Supplement of Geosci. Model Dev., 11, 4537-4562, 2018
https://doi.org/10.5194/gmd-11-4537-2018-supplement
© Author(s) 2018. This work is distributed under

the Creative Commons Attribution 4.0 License.

Supplement of

A protocol for an intercomparison of biodiversity and ecosystem services
models using harmonized land-use and climate scenarios

HyeJin Kim et al.

Correspondence to: Henrique M. Pereira (hpereira@idiv.de) and HyeJin Kim (hyejin.kim@idiv.de)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.



Supplement

Supplementary Methods: Description of the post-processing (downscaling) of LUH2 using GLOBIO 4

GLOBIO 4 discrete land-use allocation routine

The GLOBIO4 land-use allocation procedure requires two main inputs: regionally aggregated totals or demands (‘claims’) of each land-use
type and, for each land-use type, a layer quantifying the suitability of each grid cell for that land-use type (10 arc-seconds resolution; ~300
m). Claims can be derived from national or regional statistics or from models that estimate demands based on socio-economic developments,
for example integrated assessment models (IAMs). All claims are expressed in terms of area (km?). The allocation algorithm then prioritizes
candidate grid cells according to their suitability values and allocates the claims of each land-use type in each region starting from the cells
with the highest suitability until the total claim is allocated. In the allocation a predefined order is followed, where urban land takes
precedence over cropland (Bren d’ Amour et al., 2017) and cropland in turn takes precedence over pasture (Hasegawa et al., 2017). If for a
given land-use type in a given region there are multiple cells with the same suitability, the allocation is done randomly. Non-allocated areas
are assigned the primary vegetation type from a natural land cover map. If the area of land use allocated in a given time step is smaller than
the area allocated in the preceding time step, the cells that fall free are assigned secondary vegetation.

Suitability layers

Urban
Urban claims are first allocated to existing urban area, from the centre outward, and then to non-urban area with the probability decreasing
with increasing distance from urban areas. We further assume that within protected areas no further urban expansion takes place (beyond
the current urban area in PA). To achieve this, the urban suitability layer is calculated as follows, based on the ESA CCI-LC map for 2005:
e Foreach urban cell (class 190; see Table A2), calculate the Euclidian distance to the nearest other cell (such that cells in the city centres
get higher values than cells near the edges). Normalize such that each value ranges between 0 and 1, and add +1 to all values. This
gives layer 1.
e For each non-urban cell, calculate the Euclidian distance to the nearest urban cell. Invert the distances (such that cells closer to urban
get higher suitability) and normalize such that each value ranges between 0 and 1. Set values within protected areas to zero. This gives
layer 2.
e Sum the two layers and normalize again such that each cell gets a value between 0 and 1. This gives a layer where suitability within
urban is always higher than beyond urban, and with suitability decreasing from the existing city centres outward.

Cropland

Similar to urban, cropland is first allocated to existing cropland and then with increasing distance to it (based on ESA CCI-LC map for 2005).
We assume that homogeneous cropland cells in the ESA CCI-LC map represent more suitable areas than mosaic croplands. We further
assume that within protected areas no further cropland expansion takes place (beyond the current cropland within PA). To achieve this, the
suitability layer is calculated as follows:

e For each homogeneous cropland cell in the ESA CCI-LC map for 2005 (classes 10, 11, 12 and 20), calculate the Euclidian distance to
the nearest other cell (such that cells in the centres of cropland areas get higher values than cells near the edges). Normalize such that
each value ranges between 0 and 1, and add +2 to all values. This gives layer 1.

e For each mosaic cropland cell in the ESA CCI-LC map for 2005 (classes 30 and 40), calculate the Euclidian distance to the nearest
other cell (such that cells in the centres of cropland areas get higher values than cells near the edges). Normalize such that each value
ranges between 0 and 1, and add +1 to all values. This gives layer 2.

e For each non-cropland cell, calculate the Euclidian distance to the nearest cropland cell (classes 10, 11, 12, 20, 30 and 40). Invert the
distances (such that cells closer to cropland get higher suitability) and normalize such that each value ranges between 0 and 1. Set
values within protected areas to zero. This gives layer 3.

e Sum the three layers and normalize again such that each cell gets a value between 0 and 1. This gives a layer where suitability within
cropland is always higher than beyond cropland, with homogeneous cropland being more suitable than mosaic cropland, and with
suitability decreasing away from existing cropland.

Pasture and rangeland
For pasture and rangeland, we assume that suitability can be inferred from the density of grazing livestock species, which we retrieve from
FAO’s gridded livestock of the world (30 arc-seconds). We establish the suitability layer as follows:
e Retrieve the densities (head per km?) of each of three ruminant livestock species (cattle, goat, sheep) from the FAO’s gridded livestock
of the world, resolution 30 arc-seconds (https://livestock.geo-wiki.org/download/).
e To correct for differences in body mass among livestock species, convert heads to so-called tropical livestock units (TLU) by assuming
that goat/sheep = 0.1 TLU and cattle = 0.6 TLU per individual (Petz et al., 2014).



https://livestock.geo-wiki.org/download/

Sum the TLUs per grid and normalize the resulting values to achieve suitabilities ranging from 0 to 1.

Forestry

In a recent review it was found that six factors were consistently associated with higher deforestation (roads, urban areas, population, soil
suitability, agricultural activity, and proximity to agriculture) (Busch and Ferretti-Gallon, 2017). We assume here that the last five factors
primarily reflect deforestation for urban and agricultural development, which is covered in the allocation of urban and cropland, and that
forestry/wood harvest is primarily determined by elevation and the proximity to infrastructure needed to transport wood (FAO, 2000). The
review further found that protected areas consistently result in lower deforestation. Suitability for forestry (within forest) is therefore
calculated as follows:

Calculate the Euclidian distance to roads from PBL’s GRIP database (Meijer et al., accepted) or, in South-America, the distance to
either roads or rivers (FAO, 2000), using the Digital Chart of the World (DCW) combined with the Global Lake and Wetland Database
(GLWD) to delinate the rivers. Invert and normalize the distances to arrive at suitability values between 0 and 1. This gives layer 1.
Invert and normalize elevation to arrive at suitability values between 0 and 1. This gives layer 2.

Multiply the layers and normalize again to arrive at an overall suitability between 0 and 1.

Perform the following post-processing steps:

Set suitability values within protected areas to zero.

Clip the global suitability layer to land cover with trees from the ESA CCI-LC map for 2005 (classes 50-110; see Table A2). This
contains both closed and open forest, in order to accommodate wood harvest from areas with different tree densities (forested and non-
forested in LUH2).

Post-processing LUH2 data with the GLOBIO 4 land allocation routine

Step 1 | Discrete allocation of urban, cropland, pasture and forestry
We use the GLOBIO routine to post-process (downscale) the LUH2 data (http://luh.umd.edu/data.shtml) and refine for cropland, as follows:

i)

2)

3)

We aggregated the areas of urban, cropland, pasture, rangeland and forestry across the LUH2 cells to IMAGE region level to obtain
the claims. The cropland claim consists of the sum of the five cropland types (c3ann + c3per + cdann + c4per + c3nfx). The forestry
claim is the sum of the wood harvest from forested cells and non-forested cells with primary vegetation (primf_harv + primn_harv),
as this is most important for the biodiversity impact. We compiled five sets of claims: three scenarios SSP1-2050, SSP3-2050 and
SSP5-2050), the base year (2015), and a starting year (2005) to calculate the initial map.

We create an initial land-use map by allocating urban, cropland, pasture, rangeland and forestry with GLOBIO 4 land allocation routine,
using the claims for 2005 and, for the primary vegetation, the ESA CCI-LC map for the same year. For pasture and rangeland, we use
the same suitability layer. By allocating pasture first and rangeland thereafter, the pasture (more intense use) will be allocated to the
most suitable areas. Post-process the initial map to remove any remaining urban (class 190) or cropland (classes 10-40) from the ESA
CCI-LC map by reclassifying into secondary vegetation.

We then allocated the LUH2 ‘claims’ for the years 2015 and 2050 with the GLOBIO 4 allocation routine, using the map from step 2
as initial land-use map.

Step 2 | Differentiate cropland
After allocation, we differentiate cropland intensities based on the amount of fertilizer:

1

2)

3)

We created a total fertilizer map layer (0.25 degree resolution; kg N per ha) as weighted average over the crop types: (fertl_c3ann *
c3ann + fertl_c4ann * cdann + fertl_c3per * c3per + fertl_c4per * cdper + fertl_c3nfx * c3nfx)/(c3ann + cdann + c3per + cdper +
c3nfx)

We classified intensity per cell: low intensity = 0-100 kg N-input/ha, medium intensity = 100-250 kg N-input/ha and high intensity =
>250 kg N-input/ha (Temme and Verburg, 2011).

We combined the intensity layer with the map resulting from the discrete allocation to classify cropland based on intensity (post-
processing step).


http://luh.umd.edu/data.shtml

Table S1: Sources and characterization of input data in BES-SIM.

BES-SIM Land-use data - re-categorization of LUH2 Climate data - data sources with Other data
model land-use classes in the model variables used in the model
Species-based models of biodiversity
AlM- Cropland (c3ann, c4ann, c3per, cdper, c3nfx) | ISIMIP2a (IPSL-CMb5a-LR) Species occurrence records
biodiversity | Pasture (pastr) - monthly mean maximum (GBIF)
Built-up area (urban) temperature, monthly mean
Forest (primf, secdf) minimum temperature,
Other natural land (primn, secdn, range) monthly precipitation
INSIGHTS Cropland (c3ann, c3per, c3nfx, c4ann, cdper) | WorldClim v1 Global mammal habitat suitability
Forest (primf, secdf) - annual mean temperature, models (Rondinini et al., 2011)
Non-forest (primn, secdn, range) diurnal range (mean of monthly), Mammal range maps (IUCN)
Pasture (pastr) isothermality, temperature
Urban (urban) seasonality, max temperature of
warmest month, minimum
temperature of coldest month,
temperature annual range, mean
temperature of wettest, driest,
warmest quarter, and coldest
quarters, annual precipitation,
precipitation of wettest and driest
months, seasonality, wettest,
driest, warmest, and coldest
quarters
MOL Forest (primf, secdf) WorldClim v2 (present), v1.4 Expert maps (IUCN)
Grassland/shrubland/wetland (secdf, secdn) (future) Species land cover preferences
Rangeland (pastr, range) - annual mean temperature, drawn from the literature
Urban (urban) temperature seasonality, annual
Crops (c3ann, c3per, c3nfx, c4ann, c4per) precipitation, precipitation
seasonality, precipitation of driest
quarter
BIOMOD2 CHELSA (1979-2013 for present, | Expert maps for mammals and
and 2041-2060, 2061-2080 for amphibians (IUCN)
future) Bird data (Birdlife International)
- annual mean temperature,
annual temperature range, annual
sum of precipitation and
precipitation seasonality
(coefficient of variation in
monthly sum of precipitations)
Community-based models of biodiversity
cSAR-iDiv | Primary vegetation (primf, primn Bird species occurrence data
Secondary vegetation (secdf, secdn) (Birdlife International)
Pasture (pastr, range) Coefficients for affinities
Urban (urban) (PREDICTS)
Cropland (c3ann, c4ann, c3nfx)
Permanent (c3per, c4per)




BES-SIM Land-use data - re-categorization of LUH2 Climate data - data sources with Other data
model land-use classes in the model variables used in the model
CSAR- Urban (urban) cSAR model parameters
IIASA-ETH | Annual cropland (c3ann, c3nfx, c4ann) (Chaudhary et al. 2015;
Perennial cropland (c3per, c4per) Frischknecht and Jolliet 2016)
Pasture (pastr)
Extensive forest (range, secdf, secdn)
Pristine (primf, primn)
BILBI Primary vegetation (primf, primn) WorldClim v1.4 — BIO6 and Plant species occurrence records
Mature secondary vegetation (secdf, secdn) BI0O12 (GBIF)
if older than 50yrs Climate variables derived by Soil attributes: pH, Clay %,
Intermediate secondary vegetation (secdf, integrating Worldclim monthly Silt %, Bulk Density, Depth
secdn) if 10-50 years old temperature and precipitation (Hengl et al., 2014)
Young secondary vegetation (secdf, secdn) estimates with radiative Terrain attributes: Ruggedness
if younger than 10yrs adjustment for terrain, and with Index (G. Arnatulli, Yale
Rangelands (range) soil water-holding capacity University), Topographic
Managed pasture (pastr) (Ferrier et al., 2013): max Wetness Index (WorldGrids)
Urban (urban) temperature of warmest month, MODIS Vegetation Continuous
Perennial croplands (c3per, c4per) max diurnal temperature range, Fields (NASA)
Nitrogen-fixing croplands (c3nfx) actual evaporation, potential Global Human Settlement
Annual croplands (c3ann, c4ann) evaporation, min monthly water Population Grid
deficit, max monthly water deficit | Coefficients: impact of land use
on local native-species richness
(PREDICTS)
PREDICTS | Primary vegetation (primf, primn) PREDICTS database (Hudson et
Secondary vegetation (secdf, secdn - split into al., 2014)
three age bands: Mature, Intermediate and Human population density
Young) (GRUMP v1., HYDE (historical)
Managed pasture (pastr) and the corresponding SSPs as
Rangeland (range) developed by Jones and O’Neill
Urban (urban) 2016 (future projection)).
Annual (c3ann, c4ann) Agricultural suitability (Zabel et
Nitrogen-fixing (c3nfx) al., 2014)
Perennial (c3per, c4per)
GLOBIO - Primary forest (primf) IMAGE model (MAGICC 6.0) River flow compared to natural
Aquatic Primary other vegetation (primn) - daily precipitation and river flow (global hydrological
Secondary forest (secdf) evaporation, monthly model: PCR-GLOBWB or LPJ)
Pastures (pastr) precipitation and evaporation. Water temperature (PCR-
Rangelands (range) GLOBWB model)
Cropland (c3ann, c4ann, c3nfx) ISIMIP2a (IPSL-CMb5a-LR) Nutrient loads to aquatic systems
Perennials (c3per, c4per) - water temperature (Global Nutrient Model)
secdn Drain direction network (Doll and
urban Lehner, 2002)
Global map of rivers, lakes and
wetlands ((Lehner and D6,
2004)
Lake depths (Kourzeneva, 2010)
River dam database (Fekete et al.,
2010; Lehner et al., 2011)
GLOBIO - GLOBIO downscaled LUH2 data IMAGE model (MAGICC 6.0) Nitrogen deposition (IMAGE
Terrestrial (see Annex 1 in Supplementary Materials) - global mean temperature model)

increase (°C)

Roads (GRIP dataset, Meijer et
al., 2018)




BES-SIM
model

Land-use data - re-categorization of LUH2
land-use classes in the model

Climate data - data sources with
variables used in the model

Other data

Settlements in tropical regions
(Humanitarian Data Exchange,
Open Street Map)

Ecosystems-based model of biodiversity

Madingley

States

Primary (primf, primn)

Secondary (secdf, secdn)

Grazing (pastr, range)

Cropland (c3ann, c4ann, c3per, cdper, c3nfx)
Urban (urban)

Transitions

Primary losses (all transitions beginning with
primf or primn)

Secondary losses (all transitions beginning
with secdf or secdn)

Secondary gains (all transitions ending with
secdf or secdn)

ISIMIP2a (IPSL-CM5a-LR)
- temperature, precipitation

Soil characteristics (Smith et al.,
2013)

Modis Net Primary Productivity
(NASA, 2012)

Human Appropriation of Net
Primary Productivity (Haberl et
al., 2007)

Human population densities
(Jones and O’Neill, 2016; Klein
Goldewijk et al., 2016)3

Models of ecosystem functions and services

LPJ-GUESS | Primary natural vegetation (primf, primn) ISIMIP2a (IPSL-CM5a-LR) Crop irrigated and biofuel
Secondary natural vegetation (secdf, secdn) - monthly min/max T, fraction (LUH2 dataset)
Pasture (pastr, range) precipitation, shortwave radiation; | Wood harvest estimate (LUH2
C3 crops (c3ann, c3per, c3nfx) atmospheric CO2, N-input, dataset)
C4 crops (c4ann, c4per) fractional land cover (crop Nitrogen deposition (Lamarque et
Urban (modelled as natural vegetation) irrigated yes/no, pasture, managed | al., 2011)
forest, natural)
LPJ Primary natural vegetation (primf, primn) ISIMIP2a (IPSL-CM5a-LR)
Secondary natural vegetation (secdf, secdn) - monthly T, precipitation,
Pasture (pastr, range, c3ann, c3per, c3nfx, shortwave radiation or cloudiness;
cdann, c4per) atmospheric COg, fractional land
urban (modelled as natural vegetation) cover (pasture, managed forest,
natural)
CABLE Primary natural vegetation (primf, primn) ISIMIP2a (IPSL-CMb5a-LR) Wood harvest estimate (LUH2
Secondary natural vegetation (secdf, secdn) - daily min/max T, precipitation, dataset)
Grass (pastr, range) shortwave radiation, longwave Nitrogen deposition (Lamarque et
Crops (c3ann, c3per, c3nfx, cdann, cdper, radiation, humidity, windspeed, al., 2011)
c4nfx) atmospheric CO2, N-deposition,
land-use transitions (crop,
pasture, secondary forest, natural)
GLOBIO- Primary forest (primf) IMAGE model (MAGICC 6.0) Population size, GDP per capita,
ES Primary other vegetation (primn) - aggregated monthly soil data, altitude range, slope

Secondary forest (secdf)
Pastures (pastr)

Rangelands (range)

Cropland (c3ann, c4ann, c3nfx)
Perennials (c3per, c4per)

secdn

urban

precipitation, monthly wet day
frequency

(IMAGE model)

Population density in river
floodplains

Water demand for electricity,
industry and households (Bijl et
al., 2016)




BES-SIM
model

Land-use data - re-categorization of LUH2
land-use classes in the model

Climate data - data sources with
variables used in the model

Other data

INVEST

GLOBIO downscaled LUH2 data
(see Annex 1 in Supplementary Materials)

Nutrient delivery
WorldClim v1.4
- precipitation

Coastal Vulnerability
CMIP5 AOGCMs
- sea level rise

Nutrient delivery

Digital elevation model (ASTER)
Biophysical table (INVEST
database)

Rural population scenarios (Jones
and O’Neill, 2016)

Population raster (GPWv4, 2018)

Coastal Vulnerability

Natural Habitat polygons for
mangrove, corals, and eel grass
(WCMC)

Continental Shelf polygon
(COMARGE, Census of Marine
Life)

Digital elevation model (ASTER)
Wind and wave exposure
(WAVEWATCH IlI)
Population raster (GPWv4 -
2018)

Pollination

Yield raster for 115 crops
(Monfreda et al., 2008)
Nutrient content of 115 crops
(table; USDA 2011)
Pollination dependence of 115
crops (Klein et al., 2007)
Dietary requirements (Allen et al.,
2006; BNF, 2016)
Demographic population data
(GPWv4 Age Dataset — 2018)

Crop production
-Yield raster for 115 crops
(Monfreda et al., 2008)

GLOSP

12 original land states in LUH2

ISIMIP2a (IPSL-CM5a-LR)
- precipitation

Fractional vegetation cover
(Filiponi et al., accepted)
Topography (GMTED2010)
Soil type and physical properties
(Hengl et al., 2014)




Table S2: Model description, modifications and assumptions made to published models in BES-SIM.

BES-SIM model

Description

Species-based models of biodiversity

AlM-biodiversity

The AlM-biodiversity model (Ohashi et al., submitted) predicts potential shifts of suitable habitat of multiple
species caused by the projected climate and land-use change, using the ISI-MIP climate and LUH2 land-use data.
The model incorporates distribution of 9,025 species with > 30 refined occurrence data in their native region,
which has been assessed by the IUCN Red List. This includes species of the least concern in five major taxonomic
groups: vascular plants, amphibians, reptiles, birds, and mammals. Native region of each species was specified by
database of the IUCN Red List. The distribution of suitable habitat (land) is estimated from climate and land-use
data at 0.5 arc degrees spatial resolution using a statistical model on the relationship between species occurrence
and climate and land-use classes. This statistical model is calibrated by Maxent (Phillips et al., 2006) using the
occurrence data from the Global Biodiversity Information Facility (GBIF), historical climate (WorldClim
database) and land-use (Hasegawa et al., 2017) data for 2005. The bias of occurrence data is corrected using bias
files for generating a set of background data for a target group of species (Phillips et al., 2009). The shifts in
species suitable habitat in 2050 are projected under two common assumptions of dispersal: *no’ (zero) and ‘full’
(unlimited and instantaneous) migration (Bateman et al., 2013; Midgley et al., 2006). For the past projections, it is
assumed that in year 1900 species can distribute in all suitable habitats without any dispersal limitations.

INSIGHTS

The InSIGHTS model (Rondinini et al., 2011; Visconti et al., 2016) forecasts the Extent of Suitable Habitat (ESH)
for vertebrates accounting for land and climate suitability, using global mammal habitat suitability models, IUCN
range maps, Worldclim climate and LUH land-use data. Bioclimatic envelope models are fitted based on
ecologically current reference bioclimatic variables (Visconti et al., 2016). Species’ presence records are obtained
by regularly sampling within species’ ranges, excluding areas outside of known altitudinal limits. Species’ pseudo-
absence records are obtained by randomly sampling outside of species’ ranges, but within the biogeographic
realms intersected by the species’ range. Presence and pseudo-absence sampling grids match in resolution.
Forecasted layers of land use/land cover are reclassified according to expert-based species-specific suitability
indexes, which identifies land-wise suitable cells or proportions thereof. The product of the two layers is
multiplied by a layer of cell area (e.g., km?) to estimate species-specific cell-wise ESH. InSiGHTS index, which
describes the proportional positive and negative contribution of the region (cell to global) to the species’ change in
ESH compared to a reference year, is calculated. The improvements made to the model since last published
methodology (Visconti et al., 2016) include increased number of modelled species and new scenarios used for
climate and land use. For both future and past forecasts, the model limits calculations within the current (2011)
species range due to the sparsity of historical data — an assumption that the species' ranges remain constant.

INSIGHTS index (ii):
Es,r.‘r"’ - Es,r.f
R
Z-!»:ll Es,r,f

iis.‘r.‘t" ==
E =ESH

S = species
r = observed region (from cells to global)
R = set of all regions

t = reference time (present)

t’ = observed time (future or past)

MOL

The MOL model (Jetz et al., 2007; Merow et al., 2013) projected potential losses in species occurrences and
geographic range sizes given changes in suitable conditions (climate only, land-cover only and climate and land-
cover), using Worldclim climate data IUCN expert maps, and species land cover preferences. Climatic niches were
estimated using penalized Poisson point process models (similar to Maxent) by extracting presence from the
expert maps on a quarter degree grid. Niche were projected under future scenarios and binary maps of predicted
presence/absence were obtained. These binary values were then rescaled by the proportion of each cell consisting
of habitat where the species in known to occur, leading to maps of the proportion of each cell that is suitable
habitat. Species-level losses were aggregated to inform regional trends. For all three projection types — climate
only, land-cover only and climate and land-cover — changes in individual species range size and range location




BES-SIM model

Description

were assessed and summarized for different taxonomic and geographic groupings. Species Habitat Index and Red
List Index may be projected with modelled results. All modelling was performed as part of a multispecies
workflow that automates production and quality control for range models.

BIOMOD2

The BIOMOD2 model (Thuiller, 2004; Thuiller et al., 2009, 2011) is an R-package that allows running up to nine
different algorithms of species distribution models using the same data and the same framework. An ensemble is
produced to allow for a full treatment of uncertainties given data, algorithms, climate models and climate
scenarios. Based on the species distribution models that link observed or known presence-absence data to
environmental variables (e.g. climate), each model is cross-validated several times (a random subset of 70% of
data is used for model calibration while 30% is held out for model evaluation). Models are evaluated using various
metrics, and produce indicators including change in species range, species loss and gain per pixel, species
turnover, functional and phylogenetic diversity.

Community-based

models of biodiversity

CcSAR-iDiv

The cSAR-IDiv (Martins and Pereira, 2017; Pereira and Daily, 2006) model assesses the response of biodiversity
to land-use change, using LUH2 land use, Birdlife species occurrence and PREDICTS affinities data. It accounts
for the persistence of species in human-modified habitats and for the differential use of habitats by species. The
model allows to assess the impact of changes in species richness across scenarios of land use in the countryside
SAR, the richness of each functional species group i, Si, is given by a function of the area of each habitat j, A;, in

the landscape,
n
SL' = Ci thAJ
j=1

where n is the number of modified habitats types, hijis the affinity of species group i to habitat j and A; is the area
cover by habitat j. The parameters ¢ and z are constants that depend on the taxonomic group and sampling scheme
respectively, and will be species group dependent. Species are classified in functional species groups sharing
similar habitat preferences using the Birdlife dataset. The hij, reflecting the relative affinity of a functional species
group i to a modified habitat type j compared to its natural habitat are derived from the PREDICTS dataset. The
model calculates the proportion of species of each functional group between two time periods, then multiplies the
trend by the actual number of species of the functional group (i.e. as reported by Birdlife) in each sampling unit.
Using this approach, the model estimates the trends of local (i.e., grid cells), regional and global species richness
of the two functional groups of bird species - forest and non-forest. The improvements made since last published
methodology include the use of high-resolution land-use dataset and affinities calculated from the PREDICTS
dataset, and application of two functional groups across scales based on habitat types (land classification). For the
past projections, the model is applied starting from 1900 with an assumption that the number of species currently
present in different areas/sampling units (IUCN/Birdlife data) corresponds to the number of species at the starting
point.

z

CSAR-1IASA-
ETH

The IIASA-ETH cSAR model is based on a countryside Species Area Relationship (CSAR) type of model and
estimates the impact of time series of spatially explicit land-use and land-cover transitions on community-level
measures of terrestrial biodiversity on five taxa (amphibians, birds, mammals, reptiles and plants). It uses LUH2
data and the initial species richness and cSAR model parameters from Chaudhary et al. (2015) and Frischknecht
and Jolliet (2016). Regional species loss is weighted by the fraction of range area of all species in every ecoregion
and IUCN threat level, to derive an estimate of global extinctions.

The original approach of Chaudhary et al. (2015) is not tailored for estimating long-term and large land-use
changes because i) it is a linear approximation (contingent to the current land-use patterns) of a non-linear
relationship, and ii) although it incorporates a measure of the length of recovery, the approach is not designed to
look at the dynamics of LULCC towards a more biodiversity-friendly state. Instead, in the IIASA-ETH-cSAR
model the biodiversity impacts of land-use change is estimated directly from the cSAR formula (cSAR
relationship and parameters for the model) and applied to the land-use shares for the various LULC classes
considered (their affinity values are derived directly for the local characterization factor database based on field
records). The link between LULCC and habitat is more detailed by taking the gross transitions directly as input




BES-SIM model

Description

between LULC classes (instead of net state changes, which ignores the land-use history). The model also accounts
for the time dynamics with which a transition generates biodiversity outcomes where the affinity of species for a
converted LULC class forgets its origin that is specific to each pair of LULC class. It is typically quick (i.e., lower
than one time step) for biodiversity-unfavourable LULC transitions, and long (typically several decades) for
biodiversity-favourable LULC transitions. The model is run from 1500 onwards — from the past to into the future —
with initial land-use states in year from LUH2 dataset and cumulated transitions from one time step to another.

BILBI

This modelling framework (Hoskins et al., in prep.) couples application of the species-area relationship (SAR)
with correlative statistical modelling of continuous patterns of turnover in the species composition of communities
as a function of environmental variation (Ferrier et al., 2004, 2007).

Generalised dissimilarity modelling (Ferrier et al., 2007) is used to fit models of spatial turnover in vascular-plant
composition, based on 52,489,096 occurrence records for 254,145 plant species, extracted from GBIF, and
environmental layers covering the entire land surface of the planet at 30-second (~1km) grid-resolution (including
climate layers derived from WorldClim; see Table S1). A separate GDM is fitted for each of 61 bio-realms from
WWEF’s ecoregionalisation. In a few cases, data from neighbouring or ecologically-related bio-realms are used to
supplement the dataset employed in fitting GDMs for more poorly sampled bio-realms. To accommodate the
‘presence-only’ nature of much of the biological data assembled from GBIF, GDMs are fitted to observed matches
and mismatches in species identity between pairs of individual occurrence records. The modelled probability of a
mismatch in species identity is then transformed into the expected compositional similarity between any two cells.

Using the approach employed by Blois et al., (2013), Ferrier et al. (2012), Fitzpatrick et al. (2011), Mokany et al.
(2012), Prober et al. (2012) and William et al. (2015), space-for-time substitution is applied to the fitted GDMs to
project temporal turnover in species composition expected as a result of any given climate scenario based on
temperature and precipitation projections for 2050, downscaled by WorldClim. Given that the ‘current climate’
surfaces from WorldClim, used to fit the GDMs, are averaged over the period 1960-1990, the analysis is
effectively projecting the temporal turnover in species composition expected between 1975 (midway between
1960 and 1990) and 2050. This approach allows estimation of temporal turnover for a single location or of spatial-
temporal turnover between two different locations.

Estimates of the proportional coverage in 2015 of 12 land-use classes within each terrestrial 0.25 degree grid-cell
on the planet, from the LUH2, are statistically downscaled to 30-second grid resolution using the approach
described by Hoskins et al. (2016) incorporating MODIS Vegetation Continuous Fields, and the Global Human
Settlement Population Grid, as additional covariates. Downscaled land use in 2015 is then translated into ‘habitat
condition’ for biodiversity using coefficients fitted in hierarchical mixed-effect modelling undertaken by the
PREDICTS project. These coefficients estimate the proportion of local native species richness expected for
different land-use classes. This modelling employed the approach described by Newbold et al. (2016b) but with
models refitted using the 12 LUH2 land-use classes. Change in habitat condition at 30-second grid resolution is
projected for any given LUH2 land-use scenario using a simple delta-downscaling approach of applying the
proportional change in habitat condition between 2015 and 2050 to the downscaled 2015 condition values for all
30-second cells within each 0.25 degree cell.

The GDM-based modelling of temporal turnover in species composition for the climate scenario of interest, and
downscaled habitat condition for the land-use scenario of interest, are used in combination to estimate the
proportion of plant species expected to persist over the longer term (i.e. the complement of the proportion of
species committed to extinction) employing the SAR. This particular SAR-based approach, as applied recently in
two major projects within Australia — the Australian National Outlook (Bryan et al., 2014; Hatfield-Dodds et al.,
2015; Brinsmead et al., 2017) and AdaptNRM (Prober et al., 2015) — is an extension of that described originally
by Allnutt et al. (2008) and Ferrier et al. (2004). In contrast to more traditional applications of the SAR to
estimating levels of species persistence, which work with discrete environmental classes or ecosystem types, this
approach views grid-cells as sitting within a continuum of spatial and temporal turnover in biodiversity
composition (Allnutt et al., 2008; Ferrier et al., 2004).

The proportion of plant species originally associated with cell i which are expected to persist over the longer term,
anywhere in their range, as a consequence of a given combination of climate and land-use scenarios is calculated
as:
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= similarity between cells i and j in the present

Sipresentipurure = SiMilarity between cell i in the present and cell j in the future
= condition of habitat in cell j in the future
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z = SAR exponent (set to 0.25 for the current study)

The proportion of species originally associated with any specified region (reporting unit) expected to persist can
then be calculated as a weighted geometric mean of the values for all individual cells in that region:

Yt piwi
Pregion = m
i=1Wi
where:

m = total number of cells in the region (reporting unit) of interest

The weights employed are:

1
Wi = n S . .
j=1lpresentJpresent

where:
n = total number of cells on the planet

PREDICTS

The PREDICTS model (Newbold et al., 2015, 2016b) estimates how four measures of site-level terrestrial
biodiversity — overall abundance, within-sample species richness, abundance-based compositional similarity and
richness-based compositional similarity — respond to land-use and related pressures. These models are combined
with global data on past, present or future states of the pressures used in modelling, to make global projections of
each variable for each desired time point. The modelling uses data from 767 studies, each of which surveyed
multiple sites that faced differing land-use and related pressures, for which version 1 has been published (Hudson
et al., 2017), with now more data available from over 32,000 sites and over 51,000 species, which is reasonably
representative across different biomes and major animal, plant and fungal taxa. Models also use human population
density (HYDE, GRUMP v1, Jones and O’Neill, 2016) and LUH2 land-use data. In addition to the LUH2 land-use
data, the PREDICTS model uses secondary vegetation age and use intensity classes. Fractional distribution of
secondary vegetation age was compiled for each grid cell by tracking conversions using LUH2 transitions data.
Secondary vegetation was classified into young, intermediate and mature using the following thresholds: <30y =
young, 30y>50y=intermediate, >50y= mature. Use intensity was classified as Minimal, Light or Intense using
Global Land Systems data as in Newbold et al. (2015).

Linear mixed-effects models (with study- and block-level random effects to accommodate the heterogeneity in the
data, and site-level random effects to account for over-dispersion in species richness models) are used to estimate
how local (alpha) diversity is affected by land use, land-use intensity and human population density. Model
coefficients are combined with maps of the pressure data to make global projections of the estimated values of the
response variables. These projections are then combined to yield the variants of the Biodiversity Intactness Index
(BI1) shown in Newbold et al. (2016; see Scholes and Biggs, 2005 for the original development of BII).

Since last published model, sites in the PREDICTS database were re-curated to incorporate the land-use classes
present in LUH2 but not used by Hurtt et al. (2011 Climatic Change), i.e., the refinement of agricultural classes.
When modelling abundance, the abundance data were rescaled within each study such that the maximum
abundance was the same within each study; this assists with model convergence. The compositional similarity
models use the data more fully than previously: whereas previously independent pairwise comparisons were made
between sites, the models here are based on the full matrix of pairwise comparisons between sites. This full-matrix
approach allows incorporation of human population density in addition to land use (the only pressure variable
previously analysed in our models of compositional similarity: (Newbold et al., 2016b, 2016a). Whereas our
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previous models of compositional similarity used all primary vegetation sites as the baseline condition, expansion
of the database has allowed us to restrict the baseline to minimally-used primary vegetation. Previously, human
population density (In(x+1)-transformed) was fitted as a quadratic term in models of abundance and richness but
omitted from models of compositional similarity; here we have treated it as a linear term in all models to improve
consistency. The study-level mean of In(human population density + 1) was also added as a control variable into
the models of abundance and species-richness, to avoid possible artefacts that could otherwise arise if studies in
more densely-populated areas sample more intensively. Agricultural suitability (Zabel et al., 2014) was also used
as a control variable (Gray et al., 2016). These control variables are used as additive terms in modelling but not
projections. Our previous models of abundance and richness considered proximity to roads as a pressure, but we
have omitted roads from these models because of the lack of future and historical estimates; land use, land-use
intensity and human population density — all somewhat correlated with proximity to roads — have the potential to
explain some of the variance previously explained by roads.

PREDICTS also modelled species richness as a function of land use, in order to provide habitat coefficient
estimates to other models in BES-SIM. Separate models were run for areas that would naturally be forested and
non-forested (data subset using LUH2/fstnf). Human population density was omitted from the model; otherwise,
model structure matched that outlined above.

GLOBIO-Aquatic

The GLOBIO-Aquatic model (Janse et al., 2015) quantifies the impacts of multiple anthropogenic pressures in the
past, present and future on freshwater biodiversity and its ecosystem services, using climate (IMAGE model), land
use (GLOBIO model), river flow (PCR-GLOBWB or LPJ model), water template (PCR-GLOBWB model),
nutrient loads to aquatic systems (Global Nutrient Model), global map of rivers, lakes and wetlands (GLWD), and
river dam database. The drivers included are land use, eutrophication, climate change and hydrological
disturbance. The model comprises a set of mostly correlative relationships between anthropogenic drivers and
biodiversity and ecosystem services of rivers, lakes and wetlands. The model produces biodiversity intactness
indicator — Mean Species Abundance (MSA) — of lakes, rivers and wetlands as well as the probability of harmful
algal blooms as an indicator for freshwater provisioning services.

GLOBIO-
Terrestrial

The GLOBIO model for terrestrial biodiversity (Alkemade et al., 2009) quantifies the impacts of multiple
anthropogenic pressures on local biodiversity based on the mean species abundance (MSA) metric. MSA
represents the mean abundance of original species in relation to a particular pressure as compared to the mean
abundance in an undisturbed reference situation. MSA’s responses to a particular pressure are quantified based on
a meta-analysis of biodiversity monitoring data reported in the literature, whereby abundance ratios of individual
SDECiES are calculated as Aimpacted/Areference for Alimpacted < Aveference and Aimpacted/Areference =1 for Aimpacted > Areference.
Changes in biodiversity are quantified by combining georeferenced layers of the pressure variables with the MSA
response relationships. Next, the maps with the MSA values per pressure are combined to arrive at an overall
MSA. If a particular pressure is assumed to be dominant, the combined impact (MSA) is assumed equal to the
impact (MSA) of this dominant pressure. If pressures act independently, the overall MSA value is calculated by
multiplying the MSA values corresponding with the individual pressures.

Five pressures are currently included (climate change, land use, roads, atmospheric nitrogen deposition and
encroachment/hunting). Climate change, nitrogen deposition, and land-use data are derived from the IMAGE
model (Stehfest et al., 2014). Land-use data from IMAGE are downscaled to a higher spatial resolution with the
GLOBIO land allocation routine. Roads data are taken from the global road inventory project (GRIP) database
(Meijer et al., submitted). Settlement data (required to calculate hunting impacts) are retrieved from multiple open-
source datasets, including Open Street Map and Humanitarian Data Exchange.

Improvements made to the model since the last published methodology include a new high-resolution, discrete
land-use allocation routine and improved response relationships for encroachment/hunting (Benitez-L6pez et al.,
2017).

Ecosystems-based model of biodiversity
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Madingley

The Madingley Model (Harfoot et al., 2014) is a mechanistic, or process-based, model of whole ecosystems
developed to synthesize and advance our understanding of ecology, and to enable mechanistic prediction of the
structure and function of whole ecosystems at various levels of organisation, whether on land or in water. Using
data from ISI-MIP, soil characteristics (Smith et al., 2013), Modis Net Primary Productivity (NASA, 2012),
Human Appropriation of Net Primary Productivity (Haberl et al., 2007), and LUH2 (land use), Madingley
simulates the dynamics of autotrophs, and all heterotrophs with body masses above 10 pg that feed on living
organisms. In the model, organisms are not characterised by species identity but grouped according to a set of
categorical functional traits, which determine the types of ecological interactions that modelled organisms are
involved in whilst a set of continuous traits determine the rates of each process. Plants are represented by stocks,
or pools, of biomass modelled using a terrestrial carbon model. Biomass is added to the stocks though the process
of primary production, the seasonality of which is calculated using remotely sensed Net Primary Productivity
(Harfoot et al., 2014). This production is allocated to above-ground/below-ground, structural/non-structural,
evergreen/deciduous components and Madingley assumes that above-ground, non-structural matter is available for
heterotrophic organisms to consume. Biomass is lost from plant stocks through mortality from fire and senescence,
as well as through herbivory. Production, allocation and mortality in the plant model are all determined by
environmental conditions (temperature, number of frost days, precipitation and the available water capacity of
soils).

Heterotrophic animals are represented as agents, termed cohorts, which are collections of individual organisms
occurring in the same modelled grid cell with identical categorical and continuous functional traits. This approach
enables the model to predict emergent ecosystem properties at organisational scales from individuals to the whole
ecosystem. Heterotroph dynamics result from five ecological processes: metabolism, eating, reproduction,
mortality and dispersal. Predator-prey interactions (including herbivory) are based on a Holling’s Type III
functional response (Denno et al., 2012), and for predation on a size-based model of predator-prey feeding
preferences (Williams et al., 2010). Metabolism is based on empirical relationships between energy consumption
and ambient temperature taking into account the body mass of the organism (Brown et al., 2004). Endotherms are
assumed in the model to thermoregulate perfectly, and thus are active for 100% of each time step. Ectotherms in
the model do not thermoregulate, and thus are only active for the proportion of each time step during which
ambient temperature was within their upper and lower activity temperature limits, estimated following (Deutsch et
al., 2008). Reproduction can occur once a cohort has achieved its adult body mass and results from the allocation
of surplus mass to reproductive potential followed by reproductive events once a threshold ratio of reproductive
potential to adult body mass is reached (Harfoot et al., 2014). Mortality (in addition to predation mortality) arises
from three causes: a constant background rate, starvation if insufficient food is obtained, and senescence, which
increases exponentially after maturity with a functional form similar to the Gompertz model (Pletcher, 1999).
Dispersal in the terrestrial realm is either random diffusive dispersal of juvenile organisms or directed dispersal of
organisms in response to starvation or low densities of individuals (Harfoot et al., 2014).

The model produces total biomass and abundance of above ground heterotrophs, total biomass of autotrophs, total
biomass and abundance of functional groups (trophic levels, metabolic pathways, reproductive strategies), trophic
and food web structure, biomass structure, age structure, functional diversity (richness, evenness, divergence),
functional dissimilarity, net secondary productivity, biomass turnover rates, herbivory, predation, mortality and
reproduction rates. The improvements made to the model since last published methodology include incorporation
of temporally changing climate as well as natural and human impacted plant stocks to better represent the LUH2
land-use projections and calculation of functional diversity and functional dissimilarity to represent community
changes.

To make historical reconstructions back to 1900 we first run an ensemble of six simulations from pseudo-random
initial conditions for 100 years until it reaches quasi steady state for the year 1901. This spin up used land use and
HANPP for 1901, and 100 years of climate randomly recycled from the years 1951 to 1960 of the ISI-MIP IPSL
climate reconstruction. The quasi-steady state conditions from these simulations were then ran forward to 2005
using the time series of land-use change, climate change (where the period 1901 — 1950 was constructed using
randomly recycled years from 1950 — 1961) and HANPP.

Models of ecosystem functions and services

LPJ-GUESS

The LPJ-GUESS model (Lindeskog et al., 2013; Olin et al., 2015; Smith et al., 2014) is a “demography enabled”
dynamic global vegetation model using historical and future climate, CO>, nitrogen deposition and fertilizer, land
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cover change, irrigated fraction, and wood harvest estimate data. The model computes vegetation and soil state
and function, and distribution of vegetation units dynamically in space and time in response to climate change,
land-use change, atmospheric CO2, and N-input. It combines an individual- and patch-based representation of
vegetation dynamics with ecosystem biogeochemical cycling from regional to global scales. In LPJ-GUESS, the
dynamics of vegetation result from growth and competition for space, light, and soil resources from herbaceous
understorey and woody plant individuals in each patch replicated for each simulated grid cell. The suite of
simulated patches represents the distribution within a landscape representative of the grid cell as a whole of
vegetation stands with different histories of disturbance and stand development (succession). Individuals for
woody plant functional types (PFTs; trees and shrubs) are identical within a cohort (age/size class) and patch.
Photosynthesis, respiration, stomatal conductance and phenology (leaves and fine roots turnover) are simulated on
a daily time step. The net primary production (NPP) accrued at the end of each simulation year is allocated to
leaves, fine roots and, for woody PFTs, sapwood, following a set of prescribed allometric relationships for each
PFT, resulting in diameter, height, and biomass growth. Population dynamics (establishment and mortality) are
represented as stochastic processes, influenced by current resource status, demography and the life-history
characteristics of each PFT (text from Smith et al., 2014). The modelled outputs include carbon pools in
vegetation, soil, gross primary productivity, heterotrophic respiration, net primary productivity, runoff, leaf area
index, crop yields, area burnt, fire emissions, carbon to nitrogen ratios, and nitrogen loss. The improvements made
since last published methodology include an upgrade in the fire model and accounting for wood harvest. To
provide climate input before 1951 random years out of the period 1951 to 1960 are chosen to generate/recycle the
climate data for years 1901 to 1950.

LPJ

LPJ is a big leaf model (Poulter et al., 2011) that simulates the coupled dynamics of biogeography,
biogeochemistry and hydrology under varying climate, atmospheric CO2 concentrations, and land-use land-cover
change practices, using historical and future climate, CO: level, land cover change transitions, and wood harvest
estimate data. LPJ represents demography of grasses and trees in a simplistic manner, where a ‘representative
individual’ is used to scale from individuals to landscapes. Physiological processes are applied to the
representative individual and integrated over the landscape, i.e., a grid cell, based on the density of individuals.
Land cover change includes explicit representation of deforestation and reforestation, as well as harvesting of
managed grasslands. Natural fires are included. The LPJ model has a hierarchical representation of the land
surface where within a grid cell, tiles represent primary forest, secondary forest, and managed lands (crops or
pasture), and within a tile are either plant functional types (PFTs) or crop functional types (CFTs). On an annual
time step, establishment, mortality, fire, carbon allocation, and land cover change are implemented, and on a daily
time step, photosynthesis, autotrophic respiration, and heterotrophic respiration are calculated. The carbon cycle is
coupled to the hydrologic cycle via stomata, which must be open to assimilate atmospheric CO2 but
simultaneously lose water. Stomatal conductance is determined as the minimum between potential
evapotranspiration (demand) and soil plant water availability (supply). Photosynthesis and radiation follows the
Farquhar biochemical model and distributes photosynthetic active radiation vertically through the canopy
following Beer’s Law. The LPJ model is fully prognostic, meaning that PFT distributions, phenology, and carbon
dynamics are simulated based on physical principles within a numerical framework. The typical variables of
model outputs are (either per grid cell simulated, or per PFT): C pools in veg., soil, GPP, heterotrophic respiration,
NPP, runoff, LAI, crop yields, area burnt, and fire emissions. The land cover change and land-use transitions have
been upgraded to include the dynamics from the Land Use Harmonization product by George Hurtt and Louise
Chini. This development means that LPJ represents the full set of states and transitions represented in LUH v2 and
has an improved estimate of carbon fluxes from land-cover change. The model is spun up to pre-industrial
equilibrium conditions by using an atmospheric CO2 concentration of 280 ppm and recycling the first thirty years
of meteorological data (1901-1930) for 1000 years.

CABLE

CABLE is a “demography enabled” global terrestrial biosphere model (Haverd et al., 2017) that computes
vegetation and soil state and function dynamically in space and time in response to climate change, land-use
change and N-input, using historical and future daily climate data downscaled to 3-hourly, annual COz2 levels in
the atmosphere, N-deposition, land-cover change, irrigated faction, and wood harvest area. It combines a patch-
based representation of vegetation structural dynamics with ecosystem biogeochemical cycling from regional to
global scales. CABLE consists of a ‘biophysical’ core, the CASA-CNP ‘biogeochemistry’ module (Wang et al.,
2010) and the POP module for woody demography and disturbance-mediated landscape heterogeneity. The
biophysical core (sub-diurnal time-step) consists of four components: (1) the radiation module describes radiation
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transfer and absorption by sunlit and shaded leaves; (2) the canopy micrometeorology module describes the
surface roughness length, zero-plane displacement height, and aerodynamic conductance from the reference height
to the air within canopy or to the soil surface; (3) the canopy module includes the coupled energy balance,
transpiration, stomatal conductance and photosynthesis and respiration of sunlit and shaded leaves; (4) the soil
module describes heat and water fluxes within soil (6 vertical layers) and snow (up to 3 vertical layers) and at their
respective surfaces. The CASA-CNP biogeochemistry module (daily time-step) inherits daily net photosynthesis
from the biophysical code, calculates autotrophic respiration, allocates the resulting net primary production (NPP)
to leaves, stems and fine roots, and transfers carbon, nitrogen and phosphorous between plant, litter and soil pools,
accounting for losses of each to the atmosphere and by leaching. POP (annual time-step) inherits annual stem NPP
from CASA-CNP, and simulates patch-scale woody ecosystem stand dynamics, demography and disturbance-
mediated heterogeneity, returning the emergent rate of biomass turnover to CASA-CNP. The model outputs C
pools in veg., soil, GPP, heterotrophic respiration, NPP, runoff, LAI, combined crop and pasture yields, wood
harvest, C:N ratios, either per grid cell simulated, or per PFT.

The land-use and land-cover change module, driven by gross land-use transitions and wood harvest area extend
the applicability of CABLE for regional and global carbon-climate simulations, accounting for vegetation response
of both biophysical and anthropogenic forcing. Land-use transitions and harvest associated with secondary forest
tiles modify the annually-resolved patch age distribution within secondary-vegetated tiles, in turn affecting
biomass accumulation and turnover rates and hence the magnitude of the secondary forest sink.

CABLE incorporates a novel approach to constraining modelled GPP to be consistent with the Co-ordination
Hypothesis, predicted by evolutionary theory, which suggests that electron transport and Rubisco-limited rates
adjust seasonally and across biomes to be co-limiting.

GLOBIO-ES

The GLOBIO-ES model (Alkemade et al., 2014; Schulp et al., 2012) simulate the influence of various
anthropogenic drivers on ecosystem functions and services at the global scale in past, present and future
environments using model outcomes of the IMAGE model on food production, livestock production, carbon
balance, land use, and climate (Stehfest et al., 2014), in combination with data on GDP per capita, protected area
maps and infrastructure. For ecosystem services related to water, water flow regimes are derived from the PCR-
GLOBWB model, and nutrient loading is derived from the IMAGE framework model Global Nutrient Model (see
also section on GLOBIO-Aquatic). The model transfers IMAGE model outcomes into a supply — demand concept
of ecosystem services and uses causal relationships between environmental variables and ecosystem functions and
services (definitions according the cascade model by Haines-Young and Potschin (2010) based on literature
reviews). The model quantifies a range of provisioning services (e.g. crop production, grass and fodder production,
wild food, water availability), regulating services (e.g. pest control, pollination, erosion risk reduction, carbon
sequestration, food risk reduction, harmful algal blooms), and culture services (e.g. nature based tourism) These
relationships describe how ecosystem services respond to changing environments. The improvements made since
last published methodology include updated relationships between land use and the presence of pollinators and
predators using additional peer review papers.

INVEST

Nutrient Delivery Ratio

The INVEST nutrient delivery ratio model (Redhead et al., 2018) maps nutrient sources from watersheds and their
transport to the stream using digital elevation model, land-use land-cover data, nutrient runoff proxy, watersheds
layer, and biophysical table. This spatial information can be used to assess the service of nutrient retention by
natural vegetation. The retention service is of particular interest for surface water quality issues and can be valued
in economic or social terms (e.g. avoided treatment costs, improved water security through access to clean
drinking water). The model uses a mass balance approach, describing the movement of mass of nutrient through
space. Unlike more sophisticated nutrient models, the model does not represent the details of the nutrient cycle but
rather represents the long-term, steady-state flow of nutrients through empirical relationships. Sources of nutrient
across the landscape, also called nutrient loads, are determined based on the LULC map and associated loading
rates. In a second step, delivery factors are computed for each pixel based on the properties of pixels belonging to
the same flow path (in particular their slope and retention efficiency of the land use). At the
watershed/subwatershed outlet, the nutrient export is computed as the sum of the pixel-level contributions. The
model outputs total nutrient loads (sources) in the watershed and total nutrient exports from the water shed at the
pixel level. Improvements were made to the model to accept load as a raster for certain LULC classes (agriculture)
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instead of a table value. This was so we could utilize the fertilizer application rates in the management files for
each SSP. The nitrogen retention is connected to people by multiplying the per-hectare export by the rural
population density in the watershed as a weighting factor of the degree to which water quality impacts rural people
(who are typically more vulnerable to declines in water quality because they have fewer or no water treatment
options). The model generates its own watersheds (hydrologically complete watersheds that drain to the sea) and
added a pit-filling algorithm for DEMs to allow for global routing. A function is added to allow for “continuous”
streams, meaning a single pixel (of resolution 300 m) doesn’t have to be classified as entirely stream, but can be a
value between 0-1, indicating the proportion of the pixel that the stream occupies.

Costal Vulnerability

The INVEST Coastal Vulnerability model (Arkema et al., 2013; Guannel et al., 2016) produces a qualitative index
of coastal exposure to erosion and inundation as well as a map of the location and size of human settlements. The
model creates the exposure index and coastal population maps using a spatial representation (raster) of population
and spatial representations (shapefiles and rasters) of seven bio-geophysical variables (geomorphology, relief,
natural habitats (biotic and abiotic), net sea level change, wind exposure, wave exposure, surge potential depth
contour) and outputs point shapefile with fields representing base risk, and risk without habitat. The software
model was refactored to optimize runtime and memory usage so it was computationally feasible to model global
runs.

Pollination

The INVEST Pollination model (Chaplin-Kramer et al., 2014) maps pollination contribution to nutrition based on
pollinator-dependent nutrient production, and the dependence of that production on natural habitat around
farmland. This nutrition production provided by wild pollinators is then translated to potential number of people
fed based on dietary requirements. Pollination sufficiency is based on the area of pollinator habitat around
farmland. Agricultural pixels with >30% natural habitat in the 2 km area surrounding the farm are designated as
receiving sufficient pollination for pollinator-dependent yields. Pollination-dependence of crops, crop yields, and
crop micronutrient content are combined to calculate pollination-dependent nutrient production. Nutrition
provided by wild pollinators on each pixel of agricultural land is then calculated according to pollination habitat
sufficiency and the pollination-dependent nutrient yields. The model uses yield maps for 115 crops (raster;
Monfreda et al., 2008), nutrient content of 115 crops (table; USDA 2011), pollination dependence of 115 crops
(raster; Klein et al., 2007), land use (raster; GLOBIO downscaled from LUH2), dietary requirements (WHO),
demographic data (GPW4 Age Dataset — 2018), and outputs pollination sufficiency (proportion of agricultural
land in a grid cell receiving pollination services sufficient for attaining full pollination-dependent yields),
pollination service - nutrient (production of macro/micronutrient per grid cell), people fed - nutrient (potential
number of people whose annual dietary requirements are met by nutrition provided by wild pollination), self-
sufficiency — nutrient (proportion of nutrition needs of population in a grid cell met by nutrition provided wild
pollination in that grid cell). The approach for pollination-dependent nutrient production outlined in Chaplin-
Kramer et al. (2014) was extended to include pollination habitat sufficiency.

Crop Production

The crop-production model is based closely on the INVEST Crop Production model (Mueller et al., 2012) with
calculation methods for nutritional content from Johnson et al., 2014, 2016. The model was modified by
aggregating 175 crops (raster; Monfreda et al., 2008) to the 5 crop-types in LUH2: C3 annual, C3 perennial, C4
annual, C4 perennial and N-fixing crops. Each crop type in the LUH2 states data was resampled (bilinear) to a 5
arc-minute grid-cell to match yield data. Caloric production per hectare on each current and future landscape for
each crop type is calculated by aggregating yield data and multiplying it by the proportional extent of the 5 arc-
minute grid-cell in each crop-type. To identify crop-type yield for cropland expansion that occurred outside of
existing cropland extent (and therefore did not have observed yields available), we used the yield-gap method in
(Mueller et al., 2012) to identify the 50™-percentile yield for the grid-cell based on its climate bin (defined with
growing-degree days and precipitation). The indicator we report does not include increases in per-area crop yield
(e.g. from technological change) and instead isolates simply the increase in food security/food production from
changes in cropland extent under the different scenarios. Yield was expressed in terms of caloric content based on
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aggregated-versions of the food balance sheets of the Food and Agriculture Organization of the United Nations
FAOSTAT database.

GLOSP

GLOSP (Guerra et al., 2016) is a 2D soil erosion model based on the Universal Soil Loss Equation, using climate,
land use, vegetation cover, topography, and soil data to estimate global and local soil erosion and protection
indicators. Protected soil (Ps) is defined as the amount of soil that is prevented from being eroded (water erosion)
by the mitigating effect of available vegetation. Ps is calculated from the difference between soil erosion (Se) and
potential soil erosion (Pse) [Ps = Pse-Se]. Pse is calculated by the integration of the joint effect of slope length,
rainfall erosivity, and soil erodibility. Se is calculated by multiplying Pse by the fractional vegetation cover (0 <
Fcover < 1). Here soil protection is given by the value of fractional vegetation cover calculated as a function of
land use, altitude, precipitation, and soil properties. Global fractional vegetation cover is originally calculated
based on a multiple endmembers method described in Filiponi et al. (accepted). This is then resampled to 0.25
degree. To obtain a long temporal distribution of this variable (1900-2099), a spatial explicit polynomial
regression function is implemented to calculate monthly Fcover values as a function of land use, altitude,
precipitation, and soil properties. For future conditions, vegetation values are calculated based on SSP~RCP
correspondences. An assumption is made to the historical projections that the physical processes remain the same
through time.




Table S3: Definition of metrics in ecosystem functions and services models in BES-SIM.

Types of NCP Metric Models Units Definitions and formula

services

Material Energy Bioenergy-crop LPJ-GUESS PgClyr, First generation biofuel crop production (carbon removed

Production kgC/m?lyr during harvest)

Material Food and feed Crop Yields LPJ-GUESS PgClyr, Harvested carbon in croplands that are used for food production

kgC/m?/yr (excluding pastures)

Material Food and feed Crop and Pasture CABLE PgClyr, Above ground carbon removed from cropland and pastures as a

Yield kgC/m?/yr result of harvest and grazing

Material Food and feed Crop Production GLOBIO-ES 10°KCal The total crop production derived by applying crop
productivity of the IMAGE model on the LUH2 crop area
estimates, and is derived from the total human demand
(including for livestock); production of various crop categories,
including wheat, rice, maize, tubers, pulses etc. using estimates
of average caloric content the production was translated into
Kcal produced.

Material Food and feed Grass Production GLOBIO-ES Geal Grass and fodder production derived by applying grass
productivity from the IMAGE model on the LUH2 grassland
area estimates; production derived from the total demand of
livestock production; largely from pastures and rangelands.

Material Food and feed Production of INVEST kcal Caloric production on the current landscape for each crop type

C3Nfx, C3Ann, — crop yields based on Monfreda et al. (2008); kcals calculated
C3Per, C4Ann, based on FAO food-balance sheets (FAO 2017)
C4Per
Material Materials, Wood Harvest LPJ-GUESS, KgC, PgClyr, | Wood carbon removed from natural vegetation (driven by
companionship CABLE kgC/m?/yr wood harvest fraction from LUH2)
and labor
Regulating Pollination and Pollination: fraction | GLOBIO-ES Proportion Pollination by natural pollinators assumed to be more effective
dispersal of of cropland in cropland situated near natural land; pollination efficiency
seeds and other | potentially related to distance from natural elements, based on literature
propagules pollinated, relative review.
to all available A consequence is that pollination increases with the fraction of
cropland nature in a cell. We use the relationship between pollination
efficiency and the fraction of natural area within a cell 0.5 by
0.5 degrees (Schulp et al., 2012).
If NatPerc > 20 and NatPerc < 60, then pollination efficiency =
0.25 * NatPerc + 85, else pollination efficiency = 100
Sum: Total cropland potentially pollinated
Regulating Pollination and Pollination: INVEST Proportion The model maps pollination contribution to nutrition based on
dispersal of proportion of proportion of crop production that is dependent on pollination,
seeds and other | agricultural lands and proportion of that production whose pollination needs are
propagules whose pollination met by natural habitat around farmland.
needs are met




Types of NCP Metric Models Units Definitions and formula
services
Regulating Regulation of Total Carbon LPJ-GUESS, PgC, kgC/m? Sum of vegetation, litter and soil carbon stocks; total carbon
climate LPJ, CABLE pool in the ecosystem, including carbon in stems, branches,
leaves, roots, soil and litter
Regulating Regulation of Total Carbon GLOBIO-ES MgC Total carbon pool in the ecosystem, including carbon in stems,
climate branches, leaves, roots, soil and litter, derived from the IMAGE
model (using LPJmL)
Regulating Regulation of Vegetation Carbon LPJ-GUESS, PgC, kg/m?, Carbon stocks in living wood, roots and leaves
climate LPJ, CABLE PgC, kgC/m?
Regulating Regulation of Monthly Runoff LPJ-GUESS, Pg/s, kg/m?s, Sum of drainage, surface and base waterflow
freshwater LPJ, CABLE Pg/month, Maximum monthly runoff - monthly combined surface and
quantity, kg/m? month, | subsurface runoff summed
location and Pg/s, kg/m?/s
timing
Regulating Regulation of Total Runoff CABLE km®/yr, mm/yr | Total surface and subsurface runoff summed over the year
freshwater
quantity,
location and
timing
Regulating Regulation of Water Scarcity GLOBIO-ES Ratio demand / availability of renewable water, monthly-
freshwater Index weighted (0-1) (Wada and Bierkens, 2014)
quantity,
location and
timing
Regulating Regulation of Nitrogen Leaching LPJ-GUESS PgN/s, Nitrogen lost from the grid-cell, after subtracting an estimate
freshwater and kgN/m?s for gaseous N losses
coastal water
quality
Regulating Regulation of Nitrogen in Water GLOBIO-ES mgN/I Total N concentration in the water, i.e. emissions divided by
freshwater and water discharge. The emissions are the sum of urban and
coastal water diffuse sources, accumulated over the upstream catchment of a
quality cell. The retention in the water network is accounted for
Nitrogen concentration in water [mgN/I] per cell, means and
quartiles per region.
Regulating Regulation of Phosphorous in GLOBIO-ES mgN/I Total P concentration in the water, i.e. emissions divided by

freshwater and
coastal water
quality

Water

water discharge. The emissions are the sum of urban and
diffuse sources, accumulated over the upstream catchment of a
cell. The retention in the water network is accounted for
Phosphorus concentration in water [mgP/I] per cell, means and
quartiles per region.




Types of NCP Metric Models Units Definitions and formula

services

Regulating Regulation of Nitrogen Export INVEST Tons N/year The model maps nutrient sources from watersheds and their
freshwater and transport to the stream. This spatial information can be used to
coastal water assess the service of nutrient retention by natural vegetation.
quality The retention service is of particular interest for surface water

quality issues and can be valued in economic or social terms
(e.g. avoided treatment costs, improved water security through
access to clean drinking water).

Regulating Regulation of Nitrogen INVEST Tons Nitrogen export times rural population, as an indication of
freshwater and Export*Capita N*people where people are most vulnerable to changes in drinking water
coastal water lyear quality, because rural communities typically have fewer water
quality treatment options or use well-water that may show similar

patterns of nitrate leaching.

Regulating Formation, Erosion Protection: | GLOBIO-ES index (0-100) | Erosion risk calculation for pasture, rangeland, cropland and
protection and fraction with low urban from the USLE as implemented in the IMAGE model.
decontamination | risk relative to the Based on soil characteristics (e.g. texture, depths and slope),
of soils and area that needs climate characteristics (e.g. precipitation) and land-use
sediments protection sensitivity.

The risk is calculated as a relative figure between 0 and 100,
from high to low risk.
Sum: total area with low risk (ER > 80)

Regulating Formation, Soil Protection GLOSP % The amount of vegetation cover (in %cover) across all pixels
protection and within a specific subset (e.g., global, region ‘x”).
decontamination For each observed year, these values vary between 0 and 1 and
of soils and for the change index negative values represent the rate of
sediments decrease in relation to a reference year.

Regulating Regulation of Flood Risk: number | GLOBIO-ES people The number of people exposed to river flood risk calculated
hazards and of people exposed affected based on the frequency of daily river discharge exceeding the
extreme events to river flood risk river’s capacity, the potentially inundated area and the

population density in that area. ‘Normal’ predictable yearly
flooding is left out.
Sum = number of people affected, per region

Regulating Regulation of Coastal INVEST unitless score | Geophysical and natural habitat characteristics of coastlines are
hazards and Vulnerability Index from 1 (min) used to compare relative exposure to erosion and flooding in
extreme events to 5 (max) severe weather across space and different scenarios (Arkema et

al., 2013).

Regulating Regulation of Coastal INVEST unitless Total exposure risk times population within 2km of shore.
hazards and Vulnerability score*people | When overlaid with data on coastal population density, the
extreme events *Capita model’s outputs can be used to identify where humans face

higher risks of damage from storm waves and surge.




Types of NCP Metric Models Units Definitions and formula

services

Regulating Regulation of Pest Control: GLOBIO-ES km? Cropland area that is potentially covered by sufficient pest
detrimental fraction of cropland predators. Pest control by natural predators is assumed to be
organisms and potentially more effective in cropland situated near natural land. The pest
biological protected, relative to control efficiency is related to distance from natural elements,
processes all available relation is based on literature review.

cropland A consequence is that pollination increases with the fraction of

nature in a cell. We use the relationship between pollination
efficiency and the fraction of natural area within a cell 0.5 by
0.5 degrees (Schulp et al., 2012).

If NatPerc < 35, then pest control = 0.48 * NatPerc + 12,75,
else pest control = 0.67 * NatPerc + 7.25

Sum: Total cropland potentially covered by natural predators
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