, https://doi.org/10.5194/gmd-15-1289-2022, https://doi.org/10.5194/gmd-15-1289-2022, 2022
Short summary
Short summary
The second phase of the Regional Carbon Cycle Assessment and Processes (RECCAP) will provide updated quantification and process understanding of CO2, CH4, and N2O emissions and sinks for ten regions of the globe. In this paper, we give definitions, review different methods, and make recommendations for estimating different components of the total land–atmosphere carbon exchange for each region in a consistent and complete approach.
Jianyong Ma, Stefan Olin, Peter Anthoni, Sam S. Rabin, Anita D. Bayer, Sylvia S. Nyawira, and Almut Arneth
Geosci. Model Dev., 15, 815–839, https://doi.org/10.5194/gmd-15-815-2022, https://doi.org/10.5194/gmd-15-815-2022, 2022
Short summary
Short summary
The implementation of the biological N fixation process in LPJ-GUESS in this study provides an opportunity to quantify N fixation rates between legumes and to better estimate grain legume production on a global scale. It also helps to predict and detect the potential contribution of N-fixing plants as
green manureto reducing or removing the use of N fertilizer in global agricultural systems, considering different climate conditions, management practices, and land-use change scenarios.
Lore T. Verryckt, Sara Vicca, Leandro Van Langenhove, Clément Stahl, Dolores Asensio, Ifigenia Urbina, Romà Ogaya, Joan Llusià, Oriol Grau, Guille Peguero, Albert Gargallo-Garriga, Elodie A. Courtois, Olga Margalef, Miguel Portillo-Estrada, Philippe Ciais, Michael Obersteiner, Lucia Fuchslueger, Laynara F. Lugli, Pere-Roc Fernandez-Garberí, Helena Vallicrosa, Melanie Verlinden, Christian Ranits, Pieter Vermeir, Sabrina Coste, Erik Verbruggen, Laëtitia Bréchet, Jordi Sardans, Jérôme Chave, Josep Peñuelas, and Ivan A. Janssens
Earth Syst. Sci. Data, 14, 5–18, https://doi.org/10.5194/essd-14-5-2022, https://doi.org/10.5194/essd-14-5-2022, 2022
Short summary
Short summary
We provide a comprehensive dataset of vertical profiles of photosynthesis and important leaf traits, including leaf N and P concentrations, from two 3-year, large-scale nutrient addition experiments conducted in two tropical rainforests in French Guiana. These data present a unique source of information to further improve model representations of the roles of N and P, and other leaf nutrients, in photosynthesis in tropical forests.
Yohanna Villalobos, Peter J. Rayner, Jeremy D. Silver, Steven Thomas, Vanessa Haverd, Jürgen Knauer, Zoë M. Loh, Nicholas M. Deutscher, David W. T. Griffith, and David F. Pollard
Atmos. Chem. Phys., 21, 17453–17494, https://doi.org/10.5194/acp-21-17453-2021, https://doi.org/10.5194/acp-21-17453-2021, 2021
Short summary
Short summary
Semi-arid ecosystems such as those in Australia are evolving and might play an essential role in the future of climate change. We use carbon dioxide concentrations derived from the OCO-2 satellite instrument and a regional transport model to understand if Australia was a carbon sink or source of CO2 in 2015. Our research's main findings suggest that Australia acted as a carbon sink of about −0.41 ± 0.08 petagrams of carbon in 2015, driven primarily by savanna and sparsely vegetated ecosystems.
Simon Besnard, Sujan Koirala, Maurizio Santoro, Ulrich Weber, Jacob Nelson, Jonas Gütter, Bruno Herault, Justin Kassi, Anny N'Guessan, Christopher Neigh, Benjamin Poulter, Tao Zhang, and Nuno Carvalhais
Earth Syst. Sci. Data, 13, 4881–4896, https://doi.org/10.5194/essd-13-4881-2021, https://doi.org/10.5194/essd-13-4881-2021, 2021
Short summary
Short summary
Forest age can determine the capacity of a forest to uptake carbon from the atmosphere. Yet, a lack of global diagnostics that reflect the forest stage and associated disturbance regimes hampers the quantification of age-related differences in forest carbon dynamics. In this paper, we introduced a new global distribution of forest age inferred from forest inventory, remote sensing and climate data in support of a better understanding of the global dynamics in the forest water and carbon cycles.
Abhijeet Mishra, Florian Humpenöder, Jan Philipp Dietrich, Benjamin Leon Bodirsky, Brent Sohngen, Christopher P. O. Reyer, Hermann Lotze-Campen, and Alexander Popp
Geosci. Model Dev., 14, 6467–6494, https://doi.org/10.5194/gmd-14-6467-2021, https://doi.org/10.5194/gmd-14-6467-2021, 2021
Short summary
Short summary
Timber plantations are an increasingly important source of roundwood production, next to harvest from natural forests. However, timber plantations are currently underrepresented in global land-use models. Here, we include timber production and plantations in the MAgPIE modeling framework. This allows one to capture the competition for land between agriculture and forestry. We show that increasing timber plantations in the coming decades partly compete with cropland for limited land resources.
Ana Bastos, René Orth, Markus Reichstein, Philippe Ciais, Nicolas Viovy, Sönke Zaehle, Peter Anthoni, Almut Arneth, Pierre Gentine, Emilie Joetzjer, Sebastian Lienert, Tammas Loughran, Patrick C. McGuire, Sungmin O, Julia Pongratz, and Stephen Sitch
Earth Syst. Dynam., 12, 1015–1035, https://doi.org/10.5194/esd-12-1015-2021, https://doi.org/10.5194/esd-12-1015-2021, 2021
Short summary
Short summary
Temperate biomes in Europe are not prone to recurrent dry and hot conditions in summer. However, these conditions may become more frequent in the coming decades. Because stress conditions can leave legacies for many years, this may result in reduced ecosystem resilience under recurrent stress. We assess vegetation vulnerability to the hot and dry summers in 2018 and 2019 in Europe and find the important role of inter-annual legacy effects from 2018 in modulating the impacts of the 2019 event.
Jina Jeong, Jonathan Barichivich, Philippe Peylin, Vanessa Haverd, Matthew Joseph McGrath, Nicolas Vuichard, Michael Neil Evans, Flurin Babst, and Sebastiaan Luyssaert
Geosci. Model Dev., 14, 5891–5913, https://doi.org/10.5194/gmd-14-5891-2021, https://doi.org/10.5194/gmd-14-5891-2021, 2021
Short summary
Short summary
We have proposed and evaluated the use of four benchmarks that leverage tree-ring width observations to provide more nuanced verification targets for land-surface models (LSMs), which currently lack a long-term benchmark for forest ecosystem functioning. Using relatively unbiased European biomass network datasets, we identify the extent to which presumed biases in the much larger International Tree-Ring Data Bank might degrade the validation of LSMs.
Alexander J. Winkler, Ranga B. Myneni, Alexis Hannart, Stephen Sitch, Vanessa Haverd, Danica Lombardozzi, Vivek K. Arora, Julia Pongratz, Julia E. M. S. Nabel, Daniel S. Goll, Etsushi Kato, Hanqin Tian, Almut Arneth, Pierre Friedlingstein, Atul K. Jain, Sönke Zaehle, and Victor Brovkin
Biogeosciences, 18, 4985–5010, https://doi.org/10.5194/bg-18-4985-2021, https://doi.org/10.5194/bg-18-4985-2021, 2021
Short summary
Short summary
Satellite observations since the early 1980s show that Earth's greening trend is slowing down and that browning clusters have been emerging, especially in the last 2 decades. A collection of model simulations in conjunction with causal theory points at climatic changes as a key driver of vegetation changes in natural ecosystems. Most models underestimate the observed vegetation browning, especially in tropical rainforests, which could be due to an excessive CO2 fertilization effect in models.
Louise Chini, George Hurtt, Ritvik Sahajpal, Steve Frolking, Kees Klein Goldewijk, Stephen Sitch, Raphael Ganzenmüller, Lei Ma, Lesley Ott, Julia Pongratz, and Benjamin Poulter
Earth Syst. Sci. Data, 13, 4175–4189, https://doi.org/10.5194/essd-13-4175-2021, https://doi.org/10.5194/essd-13-4175-2021, 2021
Short summary
Short summary
Carbon emissions from land-use change are a large and uncertain component of the global carbon cycle. The Land-Use Harmonization 2 (LUH2) dataset was developed as an input to carbon and climate simulations and has been updated annually for the Global Carbon Budget (GCB) assessments. Here we discuss the methodology for producing these annual LUH2 updates and describe the 2019 version which used new cropland and grazing land data inputs for the globally important region of Brazil.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Kerstin Hartung, Ana Bastos, Louise Chini, Raphael Ganzenmüller, Felix Havermann, George C. Hurtt, Tammas Loughran, Julia E. M. S. Nabel, Tobias Nützel, Wolfgang A. Obermeier, and Julia Pongratz
Earth Syst. Dynam., 12, 763–782, https://doi.org/10.5194/esd-12-763-2021, https://doi.org/10.5194/esd-12-763-2021, 2021
Short summary
Short summary
In this study, we model the relative importance of several contributors to the land-use and land-cover change (LULCC) flux based on a LULCC dataset including uncertainty estimates. The uncertainty of LULCC is as relevant as applying wood harvest and gross transitions for the cumulative LULCC flux over the industrial period. However, LULCC uncertainty matters less than the other two factors for the LULCC flux in 2014; historical LULCC uncertainty is negligible for estimates of future scenarios.
Brad Weir, Lesley E. Ott, George J. Collatz, Stephan R. Kawa, Benjamin Poulter, Abhishek Chatterjee, Tomohiro Oda, and Steven Pawson
Atmos. Chem. Phys., 21, 9609–9628, https://doi.org/10.5194/acp-21-9609-2021, https://doi.org/10.5194/acp-21-9609-2021, 2021
Short summary
Short summary
We present a collection of carbon surface fluxes, the Low-order Flux Inversion (LoFI), derived from satellite observations of the Earth's surface and calibrated to match long-term inventories and atmospheric and oceanic records. Simulations using LoFI reproduce background atmospheric carbon dioxide measurements with comparable skill to the leading surface flux products. Available both retrospectively and as a forecast, LoFI enables the study of the carbon cycle as it occurs.
Jun'ya Takakura, Shinichiro Fujimori, Kiyoshi Takahashi, Naota Hanasaki, Tomoko Hasegawa, Yukiko Hirabayashi, Yasushi Honda, Toshichika Iizumi, Chan Park, Makoto Tamura, and Yasuaki Hijioka
Geosci. Model Dev., 14, 3121–3140, https://doi.org/10.5194/gmd-14-3121-2021, https://doi.org/10.5194/gmd-14-3121-2021, 2021
Short summary
Short summary
To simplify calculating economic impacts of climate change, statistical methods called emulators are developed and evaluated. There are trade-offs between model complexity and emulation performance. Aggregated economic impacts can be approximated by relatively simple emulators, but complex emulators are necessary to accommodate finer-scale economic impacts.
Wolfgang A. Obermeier, Julia E. M. S. Nabel, Tammas Loughran, Kerstin Hartung, Ana Bastos, Felix Havermann, Peter Anthoni, Almut Arneth, Daniel S. Goll, Sebastian Lienert, Danica Lombardozzi, Sebastiaan Luyssaert, Patrick C. McGuire, Joe R. Melton, Benjamin Poulter, Stephen Sitch, Michael O. Sullivan, Hanqin Tian, Anthony P. Walker, Andrew J. Wiltshire, Soenke Zaehle, and Julia Pongratz
Earth Syst. Dynam., 12, 635–670, https://doi.org/10.5194/esd-12-635-2021, https://doi.org/10.5194/esd-12-635-2021, 2021
Short summary
Short summary
We provide the first spatio-temporally explicit comparison of different model-derived fluxes from land use and land cover changes (fLULCCs) by using the TRENDY v8 dynamic global vegetation models used in the 2019 global carbon budget. We find huge regional fLULCC differences resulting from environmental assumptions, simulated periods, and the timing of land use and land cover changes, and we argue for a method consistent across time and space and for carefully choosing the accounting period.
Zhen Zhang, Etienne Fluet-Chouinard, Katherine Jensen, Kyle McDonald, Gustaf Hugelius, Thomas Gumbricht, Mark Carroll, Catherine Prigent, Annett Bartsch, and Benjamin Poulter
Earth Syst. Sci. Data, 13, 2001–2023, https://doi.org/10.5194/essd-13-2001-2021, https://doi.org/10.5194/essd-13-2001-2021, 2021
Short summary
Short summary
The spatiotemporal distribution of wetlands is one of the important and yet uncertain factors determining the time and locations of methane fluxes. The Wetland Area and Dynamics for Methane Modeling (WAD2M) dataset describes the global data product used to quantify the areal dynamics of natural wetlands and how global wetlands are changing in response to climate.
Leonardo Calle and Benjamin Poulter
Geosci. Model Dev., 14, 2575–2601, https://doi.org/10.5194/gmd-14-2575-2021, https://doi.org/10.5194/gmd-14-2575-2021, 2021
Short summary
Short summary
We developed a model to simulate and track the age of ecosystems on Earth. We found that the effect of ecosystem age on net primary production and ecosystem respiration is as important as climate in large areas of every vegetated continent. The LPJ-wsl v2.0 age-class model simulates dynamic age-class distributions on Earth and represents another step forward towards understanding the role of demography in global ecosystems.
Garry D. Hayman, Edward Comyn-Platt, Chris Huntingford, Anna B. Harper, Tom Powell, Peter M. Cox, William Collins, Christopher Webber, Jason Lowe, Stephen Sitch, Joanna I. House, Jonathan C. Doelman, Detlef P. van Vuuren, Sarah E. Chadburn, Eleanor Burke, and Nicola Gedney
Earth Syst. Dynam., 12, 513–544, https://doi.org/10.5194/esd-12-513-2021, https://doi.org/10.5194/esd-12-513-2021, 2021
Short summary
Short summary
We model greenhouse gas emission scenarios consistent with limiting global warming to either 1.5 or 2 °C above pre-industrial levels. We quantify the effectiveness of methane emission control and land-based mitigation options regionally. Our results highlight the importance of reducing methane emissions for realistic emission pathways that meet the global warming targets. For land-based mitigation, growing bioenergy crops on existing agricultural land is preferable to replacing forests.
Zichong Chen, Junjie Liu, Daven K. Henze, Deborah N. Huntzinger, Kelley C. Wells, Stephen Sitch, Pierre Friedlingstein, Emilie Joetzjer, Vladislav Bastrikov, Daniel S. Goll, Vanessa Haverd, Atul K. Jain, Etsushi Kato, Sebastian Lienert, Danica L. Lombardozzi, Patrick C. McGuire, Joe R. Melton, Julia E. M. S. Nabel, Benjamin Poulter, Hanqin Tian, Andrew J. Wiltshire, Sönke Zaehle, and Scot M. Miller
Atmos. Chem. Phys., 21, 6663–6680, https://doi.org/10.5194/acp-21-6663-2021, https://doi.org/10.5194/acp-21-6663-2021, 2021
Short summary
Short summary
NASA's Orbiting Carbon Observatory 2 (OCO-2) satellite observes atmospheric CO2 globally. We use a multiple regression and inverse model to quantify the relationships between OCO-2 and environmental drivers within individual years for 2015–2018 and within seven global biomes. Our results point to limitations of current space-based observations for inferring environmental relationships but also indicate the potential to inform key relationships that are very uncertain in process-based models.
Anita D. Bayer, Richard Fuchs, Reinhard Mey, Andreas Krause, Peter H. Verburg, Peter Anthoni, and Almut Arneth
Earth Syst. Dynam., 12, 327–351, https://doi.org/10.5194/esd-12-327-2021, https://doi.org/10.5194/esd-12-327-2021, 2021
Short summary
Short summary
Many projections of future land-use/-cover exist. We evaluate a number of these and determine the variability they cause in ecosystems and their services. We found that projections differ a lot in regional patterns, with some patterns being at least questionable in a historical context. Across ecosystem service indicators, resulting variability until 2040 was highest in crop production. Results emphasize that such variability should be acknowledged in assessments of future ecosystem provisions.
Claudia Tebaldi, Kevin Debeire, Veronika Eyring, Erich Fischer, John Fyfe, Pierre Friedlingstein, Reto Knutti, Jason Lowe, Brian O'Neill, Benjamin Sanderson, Detlef van Vuuren, Keywan Riahi, Malte Meinshausen, Zebedee Nicholls, Katarzyna B. Tokarska, George Hurtt, Elmar Kriegler, Jean-Francois Lamarque, Gerald Meehl, Richard Moss, Susanne E. Bauer, Olivier Boucher, Victor Brovkin, Young-Hwa Byun, Martin Dix, Silvio Gualdi, Huan Guo, Jasmin G. John, Slava Kharin, YoungHo Kim, Tsuyoshi Koshiro, Libin Ma, Dirk Olivié, Swapna Panickal, Fangli Qiao, Xinyao Rong, Nan Rosenbloom, Martin Schupfner, Roland Séférian, Alistair Sellar, Tido Semmler, Xiaoying Shi, Zhenya Song, Christian Steger, Ronald Stouffer, Neil Swart, Kaoru Tachiiri, Qi Tang, Hiroaki Tatebe, Aurore Voldoire, Evgeny Volodin, Klaus Wyser, Xiaoge Xin, Shuting Yang, Yongqiang Yu, and Tilo Ziehn
Earth Syst. Dynam., 12, 253–293, https://doi.org/10.5194/esd-12-253-2021, https://doi.org/10.5194/esd-12-253-2021, 2021
Short summary
Short summary
We present an overview of CMIP6 ScenarioMIP outcomes from up to 38 participating ESMs according to the new SSP-based scenarios. Average temperature and precipitation projections according to a wide range of forcings, spanning a wider range than the CMIP5 projections, are documented as global averages and geographic patterns. Times of crossing various warming levels are computed, together with benefits of mitigation for selected pairs of scenarios. Comparisons with CMIP5 are also discussed.
Sudhanshu Pandey, Sander Houweling, Alba Lorente, Tobias Borsdorff, Maria Tsivlidou, A. Anthony Bloom, Benjamin Poulter, Zhen Zhang, and Ilse Aben
Biogeosciences, 18, 557–572, https://doi.org/10.5194/bg-18-557-2021, https://doi.org/10.5194/bg-18-557-2021, 2021
Short summary
Short summary
We use atmospheric methane observations from the novel TROPOspheric Monitoring Instrument (TROPOMI; Sentinel-5p) to estimate methane emissions from South Sudan's wetlands. Our emission estimates are an order of magnitude larger than the estimate of process-based wetland models. We find that this underestimation by the models is likely due to their misrepresentation of the wetlands' inundation extent and temperature dependences.
Richard Essery, Hyungjun Kim, Libo Wang, Paul Bartlett, Aaron Boone, Claire Brutel-Vuilmet, Eleanor Burke, Matthias Cuntz, Bertrand Decharme, Emanuel Dutra, Xing Fang, Yeugeniy Gusev, Stefan Hagemann, Vanessa Haverd, Anna Kontu, Gerhard Krinner, Matthieu Lafaysse, Yves Lejeune, Thomas Marke, Danny Marks, Christoph Marty, Cecile B. Menard, Olga Nasonova, Tomoko Nitta, John Pomeroy, Gerd Schädler, Vladimir Semenov, Tatiana Smirnova, Sean Swenson, Dmitry Turkov, Nander Wever, and Hua Yuan
The Cryosphere, 14, 4687–4698, https://doi.org/10.5194/tc-14-4687-2020, https://doi.org/10.5194/tc-14-4687-2020, 2020
Short summary
Short summary
Climate models are uncertain in predicting how warming changes snow cover. This paper compares 22 snow models with the same meteorological inputs. Predicted trends agree with observations at four snow research sites: winter snow cover does not start later, but snow now melts earlier in spring than in the 1980s at two of the sites. Cold regions where snow can last until late summer are predicted to be particularly sensitive to warming because the snow then melts faster at warmer times of year.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone Alin, Luiz E. O. C. Aragão, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Alice Benoit-Cattin, Henry C. Bittig, Laurent Bopp, Selma Bultan, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Wiley Evans, Liesbeth Florentie, Piers M. Forster, Thomas Gasser, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Luke Gregor, Nicolas Gruber, Ian Harris, Kerstin Hartung, Vanessa Haverd, Richard A. Houghton, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Koji Kadono, Etsushi Kato, Vassilis Kitidis, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Gregg Marland, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Adam J. P. Smith, Adrienne J. Sutton, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Guido van der Werf, Nicolas Vuichard, Anthony P. Walker, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Xu Yue, and Sönke Zaehle
Earth Syst. Sci. Data, 12, 3269–3340, https://doi.org/10.5194/essd-12-3269-2020, https://doi.org/10.5194/essd-12-3269-2020, 2020
Short summary
Short summary
The Global Carbon Budget 2020 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Zhipin Ai, Naota Hanasaki, Vera Heck, Tomoko Hasegawa, and Shinichiro Fujimori
Geosci. Model Dev., 13, 6077–6092, https://doi.org/10.5194/gmd-13-6077-2020, https://doi.org/10.5194/gmd-13-6077-2020, 2020
Short summary
Short summary
Incorporating bioenergy crops into the well-established global hydrological models is seldom seen today. Here, we successfully enhance a state-of-the-art global hydrological model H08 to simulate bioenergy crop yield. We found that unconstrained irrigation more than doubled the yield under rainfed conditions while simultaneously reducing the water use efficiency by 32 % globally. Our enhanced model provides a new tool for the future assessment of bioenergy–water tradeoffs.
Lena R. Boysen, Victor Brovkin, Julia Pongratz, David M. Lawrence, Peter Lawrence, Nicolas Vuichard, Philippe Peylin, Spencer Liddicoat, Tomohiro Hajima, Yanwu Zhang, Matthias Rocher, Christine Delire, Roland Séférian, Vivek K. Arora, Lars Nieradzik, Peter Anthoni, Wim Thiery, Marysa M. Laguë, Deborah Lawrence, and Min-Hui Lo
Biogeosciences, 17, 5615–5638, https://doi.org/10.5194/bg-17-5615-2020, https://doi.org/10.5194/bg-17-5615-2020, 2020
Short summary
Short summary
We find a biogeophysically induced global cooling with strong carbon losses in a 20 million square kilometre idealized deforestation experiment performed by nine CMIP6 Earth system models. It takes many decades for the temperature signal to emerge, with non-local effects playing an important role. Despite a consistent experimental setup, models diverge substantially in their climate responses. This study offers unprecedented insights for understanding land use change effects in CMIP6 models.
George C. Hurtt, Louise Chini, Ritvik Sahajpal, Steve Frolking, Benjamin L. Bodirsky, Katherine Calvin, Jonathan C. Doelman, Justin Fisk, Shinichiro Fujimori, Kees Klein Goldewijk, Tomoko Hasegawa, Peter Havlik, Andreas Heinimann, Florian Humpenöder, Johan Jungclaus, Jed O. Kaplan, Jennifer Kennedy, Tamás Krisztin, David Lawrence, Peter Lawrence, Lei Ma, Ole Mertz, Julia Pongratz, Alexander Popp, Benjamin Poulter, Keywan Riahi, Elena Shevliakova, Elke Stehfest, Peter Thornton, Francesco N. Tubiello, Detlef P. van Vuuren, and Xin Zhang
Geosci. Model Dev., 13, 5425–5464, https://doi.org/10.5194/gmd-13-5425-2020, https://doi.org/10.5194/gmd-13-5425-2020, 2020
Short summary
Short summary
To estimate the effects of human land use activities on the carbon–climate system, a new set of global gridded land use forcing datasets was developed to link historical land use data to eight future scenarios in a standard format required by climate models. This new generation of land use harmonization (LUH2) includes updated inputs, higher spatial resolution, more detailed land use transitions, and the addition of important agricultural management layers; it will be used for CMIP6 simulations.
Rachel L. Tunnicliffe, Anita L. Ganesan, Robert J. Parker, Hartmut Boesch, Nicola Gedney, Benjamin Poulter, Zhen Zhang, Jošt V. Lavrič, David Walter, Matthew Rigby, Stephan Henne, Dickon Young, and Simon O'Doherty
Atmos. Chem. Phys., 20, 13041–13067, https://doi.org/10.5194/acp-20-13041-2020, https://doi.org/10.5194/acp-20-13041-2020, 2020
Short summary
Short summary
This study quantifies Brazil’s emissions of a potent atmospheric greenhouse gas, methane. This is in the field of atmospheric modelling and uses remotely sensed data and surface measurements of methane concentrations as well as an atmospheric transport model to interpret the data. Because of Brazil’s large emissions from wetlands, agriculture and biomass burning, these emissions affect global methane concentrations and thus are of global significance.
Tokuta Yokohata, Tsuguki Kinoshita, Gen Sakurai, Yadu Pokhrel, Akihiko Ito, Masashi Okada, Yusuke Satoh, Etsushi Kato, Tomoko Nitta, Shinichiro Fujimori, Farshid Felfelani, Yoshimitsu Masaki, Toshichika Iizumi, Motoki Nishimori, Naota Hanasaki, Kiyoshi Takahashi, Yoshiki Yamagata, and Seita Emori
Geosci. Model Dev., 13, 4713–4747, https://doi.org/10.5194/gmd-13-4713-2020, https://doi.org/10.5194/gmd-13-4713-2020, 2020
Short summary
Short summary
The most significant feature of MIROC-INTEG-LAND is that the land surface model that describes the processes of the energy and water balances, human water management, and crop growth incorporates a land-use decision-making model based on economic activities. The future simulations indicate that changes in climate have significant impacts on crop yields, land use, and irrigation water demand.
Matthew J. Rowlinson, Alexandru Rap, Douglas S. Hamilton, Richard J. Pope, Stijn Hantson, Steve R. Arnold, Jed O. Kaplan, Almut Arneth, Martyn P. Chipperfield, Piers M. Forster, and Lars Nieradzik
Atmos. Chem. Phys., 20, 10937–10951, https://doi.org/10.5194/acp-20-10937-2020, https://doi.org/10.5194/acp-20-10937-2020, 2020
Short summary
Short summary
Tropospheric ozone is an important greenhouse gas which contributes to anthropogenic climate change; however, the effect of human emissions is uncertain because pre-industrial ozone concentrations are not well understood. We use revised inventories of pre-industrial natural emissions to estimate the human contribution to changes in tropospheric ozone. We find that tropospheric ozone radiative forcing is up to 34 % lower when using improved pre-industrial biomass burning and vegetation emissions.
Cited articles
Aguirre-Gutiérrez, J., Carvalheiro, L. G., Polce, C., van Loon, E. E.,
Raes, N., Reemer, M., Biesmeijer, J. C., and Chapman, M. G. (Eds.):
Fit-for-Purpose: Species Distribution Model Performance Depends on Evaluation
Criteria – Dutch Hoverflies as a Case Study, PLoS ONE, 8, e63708,
https://doi.org/10.1371/journal.pone.0063708, 2013.
Akçakaya, H. R., Pereira, H. M., Canziani, G. A., Mbow, C., Mori, A.,
Palomo, M. G., Soberoin, J., Thuiller, W., Yachi, S., Ferrier, S., Ninan, K.
N., Leadley, P., Alkemade, R., Acosta, L. A., Akçakaya, H. R., Brotons,
L., Cheung, W. W. L., Christensen, V., Harhash, K. A., Kabubo-Mariara, J.,
Lundquist, C., Obersteiner, M., Pereira, H. M., Peterson, G., Pichs-Madruga,
R., Ravindranath, N., Rondinini, C., and Wintle, B. A. (Eds.): Improving the
rigour and usefulness of scenarios and models through ongoing evaluation and
refinement, The methodological assessment report on scenarios and models of
biodiversity and ecosystem services, Secretariat of the Intergovernmental
Science-Policy Platform for Biodiversity and Ecosystem Services, Bonn,
Germany, 2015.
Alkemade, R., van Oorschot, M., Miles, L., Nellemann, C., Bakkenes, M., and
ten Brink, B.: GLOBIO3: A Framework to Investigate Options for Reducing
Global Terrestrial Biodiversity Loss, Ecosystems, 12, 374–390,
https://doi.org/10.1007/s10021-009-9229-5, 2009.
Alkemade, R., Burkhard, B., Crossman, N. D., Nedkov, S., and Petz, K.:
Quantifying ecosystem services and indicators for science, policy and
practice, Ecol. Indic., 37, 161–162, https://doi.org/10.1016/j.ecolind.2013.11.014,
2014.
Arkema, K. K., Guannel, G., Verutes, G., Wood, S. A., Guerry, A.,
Ruckelshaus, M., Kareiva, P., Lacayo, M., and Silver, J. M.: Coastal habitats
shield people and property from sea-level rise and storms, Nat. Clim. Change,
3, 913–918, https://doi.org/10.1038/nclimate1944, 2013.
Arneth, A., Sitch, S., Pongratz, J., Stocker, B. D., Ciais, P., Poulter, B.,
Bayer, A. D., Bondeau, A., Calle, L., Chini, L. P., Gasser, T., Fader, M.,
Friedlingstein, P., Kato, E., Li, W., Lindeskog, M., Nabel, J. E. M. S.,
Pugh, T. A. M., Robertson, E., Viovy, N., Yue, C., and Zaehle, S.: Historical
carbon dioxide emissions caused by land-use changes are possibly larger than
assumed, Nat. Geosci., 10, 79–84, https://doi.org/10.1038/ngeo2882, 2017.
Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., and Courchamp, F.:
Impacts of climate change on the future of biodiversity: Biodiversity and
climate change, Ecol. Lett., 15, 365–377,
https://doi.org/10.1111/j.1461-0248.2011.01736.x, 2012.
Beusen, A. H. W., Van Beek, L. P. H., Bouwman, A. F., Mogollón, J. M., and
Middelburg, J. J.: Coupling global models for hydrology and nutrient loading
to simulate nitrogen and phosphorus retention in surface water – description
of IMAGE–GNM and analysis of performance, Geosci. Model Dev., 8, 4045–4067,
https://doi.org/10.5194/gmd-8-4045-2015, 2015.
Brooks, T. M., Akçakaya, H. R., Burgess, N. D., Butchart, S. H. M.,
Hilton-Taylor, C., Hoffmann, M., Juffe-Bignoli, D., Kingston, N., MacSharry,
B., Parr, M., Perianin, L., Regan, E. C., Rodrigues, A. S. L., Rondinini, C.,
Shennan-Farpon, Y., and Young, B. E.: Analysing biodiversity and conservation
knowledge products to support regional environmental assessments, Scientific
Data, 3, 160007, https://doi.org/10.1038/sdata.2016.7, 2016.
Cardinale, B. J., Duffy, J. E., Gonzalez, A., Hooper, D. U., Perrings, C.,
Venail, P., Narwani, A., Mace, G. M., Tilman, D., Wardle, D. A., Kinzig, A.
P., Daily, G. C., Loreau, M., Grace, J. B., Larigauderie, A., Srivastava, D.
S., and Naeem, S.: Biodiversity loss and its impact on humanity, Nature, 486,
59–67, https://doi.org/10.1038/nature11148, 2012.
Chaplin-Kramer, R., Dombeck, E., Gerber, J., Knuth, K. A., Mueller, N. D.,
Mueller, M., Ziv, G., and Klein, A.-M.: Global malnutrition overlaps with
pollinator-dependent micronutrient production, P. R. Soc. B-Biol. Sci., 281,
20141799–20141799, https://doi.org/10.1098/rspb.2014.1799, 2014.
Chaudhary, A., Verones, F., de Baan, L., and Hellweg, S.: Quantifying Land
Use Impacts on Biodiversity: Combining Species–Area Models and Vulnerability
Indicators, Environ. Sci. Technol., 49, 9987–9995,
https://doi.org/10.1021/acs.est.5b02507, 2015.
D'Amen, M., Rahbek, C., Zimmermann, N. E., and Guisan, A.: Spatial
predictions at the community level: from current approaches to future
frameworks: Methods for community-level spatial predictions, Biol. Rev., 92,
169–187, https://doi.org/10.1111/brv.12222, 2017.
Díaz, S., Pascual, U., Stenseke, M., Martín-López, B., Watson,
R. T., Molnár, Z., Hill, R., Chan, K. M. A., Baste, I. A., Brauman, K.
A., Polasky, S., Church, A., Lonsdale, M., Larigauderie, A., Leadley, P. W.,
van Oudenhoven, A. P. E., van der Plaat, F., Schröter, M., Lavorel, S.,
Aumeeruddy-Thomas, Y., Bukvareva, E., Davies, K., Demissew, S., Erpul, G.,
Failler, P., Guerra, C. A., Hewitt, C. L., Keune, H., Lindley, S., and
Shirayama, Y.: Assessing nature's contributions to people, Science, 359,
270–272, https://doi.org/10.1126/science.aap8826, 2018.
Dufresne, J.-L., Foujols, M.-A., Denvil, S., Caubel, A., Marti, O., Aumont,
O., Balkanski, Y., Bekki, S., Bellenger, H., Benshila, R., Bony, S., Bopp,
L., Braconnot, P., Brockmann, P., Cadule, P., Cheruy, F., Codron, F., Cozic,
A., Cugnet, D., de Noblet, N., Duvel, J.-P., Ethé, C., Fairhead, L.,
Fichefet, T., Flavoni, S., Friedlingstein, P., Grandpeix, J.-Y., Guez, L.,
Guilyardi, E., Hauglustaine, D., Hourdin, F., Idelkadi, A., Ghattas, J.,
Joussaume, S., Kageyama, M., Krinner, G., Labetoulle, S., Lahellec, A.,
Lefebvre, M.-P., Lefevre, F., Levy, C., Li, Z. X., Lloyd, J., Lott, F.,
Madec, G., Mancip, M., Marchand, M., Masson, S., Meurdesoif, Y., Mignot, J.,
Musat, I., Parouty, S., Polcher, J., Rio, C., Schulz, M., Swingedouw, D.,
Szopa, S., Talandier, C., Terray, P., Viovy, N., and Vuichard, N.: Climate
change projections using the IPSL-CM5 Earth System Model: from CMIP3 to
CMIP5, Clim. Dynam., 40, 2123–2165, https://doi.org/10.1007/s00382-012-1636-1, 2013.
Elith, J. and Leathwick, J. R.: Species Distribution Models: Ecological
Explanation and Prediction Across Space and Time, Annu. Rev. Ecol. Evol. S.,
40, 677–697, https://doi.org/10.1146/annurev.ecolsys.110308.120159, 2009.
Ferrier, S., Powell, G. V. N., Richardson, K. S., Manion, G., Overton, J.
M., Allnutt, T. F., Cameron, S. E., Mantle, K., Burgess, N. D., Faith, D. P.,
Lamoreux, J. F., Kier, G., Hijmans, R. J., Funk, V. A., Cassis, G. A.,
Fisher, B. L., Flemons, P., Lees, D., Lovett, J. C., and Van Rompaey, R. S.
A. R.: Mapping More of Terrestrial Biodiversity for Global Conservation
Assessment, BioScience, 54, 1101,
https://doi.org/10.1641/0006-3568(2004)054[1101:MMOTBF]2.0.CO;2, 2004.
Ferrier, S., Manion, G., Elith, J., and Richardson, K.: Using generalized
dissimilarity modelling to analyse and predict patterns of beta diversity in
regional biodiversity assessment, Divers. Distrib., 13, 252–264,
https://doi.org/10.1111/j.1472-4642.2007.00341.x, 2007.
Fick, S. E. and Hijmans, R. J.: WorldClim 2: new 1-km spatial resolution
climate surfaces for global land areas: New climate surface for global land
areas, Int. J. Climatol., 37, 4302–4315, https://doi.org/10.1002/joc.5086, 2017.
Fourcade, Y.: Comparing species distributions modelled from occurrence data
and from expert-based range maps. Implication for predicting range shifts
with climate change, Ecological Informatics, 36, 8–14,
https://doi.org/10.1016/j.ecoinf.2016.09.002, 2016.
Frieler, K., Levermann, A., Elliott, J., Heinke, J., Arneth, A., Bierkens, M.
F. P., Ciais, P., Clark, D. B., Deryng, D., Döll, P., Falloon, P., Fekete,
B., Folberth, C., Friend, A. D., Gellhorn, C., Gosling, S. N., Haddeland, I.,
Khabarov, N., Lomas, M., Masaki, Y., Nishina, K., Neumann, K., Oki, T.,
Pavlick, R., Ruane, A. C., Schmid, E., Schmitz, C., Stacke, T., Stehfest, E.,
Tang, Q., Wisser, D., Huber, V., Piontek, F., Warszawski, L., Schewe, J.,
Lotze-Campen, H., and Schellnhuber, H. J.: A framework for the cross-sectoral
integration of multi-model impact projections: land use decisions under
climate impacts uncertainties, Earth Syst. Dynam., 6, 447–460,
https://doi.org/10.5194/esd-6-447-2015, 2015.
Frieler, K., Lange, S., Piontek, F., Reyer, C. P. O., Schewe, J., Warszawski,
L., Zhao, F., Chini, L., Denvil, S., Emanuel, K., Geiger, T., Halladay, K.,
Hurtt, G., Mengel, M., Murakami, D., Ostberg, S., Popp, A., Riva, R.,
Stevanovic, M., Suzuki, T., Volkholz, J., Burke, E., Ciais, P., Ebi, K.,
Eddy, T. D., Elliott, J., Galbraith, E., Gosling, S. N., Hattermann, F.,
Hickler, T., Hinkel, J., Hof, C., Huber, V., Jägermeyr, J., Krysanova, V.,
Marcé, R., Müller Schmied, H., Mouratiadou, I., Pierson, D., Tittensor,
D. P., Vautard, R., van Vliet, M., Biber, M. F., Betts, R. A., Bodirsky, B.
L., Deryng, D., Frolking, S., Jones, C. D., Lotze, H. K., Lotze-Campen, H.,
Sahajpal, R., Thonicke, K., Tian, H., and Yamagata, Y.: Assessing the impacts
of 1.5 ∘C global warming – simulation protocol of the
Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b), Geosci. Model
Dev., 10, 4321–4345, https://doi.org/10.5194/gmd-10-4321-2017, 2017.
Frischknecht, R., Fantke, P., Tschümperlin, L., Niero, M., Antón,
A., Bare, J., Boulay, A.-M., Cherubini, F., Hauschild, M. Z., Henderson, A.,
Levasseur, A., McKone, T. E., Michelsen, O., Canals, L. M., Pfister, S.,
Ridoutt, B., Rosenbaum, R. K., Verones, F., Vigon, B., and Jolliet, O.:
Global guidance on environmental life cycle impact assessment indicators:
progress and case study, Int. J. Life Cycle Ass., 21, 429–442,
https://doi.org/10.1007/s11367-015-1025-1, 2016.
Fujimori, S., Hasegawa, T., Masui, T., Takahashi, K., Herran, D. S., Dai,
H., Hijioka, Y., and Kainuma, M.: SSP3: AIM implementation of Shared
Socioeconomic Pathways, Global Environ. Chang., 42, 268–283,
https://doi.org/10.1016/j.gloenvcha.2016.06.009, 2017.
Graham, C. T., Wilson, M. W., Gittings, T., Kelly, T. C., Irwin, S., Quinn,
J. L., and O'Halloran, J.: Implications of afforestation for bird
communities: the importance of preceding land-use type, Biodivers. Conserv.,
26, 3051–3071, https://doi.org/10.1007/s10531-015-0987-4, 2017.
Guannel, G., Arkema, K., Ruggiero, P., Verutes, G., and Bianchi, C. N.
(Eds.): The Power of Three: Coral Reefs, Seagrasses and Mangroves Protect
Coastal Regions and Increase Their Resilience, PLOS ONE, 11, e0158094,
https://doi.org/10.1371/journal.pone.0158094, 2016.
Guerra, C. A., Maes, J., Geijzendorffer, I., and Metzger, M. J.: An
assessment of soil erosion prevention by vegetation in Mediterranean Europe:
Current trends of ecosystem service provision, Ecol. Indic., 60, 213–222,
https://doi.org/10.1016/j.ecolind.2015.06.043, 2016.
Guisan, A. and Thuiller, W.: Predicting species distribution: offering more
than simple habitat models, Ecol. Lett., 8, 993–1009,
https://doi.org/10.1111/j.1461-0248.2005.00792.x, 2005.
Guisan, A. and Zimmermann, N. E.: Predictive habitat distribution models in
ecology, Ecol. Model., 135, 147–186, https://doi.org/10.1016/S0304-3800(00)00354-9,
2000.
Harfoot, M., Tittensor, D. P., Newbold, T., McInerny, G., Smith, M. J., and
Scharlemann, J. P. W.: Integrated assessment models for ecologists: the
present and the future: Integrated assessment models for ecologists, Global
Ecol. Biogeogr., 23, 124–143, https://doi.org/10.1111/geb.12100, 2014a.
Harfoot, M. B. J., Newbold, T., Tittensor, D. P., Emmott, S., Hutton, J.,
Lyutsarev, V., Smith, M. J., Scharlemann, J. P. W., Purves, D. W., and
Loreau, M. (Eds.): Emergent Global Patterns of Ecosystem Structure and
Function from a Mechanistic General Ecosystem Model, PLoS Biol., 12,
e1001841, https://doi.org/10.1371/journal.pbio.1001841, 2014b.
Haverd, V., Smith, B., Nieradzik, L., Briggs, P. R., Woodgate, W., Trudinger,
C. M., Canadell, J. G., and Cuntz, M.: A new version of the CABLE land
surface model (Subversion revision r4601) incorporating land use and land
cover change, woody vegetation demography, and a novel optimisation-based
approach to plant coordination of photosynthesis, Geosci. Model Dev., 11,
2995–3026, https://doi.org/10.5194/gmd-11-2995-2018, 2018.
Heinimann, A., Mertz, O., Frolking, S., Egelund Christensen, A., Hurni, K.,
Sedano, F., Parsons Chini, L., Sahajpal, R., Hansen, M., Hurtt, G., and
Poulter, B. (Eds.): A global view of shifting cultivation: Recent, current,
and future extent, PLOS ONE, 12, e0184479, https://doi.org/10.1371/journal.pone.0184479,
2017.
Hempel, S., Frieler, K., Warszawski, L., Schewe, J., and Piontek, F.: A
trend-preserving bias correction – the ISI-MIP approach, Earth Syst. Dynam.,
4, 219–236, https://doi.org/10.5194/esd-4-219-2013, 2013.
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., and Jarvis, A.:
WorldClim Global Climate Data Version 1, available at:
http://worldclim.org/version1, last access: 20 November 2017.
Hirsch, T. and Secretariat of the Convention on Biological Diversity (Eds.):
Global biodiversity outlook 3, Secretariat of the Convention on Biological
Diversity, Montreal, Quebec, Canada, 2010.
Hoskins, A. J., Harwood, T. D., Ware, C., Williams, K. J., Perry, J. J., Ota,
N., Croft, J. R., Yeates, D. K., Jetz, W., Golebiewski, M., Purvis, A., and
Ferrier, S.: Supporting global biodiversity assessment through
high-resolution macroecological modelling: Methodological underpinnings of
the BILBI framework, BioRxiv
http://biorxiv.org/cgi/content/short/309377v1, in preparation, last access: 28 October
2018.
Hudson, L. N., Newbold, T., Contu, S., et al.: The 2016 release of the PREDICTS
database,
https://doi.org/10.5519/0066354, 2016.
Hudson, L. N., Newbold, T., Contu, S., Hill, S. L. L., Lysenko, I., De
Palma, A., Phillips, H. R. P., Alhusseini, T. I., Bedford, F. E., Bennett, D.
J., Booth, H., Burton, V. J., Chng, C. W. T., Choimes, A., Correia, D. L. P.,
Day, J., Echeverría-Londoño, S., Emerson, S. R., Gao, D., Garon, M.,
Harrison, M. L. K., Ingram, D. J., Jung, M., Kemp, V., Kirkpatrick, L.,
Martin, C. D., Pan, Y., Pask-Hale, G. D., Pynegar, E. L., Robinson, A. N.,
Sanchez-Ortiz, K., Senior, R. A., Simmons, B. I., White, H. J., Zhang, H.,
Aben, J., Abrahamczyk, S., Adum, G. B., Aguilar-Barquero, V., Aizen, M. A.,
Albertos, B., Alcala, E. L., del Mar Alguacil, M., Alignier, A., Ancrenaz,
M., Andersen, A. N., Arbeláez-Cortés, E., Armbrecht, I.,
Arroyo-Rodríguez, V., Aumann, T., Axmacher, J. C., Azhar, B., Azpiroz,
A. B., Baeten, L., Bakayoko, A., Báldi, A., Banks, J. E., Baral, S. K.,
Barlow, J., Barratt, B. I. P., Barrico, L., Bartolommei, P., Barton, D. M.,
Basset, Y., Batáry, P., Bates, A. J., Baur, B., Bayne, E. M., Beja, P.,
Benedick, S., Berg, Å., Bernard, H., Berry, N. J., Bhatt, D., Bicknell,
J. E., Bihn, J. H., Blake, R. J., Bobo, K. S., Bóçon, R., Boekhout,
T., Böhning-Gaese, K., Bonham, K. J., Borges, P. A. V., Borges, S. H.,
Boutin, C., Bouyer, J., Bragagnolo, C., Brandt, J. S., Brearley, F. Q.,
Brito, I., Bros, V., Brunet, J., Buczkowski, G., Buddle, C. M., Bugter, R.,
Buscardo, E., Buse, J., Cabra-García, J., Cáceres, N. C., et al.:
The database of the PREDICTS (Projecting Responses of Ecological Diversity In
Changing Terrestrial Systems) project, Ecol. Evol., 7, 145–188,
https://doi.org/10.1002/ece3.2579, 2017.
Hurtt, G., Chini, L., Sahajpal, R., Frolking, S., Calvin, K., Fujimori, S.,
Klein Goldewijk, K., Hasegawa, T., Havlik, P., Lawrence, D., Lawrence, P.,
Popp, A., Stehfest, E., van Vuuren, D., and Zhang, X.: Land-Use Harmonization
2, available at: http://luh.umd.edu/data.shtml, last access: 21 December
2017.
Hurtt, G., Chini, L., Sahajpal, R., Frolking, S., Calvin, K., Fujimori, S.,
Klein Goldewijk, K., Hasegawa, T., Havlik, P., Lawrence, D., Lawrence, P.,
Popp, A., Stehfest, E., van Vuuren, D., and Zhang, X.: Harmonization of
global land-use change and management for the period 850–2100, in
preparation, 2018.
Hurtt, G. C., Chini, L. P., Frolking, S., Betts, R. A., Feddema, J.,
Fischer, G., Fisk, J. P., Hibbard, K., Houghton, R. A., Janetos, A., Jones,
C. D., Kindermann, G., Kinoshita, T., Klein Goldewijk, K., Riahi, K.,
Shevliakova, E., Smith, S., Stehfest, E., Thomson, A., Thornton, P., van
Vuuren, D. P., and Wang, Y. P.: Harmonization of land-use scenarios for the
period 1500–2100: 600 years of global gridded annual land-use transitions,
wood harvest, and resulting secondary lands, Climatic Change, 109, 117–161,
https://doi.org/10.1007/s10584-011-0153-2, 2011.
Inter-sectoral Impact Model Intercomparison Project Output Data: available
at: https://www.isimip.org/outputdata/, last access: 20 October 2017.
IPBES: The methodological assessment report on scenarios and models of
biodiversity and ecosystem services, edited by: Ferrier, S., Ninan, K. N.,
Leadley, P., Alkemade, R., Acosta, L. A., Akçakaya, H. R., Brotons, L.,
Cheung, W. W. L., Christensen, V., Harhash, K. A., Kabubo-Mariara, J.,
Lundquist, C., Obersteiner, M., Pereira, H. M., Peterson, G., Pichs-Madruga,
R., Ravindranath, N., Rondinini, C., and Wintle, B. A., Secretariat of the
Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem
Services, Bonn, Germany, 348 pp., 2016.
Janse, J. H., Kuiper, J. J., Weijters, M. J., Westerbeek, E. P., Jeuken, M.
H. J. L., Bakkenes, M., Alkemade, R., Mooij, W. M. and Verhoeven, J. T. A.:
GLOBIO-Aquatic, a global model of human impact on the biodiversity of inland
aquatic ecosystems, Environ. Sci. Policy, 48, 99–114,
https://doi.org/10.1016/j.envsci.2014.12.007, 2015.
Janse, J. H., Bakkenes, M., and Meijer, J.: Globio-Aquatic, Technical model
description v. 1.3, PBL publication 2829, The Hague, PBL Netherlands
Environmental Assessment Agency, 2016.
Jantz, S. M., Barker, B., Brooks, T. M., Chini, L. P., Huang, Q., Moore, R.
M., Noel, J., and Hurtt, G. C.: Future habitat loss and extinctions driven by
land-use change in biodiversity hotspots under four scenarios of
climate-change mitigation: Future Habitat Loss and Extinctions, Conserv.
Biol., 29, 1122–1131, https://doi.org/10.1111/cobi.12549, 2015.
Jetz, W., Wilcove, D. S., Dobson, A. P., and Mace, G. M. (Eds.): Projected
Impacts of Climate and Land-Use Change on the Global Diversity of Birds, PLoS
Biol., 5, e157, https://doi.org/10.1371/journal.pbio.0050157, 2007.
Johnson, J. A., Runge, C. F., Senauer, B., Foley, J., and Polasky, S.: Global
agriculture and carbon trade-offs, P. Natl. Acad. Sci. USA, 111,
12342–12347, https://doi.org/10.1073/pnas.1412835111, 2014.
Johnson, J. A., Runge, C. F., Senauer, B., and Polasky, S.: Global Food
Demand and Carbon-Preserving Cropland Expansion under Varying Levels of
Intensification, Land Econ., 92, 579–592, https://doi.org/10.3368/le.92.4.579, 2016.
Jungclaus, J. H., Bard, E., Baroni, M., Braconnot, P., Cao, J., Chini, L. P.,
Egorova, T., Evans, M., González-Rouco, J. F., Goosse, H., Hurtt, G. C.,
Joos, F., Kaplan, J. O., Khodri, M., Klein Goldewijk, K., Krivova, N.,
LeGrande, A. N., Lorenz, S. J., Luterbacher, J., Man, W., Maycock, A. C.,
Meinshausen, M., Moberg, A., Muscheler, R., Nehrbass-Ahles, C.,
Otto-Bliesner, B. I., Phipps, S. J., Pongratz, J., Rozanov, E., Schmidt, G.
A., Schmidt, H., Schmutz, W., Schurer, A., Shapiro, A. I., Sigl, M., Smerdon,
J. E., Solanki, S. K., Timmreck, C., Toohey, M., Usoskin, I. G., Wagner, S.,
Wu, C.-J., Yeo, K. L., Zanchettin, D., Zhang, Q., and Zorita, E.: The PMIP4
contribution to CMIP6 – Part 3: The last millennium, scientific objective,
and experimental design for the PMIP4 past1000 simulations, Geosci.
Model Dev., 10, 4005–4033, https://doi.org/10.5194/gmd-10-4005-2017, 2017.
Knorr, W., Arneth, A., and Jiang, L.: Demographic controls of future global
fire risk, Nat. Clim. Change, 6, 781–785, https://doi.org/10.1038/nclimate2999, 2016.
Kriegler, E., Bauer, N., Popp, A., Humpenöder, F., Leimbach, M.,
Strefler, J., Baumstark, L., Bodirsky, B. L., Hilaire, J., Klein, D.,
Mouratiadou, I., Weindl, I., Bertram, C., Dietrich, J.-P., Luderer, G., Pehl,
M., Pietzcker, R., Piontek, F., Lotze-Campen, H., Biewald, A., Bonsch, M.,
Giannousakis, A., Kreidenweis, U., Müller, C., Rolinski, S., Schultes,
A., Schwanitz, J., Stevanovic, M., Calvin, K., Emmerling, J., Fujimori, S.,
and Edenhofer, O.: Fossil-fueled development (SSP5): An energy and resource
intensive scenario for the 21st century, Global Environ. Chang., 42,
297–315, https://doi.org/10.1016/j.gloenvcha.2016.05.015, 2017.
Lawrence, D. M., Hurtt, G. C., Arneth, A., Brovkin, V., Calvin, K. V., Jones,
A. D., Jones, C. D., Lawrence, P. J., de Noblet-Ducoudré, N., Pongratz, J.,
Seneviratne, S. I., and Shevliakova, E.: The Land Use Model Intercomparison
Project (LUMIP) contribution to CMIP6: rationale and experimental design,
Geosci. Model Dev., 9, 2973–2998, https://doi.org/10.5194/gmd-9-2973-2016,
2016.
Leadley, P. W., Krug, C. B., Alkemade, R., Pereira, H. M., Sumaila U. R.,
Walpole, M., Marques, A., Newbold, T., Teh, L. S. L., van Kolck, J., Bellard,
C., Januchowski-Hartley, S. R., and Mumby, P. J.: Progress towards the Aichi
Biodiversity Targets: An Assessment of Biodiversity Trends, Policy Scenarios
and Key Actions, Secretariat of the Convention on Biological Diversity,
Montreal, Canada, Technical Series 78, 500 pp., 2014.
Lehsten, V., Sykes, M. T., Scott, A. V., Tzanopoulos, J., Kallimanis, A.,
Mazaris, A., Verburg, P. H., Schulp, C. J. E., Potts, S. G., and Vogiatzakis,
I.: Disentangling the effects of land-use change, climate and CO2 on
projected future European habitat types: Disentangling the drivers of habitat
change, Global Ecol. Biogeogr., 24, 653–663, https://doi.org/10.1111/geb.12291, 2015.
Lindeskog, M., Arneth, A., Bondeau, A., Waha, K., Seaquist, J., Olin, S., and
Smith, B.: Implications of accounting for land use in simulations of
ecosystem carbon cycling in Africa, Earth Syst. Dynam., 4, 385–407,
https://doi.org/10.5194/esd-4-385-2013, 2013.
Martins, I. S. and Pereira, H. M.: Improving extinction projections across
scales and habitats using the countryside species-area relationship, Sci.
Rep.-UK, 7, 12899, https://doi.org/10.1038/s41598-017-13059-y, 2017.
Maxwell, S. L., Fuller, R. A., Brooks, T. M., and Watson, J. E. M.:
Biodiversity: The ravages of guns, nets and bulldozers, Nature, 536,
143–145, https://doi.org/10.1038/536143a, 2016.
McSweeney, C. F. and Jones, R. G.: How representative is the spread of
climate projections from the 5 CMIP5 GCMs used in ISI-MIP?, Clim. Serv., 1,
24–29, https://doi.org/10.1016/j.cliser.2016.02.001, 2016.
Meinshausen, M., Wigley, T. M. L., and Raper, S. C. B.: Emulating
atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6 –
Part 2: Applications, Atmos. Chem. Phys., 11, 1457–1471,
https://doi.org/10.5194/acp-11-1457-2011, 2011a.
Meinshausen, M., Raper, S. C. B., and Wigley, T. M. L.: Emulating coupled
atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6 –
Part 1: Model description and calibration, Atmos. Chem. Phys., 11,
1417–1456, https://doi.org/10.5194/acp-11-1417-2011, 2011b.
Merow, C., Smith, M. J., and Silander, J. A.: A practical guide to MaxEnt for
modeling species' distributions: what it does, and why inputs and settings
matter, Ecography, 36, 1058–1069, https://doi.org/10.1111/j.1600-0587.2013.07872.x,
2013.
Millennium Ecosystem Assessment (Program) (Ed.): Ecosystems and human
well-being: synthesis, Island Press, Washington, DC, 2005.
Monfreda, C., Ramankutty, N., and Foley, J. A.: Farming the planet: 2.
Geographic distribution of crop areas, yields, physiological types, and net
primary production in the year 2000: Global crop areas and yields in 2000,
Global Biogeochem. Cy., 22, GB1022, https://doi.org/10.1029/2007GB002947, 2008.
Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K.,
van Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G.
A., Mitchell, J. F. B., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer,
R. J., Thomson, A. M., Weyant, J. P., and Wilbanks, T. J.: The next
generation of scenarios for climate change research and assessment, Nature,
463, 747–756, https://doi.org/10.1038/nature08823, 2010.
Newbold, T., Hudson, L. N., Arnell, A. P., Contu, S., De Palma, A., Ferrier,
S., Hill, S. L. L., Hoskins, A. J., Lysenko, I., Phillips, H. R. P., Burton,
V. J., Chng, C. W. T., Emerson, S., Gao, D., Pask-Hale, G., Hutton, J., Jung,
M., Sanchez-Ortiz, K., Simmons, B. I., Whitmee, S., Zhang, H., Scharlemann,
J. P. W., and Purvis, A.: Has land use pushed terrestrial biodiversity beyond
the planetary boundary? A global assessment, Science, 353, 288–291,
https://doi.org/10.1126/science.aaf2201, 2016.
Ohashi, H., Hasegawa, T., Hirata, A., Fujimori, S., Takahashi, K., Tsuyama,
I., Nakao, K., Kominami, Y., Tanaka, N., Hijioka, Y., and Matsui, T.:
Biodiversity can benefit from long-term climate mitigation regardless of
land-based measures, submitted, 2018.
Olin, S., Schurgers, G., Lindeskog, M., Wårlind, D., Smith, B., Bodin,
P., Holmér, J., and Arneth, A.: Modelling the response of yields and tissue
C : N to changes in atmospheric CO2 and N management in the main
wheat regions of western Europe, Biogeosciences, 12, 2489–2515,
https://doi.org/10.5194/bg-12-2489-2015, 2015.
O'Neill, B. C., Kriegler, E., Riahi, K., Ebi, K. L., Hallegatte, S., Carter,
T. R., Mathur, R. and van Vuuren, D. P.: A new scenario framework for climate
change research: the concept of shared socioeconomic pathways, Climatic
Change, 122, 387–400, https://doi.org/10.1007/s10584-013-0905-2, 2014.
O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein,
P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G.
A., Moss, R., Riahi, K., and Sanderson, B. M.: The Scenario Model
Intercomparison Project (ScenarioMIP) for CMIP6, Geosci. Model Dev., 9,
3461–3482, https://doi.org/10.5194/gmd-9-3461-2016, 2016.
O'Neill, B. C., Kriegler, E., Ebi, K. L., Kemp-Benedict, E., Riahi, K.,
Rothman, D. S., van Ruijven, B. J., van Vuuren, D. P., Birkmann, J., Kok, K.,
Levy, M., and Solecki, W.: The roads ahead: Narratives for shared
socioeconomic pathways describing world futures in the 21st century, Global
Environ. Chang., 42, 169–180, https://doi.org/10.1016/j.gloenvcha.2015.01.004, 2017.
Pecl, G. T., Araújo, M. B., Bell, J. D., Blanchard, J., Bonebrake, T.
C., Chen, I.-C., Clark, T. D., Colwell, R. K., Danielsen, F., Evengård,
B., Falconi, L., Ferrier, S., Frusher, S., Garcia, R. A., Griffis, R. B.,
Hobday, A. J., Janion-Scheepers, C., Jarzyna, M. A., Jennings, S., Lenoir,
J., Linnetved, H. I., Martin, V. Y., McCormack, P. C., McDonald, J.,
Mitchell, N. J., Mustonen, T., Pandolfi, J. M., Pettorelli, N., Popova, E.,
Robinson, S. A., Scheffers, B. R., Shaw, J. D., Sorte, C. J. B., Strugnell,
J. M., Sunday, J. M., Tuanmu, M.-N., Vergés, A., Villanueva, C.,
Wernberg, T., Wapstra, E., and Williams, S. E.: Biodiversity redistribution
under climate change: Impacts on ecosystems and human well-being, Science,
355, eaai9214, https://doi.org/10.1126/science.aai9214, 2017.
Pereira, H. M., Leadley, P. W., Proenca, V., Alkemade, R., Scharlemann, J.
P. W., Fernandez-Manjarres, J. F., Araujo, M. B., Balvanera, P., Biggs, R.,
Cheung, W. W. L., Chini, L., Cooper, H. D., Gilman, E. L., Guenette, S.,
Hurtt, G. C., Huntington, H. P., Mace, G. M., Oberdorff, T., Revenga, C.,
Rodrigues, P., Scholes, R. J., Sumaila, U. R., and Walpole, M.: Scenarios for
Global Biodiversity in the 21st Century, Science, 330, 1496–1501,
https://doi.org/10.1126/science.1196624, 2010.
Popp, A., Calvin, K., Fujimori, S., Havlik, P., Humpenöder, F.,
Stehfest, E., Bodirsky, B. L., Dietrich, J. P., Doelmann, J. C., Gusti, M.,
Hasegawa, T., Kyle, P., Obersteiner, M., Tabeau, A., Takahashi, K., Valin,
H., Waldhoff, S., Weindl, I., Wise, M., Kriegler, E., Lotze-Campen, H.,
Fricko, O., Riahi, K., and Vuuren, D. P. van: Land-use futures in the shared
socio-economic pathways, Global Environ. Chang., 42, 331–345,
https://doi.org/10.1016/j.gloenvcha.2016.10.002, 2017.
Poulter, B., Frank, D. C., Hodson, E. L., and Zimmermann, N. E.: Impacts of
land cover and climate data selection on understanding terrestrial carbon
dynamics and the CO2 airborne fraction, Biogeosciences, 8,
2027–2036, https://doi.org/10.5194/bg-8-2027-2011, 2011.
Prentice, I. C., Bondeau, A., Cramer, W., Harrison, S. P., Hickler, T.,
Lucht, W., Sitch, S., Smith, B., Sykes, M. T., Canadell, J. G., Pataki, D.
E., and Pitelka, L. F. (Eds.): Dynamic Global Vegetation Modeling:
Quantifying Terrestrial Ecosystem Responses to Large-Scale Environmental
Change, in Terrestrial Ecosystems in a Changing World, Springer Berlin
Heidelberg, Berlin, Heidelberg, 175–192, 2007.
Purvis, A., Newbold, T., De Palma, A., Contu, S., Hill, S. L. L.,
Sanchez-Ortiz, K., Phillips, H. R. P., Hudson, L. N., Lysenko, I.,
Börger, L., and Scharlemann, J. P. W.: Modelling and Projecting the
Response of Local Terrestrial Biodiversity Worldwide to Land Use and Related
Pressures: The PREDICTS Project, in: Advances in Ecological Research,
Elsevier, vol. 58, 201–241, 2018.
Rabin, S. S., Melton, J. R., Lasslop, G., Bachelet, D., Forrest, M., Hantson,
S., Kaplan, J. O., Li, F., Mangeon, S., Ward, D. S., Yue, C., Arora, V. K.,
Hickler, T., Kloster, S., Knorr, W., Nieradzik, L., Spessa, A., Folberth, G.
A., Sheehan, T., Voulgarakis, A., Kelley, D. I., Prentice, I. C., Sitch, S.,
Harrison, S., and Arneth, A.: The Fire Modeling Intercomparison Project
(FireMIP), phase 1: experimental and analytical protocols with detailed model
descriptions, Geosci. Model Dev., 10, 1175–1197,
https://doi.org/10.5194/gmd-10-1175-2017, 2017.
Redhead, J. W., May, L., Oliver, T. H., Hamel, P., Sharp, R., and Bullock, J.
M.: National scale evaluation of the InVEST nutrient retention model in the
United Kingdom, Sci. Total Environ., 610–611, 666–677,
https://doi.org/10.1016/j.scitotenv.2017.08.092, 2018.
Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O'Neill, B. C.,
Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W., Popp,
A., Cuaresma, J. C., Kc, S., Leimbach, M., Jiang, L., Kram, T., Rao, S.,
Emmerling, J., Ebi, K., Hasegawa, T., Havlik, P., Humpenöder, F., Da
Silva, L. A., Smith, S., Stehfest, E., Bosetti, V., Eom, J., Gernaat, D.,
Masui, T., Rogelj, J., Strefler, J., Drouet, L., Krey, V., Luderer, G.,
Harmsen, M., Takahashi, K., Baumstark, L., Doelman, J. C., Kainuma, M.,
Klimont, Z., Marangoni, G., Lotze-Campen, H., Obersteiner, M., Tabeau, A.,
and Tavoni, M.: The Shared Socioeconomic Pathways and their energy, land use,
and greenhouse gas emissions implications: An overview, Global Environ.
Chang., 42, 153–168, https://doi.org/10.1016/j.gloenvcha.2016.05.009, 2017.
Rondinini, C., Di Marco, M., Chiozza, F., Santulli, G., Baisero, D.,
Visconti, P., Hoffmann, M., Schipper, J., Stuart, S. N., Tognelli, M. F.,
Amori, G., Falcucci, A., Maiorano, L., and Boitani, L.: Global habitat
suitability models of terrestrial mammals, Philos. T. Roy. Soc. B Biol., 366,
2633–2641, https://doi.org/10.1098/rstb.2011.0113, 2011.
Rosa, I. M. D., Pereira, H. M., Ferrier, S., Alkemade, R., Acosta, L. A.,
Akcakaya, R., den Belder, E., Fazel, A. M., Fujimori, S., Harfoot, M.,
Harhash, K. A., Harrison, P. A., Hauck, J., Hendriks, R. J. J.,
Hernández, G., Jetz, W., Karlsson-Vinkhuyzen, S. I., Kim, H. J., King,
N., Kok, M. T. J., Kolomytsev, G. O., Lazarova, T., Leadley, P., Lundquist,
C. J., García Márquez, J., Meyer, C., Navarro, L. M., Nesshöver,
C., Ngo, H. T., Ninan, K. N., Palomo, M. G., Pereira, L. M., Peterson, G. D.,
Pichs, R., Popp, A., Purvis, A., Ravera, F., Rondinini, C., Sathyapalan, J.,
Schipper, A. M., Seppelt, R., Settele, J., Sitas, N., and van Vuuren, D.:
Multiscale scenarios for nature futures, Nat. Ecol. Evol., 1, 1416–1419,
2017.
Rosenzweig, C., Arnell, N. W., Ebi, K. L., Lotze-Campen, H., Raes, F.,
Rapley, C., Smith, M. S., Cramer, W., Frieler, K., Reyer, C. P. O., Schewe,
J., van Vuuren, D., and Warszawski, L.: Assessing inter-sectoral climate
change risks: the role of ISIMIP, Environ. Res. Lett., 12, 010301,
https://doi.org/10.1088/1748-9326/12/1/010301, 2017.
Sala, O. E.: Global Biodiversity Scenarios for the Year 2100,
Science, 287, 1770–1774, https://doi.org/10.1126/science.287.5459.1770, 2000.
Schipper, A. M., Bakkenes, M., Meijer, J. R., Alkemade, R., and Huijbregts, M. J.:
The GLOBIO model. A technical description of version 3.5. PBL publication
2369, The Hague, PBL Netherlands Environmental Assessment Agency, 2016.
Schulp, C. J. E., Alkemade, R., Klein Goldewijk, K., and Petz, K.: Mapping
ecosystem functions and services in Eastern Europe using global-scale data
sets, Int. J. Biodivers. Sci. Ecosyst. Serv. Manag., 8, 156–168,
https://doi.org/10.1080/21513732.2011.645880, 2012.
Secretariat of the Convention on Biological Diversity and United Nations
Environment Programme (Eds.): Global biodiversity outlook 4: a mid-term
assessment of progress towards the implementation of the strategic plan for
biodiversity 2011–2020, Secretariat for the Convention on Biological
Diversity, Montreal, Quebec, Canada, 2014.
Settele, J., Scholes, R., Betts, R. A., Bunn, S., Leadley, P., Nepstad, D.,
Overpeck, J. T., Taboada, M. A., Fischlin, A., Moreno, J. M., Root, T.,
Musche, M., and Winter, M.: Terrestrial and Inland water systems, in: Climate
Change 2014 Impacts, Adaptation and Vulnerability: Part A: Global and
Sectoral Aspects, Cambridge University Press, 271–360,
https://doi.org/10.1017/CBO9781107415379.009, 2015.
Sharp, R., Tallis, H. T., Ricketts, T., Guerry, A. D., Wood, S. A.,
Chaplin-Kramer, R., Nelson, E., Ennaanay, D., Wolny, S., Olwero, N.,
Vigerstol, K., Pennington, D., Mendoza, G., Aukema, J., Foster, J., Forrest,
J., Cameron, D., Arkema, K., Lonsdorf, E., Kennedy, C., Verutes, G., Kim, C.
K., Guannel, G., Papenfus, M., Toft, J., Marsik, M., Bernhardt, J., Griffin,
R., Glowinski, K., Chaumont, N., Perelman, A., Lacayo, M., Mandle, L., Hamel,
P., Vogl, A. L., Rogers, L., Bierbower, W., Denu, D., and Douglass, J.:
InVEST +VERSION+ User's Guide, The Natural Capital Project, Stanford
University, University of Minnesota, The Nature Conservancy, and World
Wildlife Fund, 2016.
Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W.,
Kaplan, J. O., Levis, S., Lucht, W., Sykes, M. T., Thonicke, K., and
Venevsky, S.: Evaluation of ecosystem dynamics, plant geography and
terrestrial carbon cycling in the LPJ dynamic global vegetation model, Glob.
Change Biol., 9, 161–185, https://doi.org/10.1046/j.1365-2486.2003.00569.x, 2003.
Smith, B., Wårlind, D., Arneth, A., Hickler, T., Leadley, P., Siltberg,
J., and Zaehle, S.: Implications of incorporating N cycling and N limitations
on primary production in an individual-based dynamic vegetation model,
Biogeosciences, 11, 2027–2054, https://doi.org/10.5194/bg-11-2027-2014,
2014.
Stehfest, E., van Vuuren, D., Kram, T., Bouwman, L., Alkemade, R., Bakkenes,
M., Biemans, H., Bouwman, A., den Elzen, M., Janse, J., Lucas, P., van
Minnen, J., Müller, M., and Prins, A.: Integrated Assessment of Global
Environmental Change with IMAGE 3.0. Model description and policy
applications, The Hague, PBL Netherlands Environmental Assessment Agency,
2014.
Thuiller, W.: Patterns and uncertainties of species' range shifts under
climate change, Glob. Change Biol., 10, 2020–2027,
https://doi.org/10.1111/j.1365-2486.2004.00859.x, 2004.
Thuiller, W., Lafourcade, B., Engler, R., and Araújo, M. B.: BIOMOD – a
platform for ensemble forecasting of species distributions, Ecography, 32,
369–373, https://doi.org/10.1111/j.1600-0587.2008.05742.x, 2009.
Thuiller, W., Lavergne, S., Roquet, C., Boulangeat, I., Lafourcade, B., and
Araujo, M. B.: Consequences of climate change on the tree of life in Europe,
Nature, 470, 531–534, https://doi.org/10.1038/nature09705, 2011.
Thuiller, W., Münkemüller, T., Lavergne, S., Mouillot, D., Mouquet,
N., Schiffers, K., Gravel, D., and Holyoak, M. (Eds.): A road map for
integrating eco-evolutionary processes into biodiversity models, Ecol. Lett.,
16, 94–105, https://doi.org/10.1111/ele.12104, 2013.
Titeux, N., Henle, K., Mihoub, J.-B., Regos, A., Geijzendorffer, I. R.,
Cramer, W., Verburg, P. H., and Brotons, L.: Biodiversity scenarios neglect
future land-use changes, Glob. Change Biol., 22, 2505–2515,
https://doi.org/10.1111/gcb.13272, 2016.
Titeux, N., Henle, K., Mihoub, J.-B., Regos, A., Geijzendorffer, I. R.,
Cramer, W., Verburg, P. H., Brotons, L., and Syphard, A. (Eds.): Global
scenarios for biodiversity need to better integrate climate and land use
change, Divers. Distrib., 23, 1231–1234, https://doi.org/10.1111/ddi.12624, 2017.
United Nations Environment Programme (UNEP): UNEP-SETAC Life Cycle Initiative:
Global Guidance for Life Cycle Impact Assessment Indicators – Volume 1,
2016.
United Nations Environment Programme–World Conservation Monitoring Centre:
Dataset combining Exclusive Economic Zones (EEZ, VLIZ 2014) and terrestrial
country boundaries (World Vector Shoreline, 3rd Edn., National
Geospatial-Intelligence Agency), Cambridge (UK), UNEP World Conservation
Monitoring Centre, 2015.
van Beek, L. P. H., Wada, Y., and Bierkens, M. F. P.: Global monthly water
stress: 1. Water balance and water availability: Global Monthly Water Stress,
1, Water Resour. Res., 47, W07517, https://doi.org/10.1029/2010WR009791, 2011.
van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A.,
Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J.-F., Masui, T.,
Meinshausen, M., Nakicenovic, N., Smith, S. J., and Rose, S. K.: The
representative concentration pathways: an overview, Climatic Change, 109,
5–31, https://doi.org/10.1007/s10584-011-0148-z, 2011.
van Vuuren, D. P., Kriegler, E., O'Neill, B. C., Ebi, K. L., Riahi, K.,
Carter, T. R., Edmonds, J., Hallegatte, S., Kram, T., Mathur, R., and
Winkler, H.: A new scenario framework for Climate Change Research: scenario
matrix architecture, Climatic Change, 122, 373–386,
https://doi.org/10.1007/s10584-013-0906-1, 2014.
van Vuuren, D. P., Stehfest, E., Gernaat, D. E. H. J., Doelman, J. C., van
den Berg, M., Harmsen, M., de Boer, H. S., Bouwman, L. F., Daioglou, V.,
Edelenbosch, O. Y., Girod, B., Kram, T., Lassaletta, L., Lucas, P. L., van
Meijl, H., Müller, C., van Ruijven, B. J., van der Sluis, S., and Tabeau,
A.: Energy, land-use and greenhouse gas emissions trajectories under a green
growth paradigm, Global Environ. Chang., 42, 237–250,
https://doi.org/10.1016/j.gloenvcha.2016.05.008, 2017.
Visconti, P., Bakkenes, M., Baisero, D., Brooks, T., Butchart, S. H. M.,
Joppa, L., Alkemade, R., Di Marco, M., Santini, L., Hoffmann, M., Maiorano,
L., Pressey, R. L., Arponen, A., Boitani, L., Reside, A. E., van Vuuren, D.
P., and Rondinini, C.: Projecting Global Biodiversity Indicators under Future
Development Scenarios: Projecting biodiversity indicators, Conserv. Lett., 9,
5–13, https://doi.org/10.1111/conl.12159, 2016.
Warszawski, L., Frieler, K., Huber, V., Piontek, F., Serdeczny, O., and
Schewe, J.: The Inter-Sectoral Impact Model Intercomparison Project
(ISI–MIP): Project framework, P. Natl. Acad. Sci. USA, 111, 3228–3232,
https://doi.org/10.1073/pnas.1312330110, 2014.
Welbergen, J. A., Klose, S. M., Markus, N., and Eby, P.: Climate change and
the effects of temperature extremes on Australian flying-foxes, Philos. T.
Roy. Soc. B Biol., 275, 419–425, https://doi.org/10.1098/rspb.2007.1385, 2008.
Short summary
This paper lays out the protocol for the Biodiversity and Ecosystem Services Scenario-based Intercomparison of Models (BES-SIM) that projects the global impacts of land use and climate change on biodiversity and ecosystem services over the coming decades, compared to the 20th century. BES-SIM uses harmonized scenarios and input data and a set of common output metrics at multiple scales, and identifies model uncertainties and research gaps.
This paper lays out the protocol for the Biodiversity and Ecosystem Services Scenario-based...