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Supplement  

 

Supplementary Methods: Description of the post-processing (downscaling) of LUH2 using GLOBIO 4  
 
GLOBIO 4 discrete land-use allocation routine 

The GLOBIO4 land-use allocation procedure requires two main inputs: regionally aggregated totals or demands (‘claims’) of each land-use 

type and, for each land-use type, a layer quantifying the suitability of each grid cell for that land-use type (10 arc-seconds resolution; ~300 

m). Claims can be derived from national or regional statistics or from models that estimate demands based on socio-economic developments, 

for example integrated assessment models (IAMs). All claims are expressed in terms of area (km2). The allocation algorithm then prioritizes 

candidate grid cells according to their suitability values and allocates the claims of each land-use type in each region starting from the cells 

with the highest suitability until the total claim is allocated. In the allocation a predefined order is followed, where urban land takes 

precedence over cropland (Bren d’Amour et al., 2017) and cropland in turn takes precedence over pasture (Hasegawa et al., 2017). If for a 

given land-use type in a given region there are multiple cells with the same suitability, the allocation is done randomly. Non-allocated areas 

are assigned the primary vegetation type from a natural land cover map. If the area of land use allocated in a given time step is smaller than 

the area allocated in the preceding time step, the cells that fall free are assigned secondary vegetation. 

 

Suitability layers 

Urban 

Urban claims are first allocated to existing urban area, from the centre outward, and then to non-urban area with the probability decreasing 

with increasing distance from urban areas. We further assume that within protected areas no further urban expansion takes place (beyond 

the current urban area in PA). To achieve this, the urban suitability layer is calculated as follows, based on the ESA CCI-LC map for 2005: 

• For each urban cell (class 190; see Table A2), calculate the Euclidian distance to the nearest other cell (such that cells in the city centres 

get higher values than cells near the edges). Normalize such that each value ranges between 0 and 1, and add +1 to all values. This 

gives layer 1.  

• For each non-urban cell, calculate the Euclidian distance to the nearest urban cell. Invert the distances (such that cells closer to urban 

get higher suitability) and normalize such that each value ranges between 0 and 1. Set values within protected areas to zero. This gives 

layer 2.  

• Sum the two layers and normalize again such that each cell gets a value between 0 and 1. This gives a layer where suitability within 

urban is always higher than beyond urban, and with suitability decreasing from the existing city centres outward.  

Cropland 

Similar to urban, cropland is first allocated to existing cropland and then with increasing distance to it (based on ESA CCI-LC map for 2005). 

We assume that homogeneous cropland cells in the ESA CCI-LC map represent more suitable areas than mosaic croplands. We further 

assume that within protected areas no further cropland expansion takes place (beyond the current cropland within PA). To achieve this, the 

suitability layer is calculated as follows:  

• For each homogeneous cropland cell in the ESA CCI-LC map for 2005 (classes 10, 11, 12 and 20), calculate the Euclidian distance to 

the nearest other cell (such that cells in the centres of cropland areas get higher values than cells near the edges). Normalize such that 

each value ranges between 0 and 1, and add +2 to all values. This gives layer 1. 

• For each mosaic cropland cell in the ESA CCI-LC map for 2005 (classes 30 and 40), calculate the Euclidian distance to the nearest 

other cell (such that cells in the centres of cropland areas get higher values than cells near the edges). Normalize such that each value 

ranges between 0 and 1, and add +1 to all values. This gives layer 2. 

• For each non-cropland cell, calculate the Euclidian distance to the nearest cropland cell (classes 10, 11, 12, 20, 30 and 40). Invert the 

distances (such that cells closer to cropland get higher suitability) and normalize such that each value ranges between 0 and 1. Set 

values within protected areas to zero. This gives layer 3.  

• Sum the three layers and normalize again such that each cell gets a value between 0 and 1. This gives a layer where suitability within 

cropland is always higher than beyond cropland, with homogeneous cropland being more suitable than mosaic cropland, and with 

suitability decreasing away from existing cropland. 

Pasture and rangeland 

For pasture and rangeland, we assume that suitability can be inferred from the density of grazing livestock species, which we retrieve from 

FAO’s gridded livestock of the world (30 arc-seconds). We establish the suitability layer as follows: 

• Retrieve the densities (head per km2) of each of three ruminant livestock species (cattle, goat, sheep) from the FAO’s gridded livestock 

of the world, resolution 30 arc-seconds (https://livestock.geo-wiki.org/download/).  

• To correct for differences in body mass among livestock species, convert heads to so-called tropical livestock units (TLU) by assuming 

that goat/sheep = 0.1 TLU and cattle = 0.6 TLU per individual (Petz et al., 2014).  

https://livestock.geo-wiki.org/download/


 

• Sum the TLUs per grid and normalize the resulting values to achieve suitabilities ranging from 0 to 1. 

 

Forestry 

In a recent review it was found that six factors were consistently associated with higher deforestation (roads, urban areas, population, soil 

suitability, agricultural activity, and proximity to agriculture) (Busch and Ferretti-Gallon, 2017). We assume here that the last five factors 

primarily reflect deforestation for urban and agricultural development, which is covered in the allocation of urban and cropland, and that 

forestry/wood harvest is primarily determined by elevation and the proximity to infrastructure needed to transport wood (FAO, 2000). The 

review further found that protected areas consistently result in lower deforestation. Suitability for forestry (within forest) is therefore 

calculated as follows: 

• Calculate the Euclidian distance to roads from PBL’s GRIP database (Meijer et al., accepted) or, in South-America, the distance to 

either roads or rivers (FAO, 2000), using the Digital Chart of the World (DCW) combined with the Global Lake and Wetland Database 

(GLWD) to delinate the rivers. Invert and normalize the distances to arrive at suitability values between 0 and 1. This gives layer 1. 

• Invert and normalize elevation to arrive at suitability values between 0 and 1. This gives layer 2. 

• Multiply the layers and normalize again to arrive at an overall suitability between 0 and 1.  

Perform the following post-processing steps: 

• Set suitability values within protected areas to zero. 

• Clip the global suitability layer to land cover with trees from the ESA CCI-LC map for 2005 (classes 50-110; see Table A2). This 

contains both closed and open forest, in order to accommodate wood harvest from areas with different tree densities (forested and non-

forested in LUH2). 

 

Post-processing LUH2 data with the GLOBIO 4 land allocation routine  

Step 1 | Discrete allocation of urban, cropland, pasture and forestry 

We use the GLOBIO routine to post-process (downscale) the LUH2 data (http://luh.umd.edu/data.shtml) and refine for cropland, as follows: 

1) We aggregated the areas of urban, cropland, pasture, rangeland and forestry across the LUH2 cells to IMAGE region level to obtain 

the claims. The cropland claim consists of the sum of the five cropland types (c3ann + c3per + c4ann + c4per + c3nfx). The forestry 

claim is the sum of the wood harvest from forested cells and non-forested cells with primary vegetation (primf_harv + primn_harv), 

as this is most important for the biodiversity impact. We compiled five sets of claims: three scenarios SSP1-2050, SSP3-2050 and 

SSP5-2050), the base year (2015), and a starting year (2005) to calculate the initial map.  

2) We create an initial land-use map by allocating urban, cropland, pasture, rangeland and forestry with GLOBIO 4 land allocation routine, 

using the claims for 2005 and, for the primary vegetation, the ESA CCI-LC map for the same year. For pasture and rangeland, we use 

the same suitability layer. By allocating pasture first and rangeland thereafter, the pasture (more intense use) will be allocated to the 

most suitable areas. Post-process the initial map to remove any remaining urban (class 190) or cropland (classes 10-40) from the ESA 

CCI-LC map by reclassifying into secondary vegetation. 

3) We then allocated the LUH2 ‘claims’ for the years 2015 and 2050 with the GLOBIO 4 allocation routine, using the map from step 2 

as initial land-use map.  

 

Step 2 | Differentiate cropland 

After allocation, we differentiate cropland intensities based on the amount of fertilizer: 

1)  We created a total fertilizer map layer (0.25 degree resolution; kg N per ha) as weighted average over the crop types: (fertl_c3ann * 

c3ann + fertl_c4ann * c4ann + fertl_c3per * c3per + fertl_c4per * c4per + fertl_c3nfx * c3nfx)/(c3ann + c4ann + c3per + c4per + 

c3nfx) 

2)  We classified intensity per cell: low intensity = 0–100 kg N-input/ha, medium intensity = 100–250 kg N-input/ha and high intensity = 

>250 kg N-input/ha (Temme and Verburg, 2011). 

3)  We combined the intensity layer with the map resulting from the discrete allocation to classify cropland based on intensity (post-

processing step).  

 

 
 

 
 

  

http://luh.umd.edu/data.shtml


 

 

Table S1: Sources and characterization of input data in BES-SIM. 

 

BES-SIM 

model 

Land-use data - re-categorization of LUH2 

land-use classes in the model 

Climate data - data sources with 

variables used in the model 

Other data   

Species-based models of biodiversity 

AIM-

biodiversity 

Cropland (c3ann, c4ann, c3per, c4per, c3nfx) 

Pasture (pastr) 

Built-up area (urban) 

Forest (primf, secdf) 

Other natural land (primn, secdn, range) 

ISIMIP2a (IPSL-CM5a-LR)  

- monthly mean maximum 

temperature, monthly mean 

minimum temperature,  

monthly precipitation   

Species occurrence records 

(GBIF) 

InSiGHTS Cropland (c3ann, c3per, c3nfx, c4ann, c4per) 
Forest (primf, secdf) 
Non-forest (primn, secdn, range) 
Pasture (pastr)  
Urban (urban) 

WorldClim v1  

- annual mean temperature, 

diurnal range (mean of monthly), 

isothermality, temperature 

seasonality, max temperature of 

warmest month, minimum 

temperature of coldest month, 

temperature annual range, mean 

temperature of wettest, driest, 

warmest quarter, and coldest 

quarters, annual precipitation, 

precipitation of wettest and driest 

months, seasonality, wettest, 

driest, warmest, and coldest 

quarters  

Global mammal habitat suitability 

models (Rondinini et al., 2011) 

Mammal range maps (IUCN) 

MOL Forest (primf, secdf)  

Grassland/shrubland/wetland (secdf, secdn) 

Rangeland (pastr, range) 

Urban (urban) 

Crops (c3ann, c3per, c3nfx, c4ann, c4per) 

WorldClim v2 (present), v1.4 

(future)  

- annual mean temperature, 

temperature seasonality, annual 

precipitation, precipitation 

seasonality, precipitation of driest 

quarter 

Expert maps (IUCN) 

Species land cover preferences 

drawn from the literature  

BIOMOD2 
 

CHELSA (1979-2013 for present, 

and 2041-2060, 2061-2080 for 

future)  

- annual mean temperature, 

annual temperature range, annual 

sum of precipitation and 

precipitation seasonality 

(coefficient of variation in 

monthly sum of precipitations)  

Expert maps for mammals and 

amphibians (IUCN) 

Bird data (Birdlife International)  

Community-based models of biodiversity 

cSAR-iDiv Primary vegetation (primf, primn   

Secondary vegetation (secdf, secdn)   

Pasture (pastr, range) 

Urban (urban)  

Cropland (c3ann, c4ann, c3nfx)  

Permanent (c3per, c4per) 

  Bird species occurrence data 

(Birdlife International) 

Coefficients for affinities 

(PREDICTS) 



 

BES-SIM 

model 

Land-use data - re-categorization of LUH2 

land-use classes in the model 

Climate data - data sources with 

variables used in the model 

Other data   

cSAR-

IIASA-ETH  

Urban (urban) 

Annual cropland (c3ann, c3nfx, c4ann) 

Perennial cropland (c3per, c4per) 

Pasture (pastr) 

Extensive forest (range, secdf, secdn) 

Pristine (primf, primn) 

   cSAR model parameters 

(Chaudhary et al. 2015; 

Frischknecht and Jolliet 2016) 

BILBI Primary vegetation (primf, primn) 

Mature secondary vegetation (secdf, secdn)  

if older than 50yrs 

Intermediate secondary vegetation (secdf, 

secdn) if 10-50 years old 

Young secondary vegetation (secdf, secdn)  

if younger than 10yrs 

Rangelands (range) 

Managed pasture (pastr)  

Urban (urban) 

Perennial croplands (c3per, c4per) 

Nitrogen-fixing croplands (c3nfx) 

Annual croplands (c3ann, c4ann) 

WorldClim v1.4 – BIO6 and 

BIO12 

Climate variables derived by 

integrating Worldclim monthly 

temperature and precipitation 

estimates with radiative 

adjustment for terrain, and with 

soil water-holding capacity 

(Ferrier et al., 2013): max 

temperature of warmest month, 

max diurnal temperature range, 

actual evaporation, potential 

evaporation, min monthly water 

deficit, max monthly water deficit  

Plant species occurrence records 

(GBIF) 

Soil attributes: pH, Clay %, 

Silt %, Bulk Density, Depth 

(Hengl et al., 2014) 

Terrain attributes: Ruggedness 

Index (G. Arnatulli, Yale 

University), Topographic 

Wetness Index (WorldGrids) 

MODIS Vegetation Continuous 

Fields (NASA) 

Global Human Settlement 

Population Grid 

Coefficients: impact of land use 

on local native-species richness 

(PREDICTS) 

PREDICTS Primary vegetation (primf, primn) 

Secondary vegetation (secdf, secdn - split into 

three age bands: Mature, Intermediate and 

Young) 

Managed pasture (pastr) 

Rangeland (range)  

Urban (urban)  

Annual (c3ann, c4ann) 

Nitrogen-fixing (c3nfx)  

Perennial (c3per, c4per)  

  PREDICTS database (Hudson et 

al., 2014) 

Human population density 

(GRUMP v1., HYDE (historical) 

and the corresponding SSPs as 

developed by Jones and O’Neill 

2016 (future projection)).  

Agricultural suitability (Zabel et 

al., 2014)  

GLOBIO - 

Aquatic 

Primary forest (primf)  

Primary other vegetation (primn)  

Secondary forest (secdf) 

Pastures (pastr)  

Rangelands (range)  

Cropland (c3ann, c4ann, c3nfx)   

Perennials (c3per, c4per)  

secdn   

urban   

IMAGE model (MAGICC 6.0)  

- daily precipitation and 

evaporation, monthly 

precipitation and evaporation. 

 

ISIMIP2a (IPSL-CM5a-LR) 

- water temperature  

River flow compared to natural 

river flow (global hydrological 

model: PCR-GLOBWB or LPJ) 

Water temperature (PCR-

GLOBWB model) 

Nutrient loads to aquatic systems 

(Global Nutrient Model) 

Drain direction network (Döll and 

Lehner, 2002) 

Global map of rivers, lakes and 

wetlands ((Lehner and Döll, 

2004) 

Lake depths (Kourzeneva, 2010) 

River dam database (Fekete et al., 

2010; Lehner et al., 2011) 

GLOBIO - 

Terrestrial 

GLOBIO downscaled LUH2 data  

(see Annex 1 in Supplementary Materials) 

IMAGE model (MAGICC 6.0)  

- global mean temperature 

increase (oC) 

Nitrogen deposition (IMAGE 

model)  

Roads (GRIP dataset, Meijer et 

al., 2018) 



 

BES-SIM 

model 

Land-use data - re-categorization of LUH2 

land-use classes in the model 

Climate data - data sources with 

variables used in the model 

Other data   

Settlements in tropical regions 

(Humanitarian Data Exchange, 

Open Street Map) 

Ecosystems-based model of biodiversity 

Madingley States 

Primary (primf, primn) 

Secondary (secdf, secdn) 

Grazing (pastr, range) 

Cropland (c3ann, c4ann, c3per, c4per, c3nfx) 

Urban (urban) 

  

Transitions 

Primary losses (all transitions beginning with 

primf or primn) 

Secondary losses (all transitions beginning 

with secdf or secdn) 

Secondary gains (all transitions ending with 

secdf or secdn) 

ISIMIP2a (IPSL-CM5a-LR) 

- temperature, precipitation 

Soil characteristics (Smith et al., 

2013) 

Modis Net Primary Productivity 

(NASA, 2012) 

Human Appropriation of Net 

Primary Productivity (Haberl et 

al., 2007) 

Human population densities 

(Jones and O’Neill, 2016; Klein 

Goldewijk et al., 2016)3 

Models of ecosystem functions and services  

LPJ-GUESS Primary natural vegetation (primf, primn)  

Secondary natural vegetation (secdf, secdn)  

Pasture (pastr, range) 

C3 crops (c3ann, c3per, c3nfx) 

C4 crops (c4ann, c4per) 

Urban (modelled as natural vegetation) 

ISIMIP2a (IPSL-CM5a-LR) 

- monthly min/max T, 

precipitation, shortwave radiation; 

atmospheric CO2, N-input, 

fractional land cover (crop 

irrigated yes/no, pasture, managed 

forest, natural) 

Crop irrigated and biofuel 

fraction (LUH2 dataset) 

Wood harvest estimate (LUH2 

dataset) 

Nitrogen deposition (Lamarque et 

al., 2011) 

LPJ Primary natural vegetation (primf, primn) 

Secondary natural vegetation (secdf, secdn)  

Pasture (pastr, range, c3ann, c3per, c3nfx, 

c4ann, c4per) 

urban (modelled as natural vegetation) 

ISIMIP2a (IPSL-CM5a-LR) 

- monthly T, precipitation, 

shortwave radiation or cloudiness; 

atmospheric CO2, fractional land 

cover (pasture, managed forest, 

natural) 

 

CABLE Primary natural vegetation (primf, primn) 

Secondary natural vegetation (secdf, secdn) 

Grass (pastr, range) 

Crops (c3ann, c3per, c3nfx, c4ann, c4per, 

c4nfx) 

ISIMIP2a (IPSL-CM5a-LR) 

- daily min/max T, precipitation, 

shortwave radiation, longwave 

radiation, humidity, windspeed, 

atmospheric CO2, N-deposition, 

land-use transitions (crop, 

pasture, secondary forest, natural) 

Wood harvest estimate (LUH2 

dataset)  

Nitrogen deposition (Lamarque et 

al., 2011) 

GLOBIO-

ES  

Primary forest (primf)  

Primary other vegetation (primn)  

Secondary forest (secdf) 

Pastures (pastr)  

Rangelands (range)  

Cropland (c3ann, c4ann, c3nfx)   

Perennials (c3per, c4per)  

secdn   

urban   

IMAGE model (MAGICC 6.0)  

- aggregated monthly 

precipitation, monthly wet day 

frequency 

Population size, GDP per capita, 

soil data, altitude range, slope 

(IMAGE model) 

Population density in river 

floodplains 

Water demand for electricity, 

industry and households (Bijl et 

al., 2016) 



 

BES-SIM 

model 

Land-use data - re-categorization of LUH2 

land-use classes in the model 

Climate data - data sources with 

variables used in the model 

Other data   

InVEST GLOBIO downscaled LUH2 data  

(see Annex 1 in Supplementary Materials) 

Nutrient delivery 

WorldClim v1.4  

- precipitation 

 

 

 

 

 

Coastal Vulnerability 

CMIP5 AOGCMs  

- sea level rise   

Nutrient delivery 

Digital elevation model (ASTER) 

Biophysical table (InVEST 

database) 

Rural population scenarios (Jones 

and O’Neill, 2016) 

Population raster (GPWv4, 2018) 

 

Coastal Vulnerability 

Natural Habitat polygons for 

mangrove, corals, and eel grass 

(WCMC) 

Continental Shelf polygon 

(COMARGE, Census of Marine 

Life) 

Digital elevation model (ASTER) 

Wind and wave exposure 

(WAVEWATCH III) 

Population raster (GPWv4 - 

2018) 

 

Pollination 

Yield raster for 115 crops 

(Monfreda et al., 2008) 

Nutrient content of 115 crops 

(table; USDA 2011) 

Pollination dependence of 115 

crops (Klein et al., 2007) 

Dietary requirements (Allen et al., 

2006; BNF, 2016) 

Demographic population data 

(GPWv4 Age Dataset – 2018) 

 

Crop production 

-Yield raster for 115 crops 

(Monfreda et al., 2008)  
GLOSP 12 original land states in LUH2 ISIMIP2a (IPSL-CM5a-LR) 

- precipitation  

Fractional vegetation cover 

(Filiponi et al., accepted) 

Topography (GMTED2010) 

Soil type and physical properties 

(Hengl et al., 2014) 

 

  



 

Table S2: Model description, modifications and assumptions made to published models in BES-SIM. 

 

BES-SIM model Description  

Species-based models of biodiversity 

AIM-biodiversity The AIM-biodiversity model (Ohashi et al., submitted) predicts potential shifts of suitable habitat of multiple 

species caused by the projected climate and land-use change, using the ISI-MIP climate and LUH2 land-use data. 

The model incorporates distribution of 9,025 species with ≥ 30 refined occurrence data in their native region, 

which has been assessed by the IUCN Red List. This includes species of the least concern in five major taxonomic 

groups: vascular plants, amphibians, reptiles, birds, and mammals. Native region of each species was specified by 

database of the IUCN Red List. The distribution of suitable habitat (land) is estimated from climate and land-use 

data at 0.5 arc degrees spatial resolution using a statistical model on the relationship between species occurrence 

and climate and land-use classes. This statistical model is calibrated by Maxent (Phillips et al., 2006) using the 

occurrence data from the Global Biodiversity Information Facility (GBIF), historical climate (WorldClim 

database) and land-use (Hasegawa et al., 2017) data for 2005. The bias of occurrence data is corrected using bias 

files for generating a set of background data for a target group of species (Phillips et al., 2009). The shifts in 

species suitable habitat in 2050 are projected under two common assumptions of dispersal: ’no’ (zero) and ‘full’ 

(unlimited and instantaneous) migration (Bateman et al., 2013; Midgley et al., 2006). For the past projections, it is 

assumed that in year 1900 species can distribute in all suitable habitats without any dispersal limitations.   

InSiGHTS The InSiGHTS model (Rondinini et al., 2011; Visconti et al., 2016) forecasts the Extent of Suitable Habitat (ESH) 

for vertebrates accounting for land and climate suitability, using global mammal habitat suitability models, IUCN 

range maps, Worldclim climate and LUH land-use data. Bioclimatic envelope models are fitted based on 

ecologically current reference bioclimatic variables (Visconti et al., 2016). Species’ presence records are obtained 

by regularly sampling within species’ ranges, excluding areas outside of known altitudinal limits. Species’ pseudo-

absence records are obtained by randomly sampling outside of species’ ranges, but within the biogeographic 

realms intersected by the species’ range. Presence and pseudo-absence sampling grids match in resolution. 

Forecasted layers of land use/land cover are reclassified according to expert-based species-specific suitability 

indexes, which identifies land-wise suitable cells or proportions thereof. The product of the two layers is 

multiplied by a layer of cell area (e.g., km²) to estimate species-specific cell-wise ESH. InSiGHTS index, which 

describes the proportional positive and negative contribution of the region (cell to global) to the species’ change in 

ESH compared to a reference year, is calculated. The improvements made to the model since last published 

methodology (Visconti et al., 2016) include increased number of modelled species and new scenarios used for 

climate and land use. For both future and past forecasts, the model limits calculations within the current (2011) 

species range due to the sparsity of historical data – an assumption that the species' ranges remain constant. 

InSiGHTS index (ii): 

 

 
 

E = ESH 

s = species 

r = observed region (from cells to global) 

R = set of all regions 

t = reference time (present) 

t’ = observed time (future or past)  
MOL The MOL model (Jetz et al., 2007; Merow et al., 2013) projected potential losses in species occurrences and 

geographic range sizes given changes in suitable conditions (climate only, land-cover only and climate and land-

cover), using Worldclim climate data IUCN expert maps, and species land cover preferences. Climatic niches were 

estimated using penalized Poisson point process models (similar to Maxent) by extracting presence from the 

expert maps on a quarter degree grid. Niche were projected under future scenarios and binary maps of predicted 

presence/absence were obtained. These binary values were then rescaled by the proportion of each cell consisting 

of habitat where the species in known to occur, leading to maps of the proportion of each cell that is suitable 

habitat. Species-level losses were aggregated to inform regional trends. For all three projection types – climate 

only, land-cover only and climate and land-cover – changes in individual species range size and range location 



 

BES-SIM model Description  

were assessed and summarized for different taxonomic and geographic groupings. Species Habitat Index and Red 

List Index may be projected with modelled results. All modelling was performed as part of a multispecies 

workflow that automates production and quality control for range models.  

BIOMOD2 The BIOMOD2 model (Thuiller, 2004; Thuiller et al., 2009, 2011) is an R-package that allows running up to nine 

different algorithms of species distribution models using the same data and the same framework. An ensemble is 

produced to allow for a full treatment of uncertainties given data, algorithms, climate models and climate 

scenarios. Based on the species distribution models that link observed or known presence-absence data to 

environmental variables (e.g. climate), each model is cross-validated several times (a random subset of 70% of 

data is used for model calibration while 30% is held out for model evaluation). Models are evaluated using various 

metrics, and produce indicators including change in species range, species loss and gain per pixel, species 

turnover, functional and phylogenetic diversity.    

Community-based models of biodiversity 

cSAR-iDiv The cSAR-iDiv (Martins and Pereira, 2017; Pereira and Daily, 2006) model assesses the response of biodiversity 

to land-use change, using LUH2 land use, Birdlife species occurrence and PREDICTS affinities data. It accounts 

for the persistence of species in human-modified habitats and for the differential use of habitats by species. The 

model allows to assess the impact of changes in species richness across scenarios of land use in the countryside 

SAR, the richness of each functional species group i, Si, is given by a function of the area of each habitat j, Aj , in 

the landscape,      

𝑆𝑖 =  𝑐𝑖 (∑ ℎ𝑖𝑗𝐴𝑗

𝑛

𝑗=1

)

𝑧

 

 

where n is the number of modified habitats types, hij is the affinity of species group i to habitat j and Aj is the area 

cover by habitat j. The parameters c and z are constants that depend on the taxonomic group and sampling scheme 

respectively, and will be species group dependent. Species are classified in functional species groups sharing 

similar habitat preferences using the Birdlife dataset. The hij, reflecting the relative affinity of a functional species 

group i to a modified habitat type j compared to its natural habitat are derived from the PREDICTS dataset. The 

model calculates the proportion of species of each functional group between two time periods, then multiplies the 

trend by the actual number of species of the functional group (i.e. as reported by Birdlife) in each sampling unit. 

Using this approach, the model estimates the trends of local (i.e., grid cells), regional and global species richness 

of the two functional groups of bird species - forest and non-forest. The improvements made since last published 

methodology include the use of high-resolution land-use dataset and affinities calculated from the PREDICTS 

dataset, and application of two functional groups across scales based on habitat types (land classification). For the 

past projections, the model is applied starting from 1900 with an assumption that the number of species currently 

present in different areas/sampling units (IUCN/Birdlife data) corresponds to the number of species at the starting 

point.  

cSAR-IIASA-

ETH 

The IIASA-ETH cSAR model is based on a countryside Species Area Relationship (cSAR) type of model and 

estimates the impact of time series of spatially explicit land-use and land-cover transitions on community-level 

measures of terrestrial biodiversity on five taxa (amphibians, birds, mammals, reptiles and plants). It uses LUH2 

data and the initial species richness and cSAR model parameters from Chaudhary et al. (2015) and Frischknecht 

and Jolliet (2016). Regional species loss is weighted by the fraction of range area of all species in every ecoregion 

and IUCN threat level, to derive an estimate of global extinctions. 

The original approach of Chaudhary et al. (2015) is not tailored for estimating long-term and large land-use 

changes because i) it is a linear approximation (contingent to the current land-use patterns) of a non-linear 

relationship, and ii) although it incorporates a measure of the length of recovery, the approach is not designed to 

look at the dynamics of LULCC towards a more biodiversity-friendly state. Instead, in the IIASA-ETH-cSAR 

model the biodiversity impacts of land-use change is estimated directly from the cSAR formula (cSAR 

relationship and parameters for the model) and applied to the land-use shares for the various LULC classes 

considered (their affinity values are derived directly for the local characterization factor database based on field 

records). The link between LULCC and habitat is more detailed by taking the gross transitions directly as input 
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between LULC classes (instead of net state changes, which ignores the land-use history). The model also accounts 

for the time dynamics with which a transition generates biodiversity outcomes where the affinity of species for a 

converted LULC class forgets its origin that is specific to each pair of LULC class. It is typically quick (i.e., lower 

than one time step) for biodiversity-unfavourable LULC transitions, and long (typically several decades) for 

biodiversity-favourable LULC transitions. The model is run from 1500 onwards – from the past to into the future – 

with initial land-use states in year from LUH2 dataset and cumulated transitions from one time step to another.  

BILBI This modelling framework (Hoskins et al., in prep.) couples application of the species-area relationship (SAR) 

with correlative statistical modelling of continuous patterns of turnover in the species composition of communities 

as a function of environmental variation (Ferrier et al., 2004, 2007). 

Generalised dissimilarity modelling (Ferrier et al., 2007) is used to fit models of spatial turnover in vascular-plant 

composition, based on 52,489,096 occurrence records for 254,145 plant species, extracted from GBIF, and 

environmental layers covering the entire land surface of the planet at 30-second (~1km) grid-resolution (including 

climate layers derived from WorldClim; see Table S1). A separate GDM is fitted for each of 61 bio-realms from 

WWF’s ecoregionalisation. In a few cases, data from neighbouring or ecologically-related bio-realms are used to 

supplement the dataset employed in fitting GDMs for more poorly sampled bio-realms. To accommodate the 

‘presence-only’ nature of much of the biological data assembled from GBIF, GDMs are fitted to observed matches 

and mismatches in species identity between pairs of individual occurrence records. The modelled probability of a 

mismatch in species identity is then transformed into the expected compositional similarity between any two cells. 

Using the approach employed by Blois et al., (2013), Ferrier et al. (2012), Fitzpatrick et al. (2011), Mokany et al. 

(2012), Prober et al. (2012) and William et al. (2015), space-for-time substitution is applied to the fitted GDMs to 

project temporal turnover in species composition expected as a result of any given climate scenario based on 

temperature and precipitation projections for 2050, downscaled by WorldClim. Given that the ‘current climate’ 

surfaces from WorldClim, used to fit the GDMs, are averaged over the period 1960-1990, the analysis is 

effectively projecting the temporal turnover in species composition expected between 1975 (midway between 

1960 and 1990) and 2050. This approach allows estimation of temporal turnover for a single location or of spatial-

temporal turnover between two different locations. 

Estimates of the proportional coverage in 2015 of 12 land-use classes within each terrestrial 0.25 degree grid-cell 

on the planet, from the LUH2, are statistically downscaled to 30-second grid resolution using the approach 

described by Hoskins et al. (2016) incorporating MODIS Vegetation Continuous Fields, and the Global Human 

Settlement Population Grid, as additional covariates. Downscaled land use in 2015 is then translated into ‘habitat 

condition’ for biodiversity using coefficients fitted in hierarchical mixed-effect modelling undertaken by the 

PREDICTS project. These coefficients estimate the proportion of local native species richness expected for 

different land-use classes. This modelling employed the approach described by Newbold et al. (2016b)  but with 

models refitted using the 12 LUH2 land-use classes. Change in habitat condition at 30-second grid resolution is 

projected for any given LUH2 land-use scenario using a simple delta-downscaling approach of applying the 

proportional change in habitat condition between 2015 and 2050 to the downscaled 2015 condition values for all 

30-second cells within each 0.25 degree cell.    

The GDM-based modelling of temporal turnover in species composition for the climate scenario of interest, and 

downscaled habitat condition for the land-use scenario of interest, are used in combination to estimate the 

proportion of plant species expected to persist over the longer term (i.e. the complement of the proportion of 

species committed to extinction) employing the SAR. This particular SAR-based approach, as applied recently in 

two major projects within Australia – the Australian National Outlook (Bryan et al., 2014; Hatfield-Dodds et al., 

2015; Brinsmead et al., 2017) and AdaptNRM (Prober et al., 2015) – is an extension of that described originally 

by Allnutt et al. (2008) and Ferrier et al. (2004). In contrast to more traditional applications of the SAR to 

estimating levels of species persistence, which work with discrete environmental classes or ecosystem types, this 

approach views grid-cells as sitting within a continuum of spatial and temporal turnover in biodiversity 

composition (Allnutt et al., 2008; Ferrier et al., 2004). 

The proportion of plant species originally associated with cell i which are expected to persist over the longer term, 

anywhere in their range, as a consequence of a given combination of climate and land-use scenarios is calculated 

as:    
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𝑝𝑖 = [
∑ 𝑠𝑖𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑗𝑓𝑢𝑡𝑢𝑟𝑒

𝑐𝑗𝑓𝑢𝑡𝑢𝑟𝑒

𝑛
𝑗=1

∑ 𝑠𝑖𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑗𝑝𝑟𝑒𝑠𝑒𝑛𝑡
𝑛
𝑗=1

]

𝑧

 

where: 

n = total number of cells on the planet 

𝑠𝑖𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑗𝑝𝑟𝑒𝑠𝑒𝑛𝑡
 = similarity between cells i and j in the present 

𝑠𝑖𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑗𝑓𝑢𝑡𝑢𝑟𝑒
 = similarity between cell i in the present and cell j in the future   

𝑐𝑗𝑓𝑢𝑡𝑢𝑟𝑒
= condition of habitat in cell j in the future 

z = SAR exponent (set to 0.25 for the current study)  

 

The proportion of species originally associated with any specified region (reporting unit) expected to persist can 

then be calculated as a weighted geometric mean of the values for all individual cells in that region: 

𝑝𝑟𝑒𝑔𝑖𝑜𝑛 =
∑ 𝑝𝑖𝑤𝑖

𝑚
𝑖=1

∑ 𝑤𝑖
𝑚
𝑖=1

 

where: 

m = total number of cells in the region (reporting unit) of interest 

 

The weights employed are: 

𝑤𝑖 =
1

∑ 𝑠𝑖𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑗𝑝𝑟𝑒𝑠𝑒𝑛𝑡
𝑛
𝑗=1

 

where: 

n = total number of cells on the planet  
PREDICTS The PREDICTS model (Newbold et al., 2015, 2016b) estimates how four measures of site-level terrestrial 

biodiversity – overall abundance, within-sample species richness, abundance-based compositional similarity and 

richness-based compositional similarity – respond to land-use and related pressures. These models are combined 

with global data on past, present or future states of the pressures used in modelling, to make global projections of 

each variable for each desired time point. The modelling uses data from 767 studies, each of which surveyed 

multiple sites that faced differing land-use and related pressures, for which version 1 has been published (Hudson 

et al., 2017), with now more data available from over 32,000 sites and over 51,000 species, which is reasonably 

representative across different biomes and major animal, plant and fungal taxa. Models also use human population 

density (HYDE, GRUMP v1, Jones and O’Neill, 2016) and LUH2 land-use data. In addition to the LUH2 land-use 

data, the PREDICTS model uses secondary vegetation age and use intensity classes. Fractional distribution of 

secondary vegetation age was compiled for each grid cell by tracking conversions using LUH2 transitions data. 

Secondary vegetation was classified into young, intermediate and mature using the following thresholds:  <30y = 

young, 30y>50y=intermediate, >50y= mature.  Use intensity was classified as Minimal, Light or Intense using 

Global Land Systems data as in Newbold et al. (2015). 

Linear mixed-effects models (with study- and block-level random effects to accommodate the heterogeneity in the 

data, and site-level random effects to account for over-dispersion in species richness models) are used to estimate 

how local (alpha) diversity is affected by land use, land-use intensity and human population density. Model 

coefficients are combined with maps of the pressure data to make global projections of the estimated values of the 

response variables. These projections are then combined to yield the variants of the Biodiversity Intactness Index 

(BII) shown in Newbold et al. (2016; see Scholes and Biggs, 2005 for the original development of BII).  

Since last published model, sites in the PREDICTS database were re-curated to incorporate the land-use classes 

present in LUH2 but not used by Hurtt et al. (2011 Climatic Change), i.e., the refinement of agricultural classes. 

When modelling abundance, the abundance data were rescaled within each study such that the maximum 

abundance was the same within each study; this assists with model convergence. The compositional similarity 

models use the data more fully than previously: whereas previously independent pairwise comparisons were made 

between sites, the models here are based on the full matrix of pairwise comparisons between sites. This full-matrix 

approach allows incorporation of human population density in addition to land use (the only pressure variable 

previously analysed in our models of compositional similarity: (Newbold et al., 2016b, 2016a). Whereas our 
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previous models of compositional similarity used all primary vegetation sites as the baseline condition, expansion 

of the database has allowed us to restrict the baseline to minimally-used primary vegetation. Previously, human 

population density (ln(x+1)-transformed) was fitted as a quadratic term in models of abundance and richness but 

omitted from models of compositional similarity; here we have treated it as a linear term in all models to improve 

consistency. The study-level mean of ln(human population density + 1) was also added as a control variable into 

the models of abundance and species-richness, to avoid possible artefacts that could otherwise arise if studies in 

more densely-populated areas sample more intensively. Agricultural suitability (Zabel et al., 2014) was also used 

as a control variable (Gray et al., 2016). These control variables are used as additive terms in modelling but not 

projections. Our previous models of abundance and richness considered proximity to roads as a pressure, but we 

have omitted roads from these models because of the lack of future and historical estimates; land use, land-use 

intensity and human population density – all somewhat correlated with proximity to roads – have the potential to 

explain some of the variance previously explained by roads.  

PREDICTS also modelled species richness as a function of land use, in order to provide habitat coefficient 

estimates to other models in BES-SIM. Separate models were run for areas that would naturally be forested and 

non-forested (data subset using LUH2/fstnf). Human population density was omitted from the model; otherwise, 

model structure matched that outlined above. 

GLOBIO-Aquatic The GLOBIO-Aquatic model (Janse et al., 2015) quantifies the impacts of multiple anthropogenic pressures in the 

past, present and future on freshwater biodiversity and its ecosystem services, using climate (IMAGE model), land 

use (GLOBIO model), river flow (PCR-GLOBWB or LPJ model), water template (PCR-GLOBWB model), 

nutrient loads to aquatic systems (Global Nutrient Model), global map of rivers, lakes and wetlands (GLWD), and 

river dam database. The drivers included are land use, eutrophication, climate change and hydrological 

disturbance. The model comprises a set of mostly correlative relationships between anthropogenic drivers and 

biodiversity and ecosystem services of rivers, lakes and wetlands. The model produces biodiversity intactness 

indicator – Mean Species Abundance (MSA) – of lakes, rivers and wetlands as well as the probability of harmful 

algal blooms as an indicator for freshwater provisioning services.  

GLOBIO-

Terrestrial 

The GLOBIO model for terrestrial biodiversity (Alkemade et al., 2009) quantifies the impacts of multiple 

anthropogenic pressures on local biodiversity based on the mean species abundance (MSA) metric. MSA 

represents the mean abundance of original species in relation to a particular pressure as compared to the mean 

abundance in an undisturbed reference situation. MSA’s responses to a particular pressure are quantified based on 

a meta-analysis of biodiversity monitoring data reported in the literature, whereby abundance ratios of individual 

species are calculated as Aimpacted/Areference for Aimpacted < Areference and Aimpacted/Areference = 1 for Aimpacted > Areference. 

Changes in biodiversity are quantified by combining georeferenced layers of the pressure variables with the MSA 

response relationships.  Next, the maps with the MSA values per pressure are combined to arrive at an overall 

MSA. If a particular pressure is assumed to be dominant, the combined impact (MSA) is assumed equal to the 

impact (MSA) of this dominant pressure. If pressures act independently, the overall MSA value is calculated by 

multiplying the MSA values corresponding with the individual pressures.  

Five pressures are currently included (climate change, land use, roads, atmospheric nitrogen deposition and 

encroachment/hunting). Climate change, nitrogen deposition, and land-use data are derived from the IMAGE 

model (Stehfest et al., 2014). Land-use data from IMAGE are downscaled to a higher spatial resolution with the 

GLOBIO land allocation routine. Roads data are taken from the global road inventory project (GRIP) database 

(Meijer et al., submitted). Settlement data (required to calculate hunting impacts) are retrieved from multiple open-

source datasets, including Open Street Map and Humanitarian Data Exchange. 

Improvements made to the model since the last published methodology include a new high-resolution, discrete 

land-use allocation routine and improved response relationships for encroachment/hunting (Benítez-López et al., 

2017). 

Ecosystems-based model of biodiversity 
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Madingley The Madingley Model (Harfoot et al., 2014) is a mechanistic, or process-based, model of whole ecosystems 

developed to synthesize and advance our understanding of ecology, and to enable mechanistic prediction of the 

structure and function of whole ecosystems at various levels of organisation, whether on land or in water. Using 

data from ISI-MIP, soil characteristics (Smith et al., 2013), Modis Net Primary Productivity (NASA, 2012), 

Human Appropriation of Net Primary Productivity (Haberl et al., 2007), and LUH2 (land use), Madingley 

simulates the dynamics of autotrophs, and all heterotrophs with body masses above 10 μg that feed on living 

organisms. In the model, organisms are not characterised by species identity but grouped according to a set of 

categorical functional traits, which determine the types of ecological interactions that modelled organisms are 

involved in whilst a set of continuous traits determine the rates of each process. Plants are represented by stocks, 

or pools, of biomass modelled using a terrestrial carbon model. Biomass is added to the stocks though the process 

of primary production, the seasonality of which is calculated using remotely sensed Net Primary Productivity 

(Harfoot et al., 2014). This production is allocated to above-ground/below-ground, structural/non-structural, 

evergreen/deciduous components and Madingley assumes that above-ground, non-structural matter is available for 

heterotrophic organisms to consume. Biomass is lost from plant stocks through mortality from fire and senescence, 

as well as through herbivory. Production, allocation and mortality in the plant model are all determined by 

environmental conditions (temperature, number of frost days, precipitation and the available water capacity of 

soils).  

Heterotrophic animals are represented as agents, termed cohorts, which are collections of individual organisms 

occurring in the same modelled grid cell with identical categorical and continuous functional traits. This approach 

enables the model to predict emergent ecosystem properties at organisational scales from individuals to the whole 

ecosystem. Heterotroph dynamics result from five ecological processes: metabolism, eating, reproduction, 

mortality and dispersal. Predator-prey interactions (including herbivory) are based on a Holling’s Type III 

functional response (Denno et al., 2012), and for predation on a size-based model of predator-prey feeding 

preferences (Williams et al., 2010). Metabolism is based on empirical relationships between energy consumption 

and ambient temperature taking into account the body mass of the organism (Brown et al., 2004). Endotherms are 

assumed in the model to thermoregulate perfectly, and thus are active for 100% of each time step. Ectotherms in 

the model do not thermoregulate, and thus are only active for the proportion of each time step during which 

ambient temperature was within their upper and lower activity temperature limits, estimated following (Deutsch et 

al., 2008). Reproduction can occur once a cohort has achieved its adult body mass and results from the allocation 

of surplus mass to reproductive potential followed by reproductive events once a threshold ratio of reproductive 

potential to adult body mass is reached (Harfoot et al., 2014). Mortality (in addition to predation mortality) arises 

from three causes: a constant background rate, starvation if insufficient food is obtained, and senescence, which 

increases exponentially after maturity with a functional form similar to the Gompertz model (Pletcher, 1999). 

Dispersal in the terrestrial realm is either random diffusive dispersal of juvenile organisms or directed dispersal of 

organisms in response to starvation or low densities of individuals (Harfoot et al., 2014). 

The model produces total biomass and abundance of above ground heterotrophs, total biomass of autotrophs, total 

biomass and abundance of functional groups (trophic levels, metabolic pathways, reproductive strategies), trophic 

and food web structure, biomass structure, age structure, functional diversity (richness, evenness, divergence), 

functional dissimilarity, net secondary productivity, biomass turnover rates, herbivory, predation, mortality and 

reproduction rates. The improvements made to the model since last published methodology include incorporation 

of temporally changing climate as well as natural and human impacted plant stocks to better represent the LUH2 

land-use projections and calculation of functional diversity and functional dissimilarity to represent community 

changes. 

To make historical reconstructions back to 1900 we first run an ensemble of six simulations from pseudo-random 

initial conditions for 100 years until it reaches quasi steady state for the year 1901. This spin up used land use and 

HANPP for 1901, and 100 years of climate randomly recycled from the years 1951 to 1960 of the ISI-MIP IPSL 

climate reconstruction. The quasi-steady state conditions from these simulations were then ran forward to 2005 

using the time series of land-use change, climate change (where the period 1901 – 1950 was constructed using 

randomly recycled years from 1950 – 1961) and HANPP. 

  
Models of ecosystem functions and services  

LPJ-GUESS The LPJ-GUESS model (Lindeskog et al., 2013; Olin et al., 2015; Smith et al., 2014) is a “demography enabled” 

dynamic global vegetation model using historical and future climate, CO2, nitrogen deposition and fertilizer, land 
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cover change, irrigated fraction, and wood harvest estimate data. The model computes vegetation and soil state 

and function, and distribution of vegetation units dynamically in space and time in response to climate change, 

land-use change, atmospheric CO2, and N-input. It combines an individual- and patch-based representation of 

vegetation dynamics with ecosystem biogeochemical cycling from regional to global scales. In LPJ-GUESS, the 

dynamics of vegetation result from growth and competition for space, light, and soil resources from herbaceous 

understorey and woody plant individuals in each patch replicated for each simulated grid cell. The suite of 

simulated patches represents the distribution within a landscape representative of the grid cell as a whole of 

vegetation stands with different histories of disturbance and stand development (succession). Individuals for 

woody plant functional types (PFTs; trees and shrubs) are identical within a cohort (age/size class) and patch. 

Photosynthesis, respiration, stomatal conductance and phenology (leaves and fine roots turnover) are simulated on 

a daily time step. The net primary production (NPP) accrued at the end of each simulation year is allocated to 

leaves, fine roots and, for woody PFTs, sapwood, following a set of prescribed allometric relationships for each 

PFT, resulting in diameter, height, and biomass growth. Population dynamics (establishment and mortality) are 

represented as stochastic processes, influenced by current resource status, demography and the life-history 

characteristics of each PFT (text from Smith et al., 2014). The modelled outputs include carbon pools in 

vegetation, soil, gross primary productivity, heterotrophic respiration, net primary productivity, runoff, leaf area 

index, crop yields, area burnt, fire emissions, carbon to nitrogen ratios, and nitrogen loss. The improvements made 

since last published methodology include an upgrade in the fire model and accounting for wood harvest. To 

provide climate input before 1951 random years out of the period 1951 to 1960 are chosen to generate/recycle the 

climate data for years 1901 to 1950. 

LPJ LPJ is a big leaf model (Poulter et al., 2011) that simulates the coupled dynamics of biogeography, 

biogeochemistry and hydrology under varying climate, atmospheric CO2 concentrations, and land-use land-cover 

change practices, using historical and future climate, CO2 level, land cover change transitions, and wood harvest 

estimate data. LPJ represents demography of grasses and trees in a simplistic manner, where a ‘representative 

individual’ is used to scale from individuals to landscapes. Physiological processes are applied to the 

representative individual and integrated over the landscape, i.e., a grid cell, based on the density of individuals. 

Land cover change includes explicit representation of deforestation and reforestation, as well as harvesting of 

managed grasslands. Natural fires are included. The LPJ model has a hierarchical representation of the land 

surface where within a grid cell, tiles represent primary forest, secondary forest, and managed lands (crops or 

pasture), and within a tile are either plant functional types (PFTs) or crop functional types (CFTs). On an annual 

time step, establishment, mortality, fire, carbon allocation, and land cover change are implemented, and on a daily 

time step, photosynthesis, autotrophic respiration, and heterotrophic respiration are calculated. The carbon cycle is 

coupled to the hydrologic cycle via stomata, which must be open to assimilate atmospheric CO2 but 

simultaneously lose water. Stomatal conductance is determined as the minimum between potential 

evapotranspiration (demand) and soil plant water availability (supply). Photosynthesis and radiation follows the 

Farquhar biochemical model and distributes photosynthetic active radiation vertically through the canopy 

following Beer’s Law. The LPJ model is fully prognostic, meaning that PFT distributions, phenology, and carbon 

dynamics are simulated based on physical principles within a numerical framework. The typical variables of 

model outputs are (either per grid cell simulated, or per PFT): C pools in veg., soil, GPP, heterotrophic respiration, 

NPP, runoff, LAI, crop yields, area burnt, and fire emissions. The land cover change and land-use transitions have 

been upgraded to include the dynamics from the Land Use Harmonization product by George Hurtt and Louise 

Chini. This development means that LPJ represents the full set of states and transitions represented in LUH v2 and 

has an improved estimate of carbon fluxes from land-cover change. The model is spun up to pre-industrial 

equilibrium conditions by using an atmospheric CO2 concentration of 280 ppm and recycling the first thirty years 

of meteorological data (1901-1930) for 1000 years. 

CABLE CABLE is a “demography enabled” global terrestrial biosphere model (Haverd et al., 2017) that computes 

vegetation and soil state and function dynamically in space and time in response to climate change, land-use 

change and N-input, using historical and future daily climate data downscaled to 3-hourly, annual CO2 levels in 

the atmosphere, N-deposition, land-cover change, irrigated faction, and wood harvest area. It combines a patch-

based representation of vegetation structural dynamics with ecosystem biogeochemical cycling from regional to 

global scales. CABLE consists of a ‘biophysical’ core, the CASA-CNP ‘biogeochemistry’ module (Wang et al., 

2010) and the POP module for woody demography and disturbance-mediated landscape heterogeneity. The 

biophysical core (sub-diurnal time-step) consists of four components: (1) the radiation module describes radiation 
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transfer and absorption by sunlit and shaded leaves; (2) the canopy micrometeorology module describes the 

surface roughness length, zero-plane displacement height, and aerodynamic conductance from the reference height 

to the air within canopy or to the soil surface; (3) the canopy module includes the coupled energy balance, 

transpiration, stomatal conductance and photosynthesis and respiration of sunlit and shaded leaves; (4) the soil 

module describes heat and water fluxes within soil (6 vertical layers) and snow (up to 3 vertical layers) and at their 

respective surfaces. The CASA-CNP biogeochemistry module (daily time-step) inherits daily net photosynthesis 

from the biophysical code, calculates autotrophic respiration, allocates the resulting net primary production (NPP) 

to leaves, stems and fine roots, and transfers carbon, nitrogen and phosphorous between plant, litter and soil pools, 

accounting for losses of each to the atmosphere and by leaching. POP (annual time-step) inherits annual stem NPP 

from CASA-CNP, and simulates patch-scale woody ecosystem stand dynamics, demography and disturbance-

mediated heterogeneity, returning the emergent rate of biomass turnover to CASA-CNP. The model outputs C 

pools in veg., soil, GPP, heterotrophic respiration, NPP, runoff, LAI, combined crop and pasture yields, wood 

harvest, C:N ratios, either per grid cell simulated, or per PFT. 

The land-use and land-cover change module, driven by gross land-use transitions and wood harvest area extend 

the applicability of CABLE for regional and global carbon-climate simulations, accounting for vegetation response 

of both biophysical and anthropogenic forcing. Land-use transitions and harvest associated with secondary forest 

tiles modify the annually-resolved patch age distribution within secondary-vegetated tiles, in turn affecting 

biomass accumulation and turnover rates and hence the magnitude of the secondary forest sink.  

CABLE incorporates a novel approach to constraining modelled GPP to be consistent with the Co-ordination 

Hypothesis, predicted by evolutionary theory, which suggests that electron transport and Rubisco-limited rates 

adjust seasonally and across biomes to be co-limiting.  

GLOBIO-ES  The GLOBIO-ES model (Alkemade et al., 2014; Schulp et al., 2012) simulate the influence of various 

anthropogenic drivers on ecosystem functions and services at the global scale in past, present and future 

environments using model outcomes of the IMAGE model on food production, livestock production, carbon 

balance, land use, and climate (Stehfest et al., 2014), in combination with data on GDP per capita, protected area 

maps and infrastructure. For ecosystem services related to water, water flow regimes are derived from the PCR-

GLOBWB model, and nutrient loading is derived from the IMAGE framework model Global Nutrient Model (see 

also section on GLOBIO-Aquatic). The model transfers IMAGE model outcomes into a supply – demand concept 

of ecosystem services and uses causal relationships between environmental variables and ecosystem functions and 

services (definitions according the cascade model by Haines-Young and Potschin (2010) based on literature 

reviews). The model quantifies a range of provisioning services (e.g. crop production, grass and fodder production, 

wild food, water availability), regulating services (e.g. pest control, pollination, erosion risk reduction, carbon 

sequestration, food risk reduction, harmful algal blooms), and culture services (e.g. nature based tourism) These 

relationships describe how ecosystem services respond to changing environments. The improvements made since 

last published methodology include updated relationships between land use and the presence of pollinators and 

predators using additional peer review papers. 

InVEST Nutrient Delivery Ratio 

The InVEST nutrient delivery ratio model (Redhead et al., 2018) maps nutrient sources from watersheds and their 

transport to the stream using digital elevation model, land-use land-cover data, nutrient runoff proxy, watersheds 

layer, and biophysical table. This spatial information can be used to assess the service of nutrient retention by 

natural vegetation. The retention service is of particular interest for surface water quality issues and can be valued 

in economic or social terms (e.g. avoided treatment costs, improved water security through access to clean 

drinking water). The model uses a mass balance approach, describing the movement of mass of nutrient through 

space. Unlike more sophisticated nutrient models, the model does not represent the details of the nutrient cycle but 

rather represents the long-term, steady-state flow of nutrients through empirical relationships. Sources of nutrient 

across the landscape, also called nutrient loads, are determined based on the LULC map and associated loading 

rates. In a second step, delivery factors are computed for each pixel based on the properties of pixels belonging to 

the same flow path (in particular their slope and retention efficiency of the land use). At the 

watershed/subwatershed outlet, the nutrient export is computed as the sum of the pixel-level contributions. The 

model outputs total nutrient loads (sources) in the watershed and total nutrient exports from the water shed at the 

pixel level. Improvements were made to the model to accept load as a raster for certain LULC classes (agriculture) 



 

BES-SIM model Description  

instead of a table value. This was so we could utilize the fertilizer application rates in the management files for 

each SSP. The nitrogen retention is connected to people by multiplying the per-hectare export by the rural 

population density in the watershed as a weighting factor of the degree to which water quality impacts rural people 

(who are typically more vulnerable to declines in water quality because they have fewer or no water treatment 

options). The model generates its own watersheds (hydrologically complete watersheds that drain to the sea) and 

added a pit-filling algorithm for DEMs to allow for global routing. A function is added to allow for “continuous” 

streams, meaning a single pixel (of resolution 300 m) doesn’t have to be classified as entirely stream, but can be a 

value between 0-1, indicating the proportion of the pixel that the stream occupies. 

Costal Vulnerability 

The InVEST Coastal Vulnerability model (Arkema et al., 2013; Guannel et al., 2016) produces a qualitative index 

of coastal exposure to erosion and inundation as well as a map of the location and size of human settlements. The 

model creates the exposure index and coastal population maps using a spatial representation (raster) of population 

and spatial representations (shapefiles and rasters) of seven bio-geophysical variables (geomorphology, relief, 

natural habitats (biotic and abiotic), net sea level change, wind exposure, wave exposure, surge potential depth 

contour) and outputs point shapefile with fields representing base risk, and risk without habitat. The software 

model was refactored to optimize runtime and memory usage so it was computationally feasible to model global 

runs. 

Pollination 

The InVEST Pollination model (Chaplin-Kramer et al., 2014) maps pollination contribution to nutrition based on 

pollinator-dependent nutrient production, and the dependence of that production on natural habitat around 

farmland. This nutrition production provided by wild pollinators is then translated to potential number of people 

fed based on dietary requirements. Pollination sufficiency is based on the area of pollinator habitat around 

farmland. Agricultural pixels with >30% natural habitat in the 2 km area surrounding the farm are designated as 

receiving sufficient pollination for pollinator-dependent yields. Pollination-dependence of crops, crop yields, and 

crop micronutrient content are combined to calculate pollination-dependent nutrient production. Nutrition 

provided by wild pollinators on each pixel of agricultural land is then calculated according to pollination habitat 

sufficiency and the pollination-dependent nutrient yields. The model uses yield maps for 115 crops (raster; 

Monfreda et al., 2008), nutrient content of 115 crops (table; USDA 2011), pollination dependence of 115 crops 

(raster; Klein et al., 2007), land use (raster; GLOBIO downscaled from LUH2), dietary requirements (WHO), 

demographic data (GPW4 Age Dataset – 2018), and outputs pollination sufficiency (proportion of agricultural 

land in a grid cell receiving pollination services sufficient for attaining full pollination-dependent yields), 

pollination service - nutrient (production of macro/micronutrient per grid cell), people fed - nutrient (potential 

number of people whose annual dietary requirements are met by nutrition provided by wild pollination), self-

sufficiency – nutrient (proportion of nutrition needs of population in a grid cell met by nutrition provided wild 

pollination in that grid cell). The approach for pollination-dependent nutrient production outlined in Chaplin-

Kramer et al. (2014) was extended to include pollination habitat sufficiency.   

Crop Production 

The crop-production model is based closely on the InVEST Crop Production model (Mueller et al., 2012) with 

calculation methods for nutritional content from Johnson et al., 2014, 2016. The model was modified by 

aggregating 175 crops (raster; Monfreda et al., 2008) to the 5 crop-types in LUH2: C3 annual, C3 perennial, C4 

annual, C4 perennial and N-fixing crops. Each crop type in the LUH2 states data was resampled (bilinear) to a 5 

arc-minute grid-cell to match yield data. Caloric production per hectare on each current and future landscape for 

each crop type is calculated by aggregating yield data and multiplying it by the proportional extent of the 5 arc-

minute grid-cell in each crop-type. To identify crop-type yield for cropland expansion that occurred outside of 

existing cropland extent (and therefore did not have observed yields available), we used the yield-gap method in 

(Mueller et al., 2012) to identify the 50th-percentile yield for the grid-cell based on its climate bin (defined with 

growing-degree days and precipitation). The indicator we report does not include increases in per-area crop yield 

(e.g. from technological change) and instead isolates simply the increase in food security/food production from 

changes in cropland extent under the different scenarios. Yield was expressed in terms of caloric content based on 
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aggregated-versions of the food balance sheets of the Food and Agriculture Organization of the United Nations 

FAOSTAT database. 

GLOSP GLOSP (Guerra et al., 2016) is a 2D soil erosion model based on the Universal Soil Loss Equation, using climate, 

land use, vegetation cover, topography, and soil data to estimate global and local soil erosion and protection 

indicators. Protected soil (Ps) is defined as the amount of soil that is prevented from being eroded (water erosion) 

by the mitigating effect of available vegetation. Ps is calculated from the difference between soil erosion (Se) and 

potential soil erosion (Pse) [Ps = Pse-Se]. Pse is calculated by the integration of the joint effect of slope length, 

rainfall erosivity, and soil erodibility. Se is calculated by multiplying Pse by the fractional vegetation cover (0 ≤ 

Fcover ≤ 1). Here soil protection is given by the value of fractional vegetation cover calculated as a function of 

land use, altitude, precipitation, and soil properties. Global fractional vegetation cover is originally calculated 

based on a multiple endmembers method described in Filiponi et al. (accepted). This is then resampled to 0.25 

degree. To obtain a long temporal distribution of this variable (1900-2099), a spatial explicit polynomial 

regression function is implemented to calculate monthly Fcover values as a function of land use, altitude, 

precipitation, and soil properties. For future conditions, vegetation values are calculated based on SSP~RCP 

correspondences. An assumption is made to the historical projections that the physical processes remain the same 

through time. 



 

Table S3: Definition of metrics in ecosystem functions and services models in BES-SIM. 

 

Types of 

services 

NCP Metric Models Units Definitions and formula 

Material Energy  Bioenergy-crop 

Production 

LPJ-GUESS PgC/yr, 

kgC/m2/yr 

First generation biofuel crop production (carbon removed 

during harvest) 

Material Food and feed Crop Yields LPJ-GUESS PgC/yr, 

kgC/m2/yr 

Harvested carbon in croplands that are used for food production 

(excluding pastures) 

Material Food and feed Crop and Pasture 

Yield 

CABLE PgC/yr, 

kgC/m2/yr 

Above ground carbon removed from cropland and pastures as a 

result of harvest and grazing 

Material Food and feed Crop Production  GLOBIO-ES 109KCal The total crop production derived by applying crop 

productivity of the IMAGE model on the LUH2 crop area 

estimates, and is derived from the total human demand 

(including for livestock); production of various crop categories, 

including wheat, rice, maize, tubers, pulses etc. using estimates 

of average caloric content the production was translated into 

Kcal produced.  

Material Food and feed Grass Production GLOBIO-ES Gcal Grass and fodder production derived by applying grass 

productivity from the IMAGE model on the LUH2 grassland 

area estimates; production derived from the total demand of 

livestock production; largely from pastures and rangelands.  

Material Food and feed Production of 

C3Nfx, C3Ann, 

C3Per, C4Ann, 

C4Per 

InVEST kcal Caloric production on the current landscape for each crop type 

– crop yields based on Monfreda et al. (2008); kcals calculated 

based on FAO food-balance sheets (FAO 2017) 

Material Materials, 

companionship 

and labor 

Wood Harvest LPJ-GUESS, 

CABLE 

KgC, PgC/yr, 

kgC/m2/yr 

Wood carbon removed from natural vegetation (driven by 

wood harvest fraction from LUH2)  

Regulating Pollination and 

dispersal of 

seeds and other 

propagules  

Pollination: fraction 

of cropland 

potentially 

pollinated, relative 

to all available 

cropland 

GLOBIO-ES Proportion Pollination by natural pollinators assumed to be more effective 

in cropland situated near natural land; pollination efficiency 

related to distance from natural elements, based on literature 

review.  

A consequence is that pollination increases with the fraction of 

nature in a cell. We use the relationship between pollination 

efficiency and the fraction of natural area within a cell 0.5 by 

0.5 degrees (Schulp et al., 2012).  

If NatPerc > 20 and NatPerc < 60, then pollination efficiency = 

0.25 * NatPerc + 85,  else pollination efficiency  = 100   

Sum: Total cropland potentially pollinated 

Regulating Pollination and 

dispersal of 

seeds and other 

propagules  

Pollination: 

proportion of 

agricultural lands 

whose pollination 

needs are met 

InVEST Proportion The model maps pollination contribution to nutrition based on 

proportion of crop production that is dependent on pollination, 

and proportion of that production whose pollination needs are 

met by natural habitat around farmland.  



 

Types of 

services 

NCP Metric Models Units Definitions and formula 

Regulating Regulation of 

climate 

Total Carbon LPJ-GUESS, 

LPJ, CABLE 

PgC, kgC/m2 Sum of vegetation, litter and soil carbon stocks; total carbon 

pool in the ecosystem, including carbon in stems, branches, 

leaves, roots, soil and litter 

Regulating Regulation of 

climate 

Total Carbon GLOBIO-ES MgC Total carbon pool in the ecosystem, including carbon in stems, 

branches, leaves, roots, soil and litter, derived from the IMAGE 

model (using LPJmL) 

Regulating Regulation of 

climate 

Vegetation Carbon LPJ-GUESS, 

LPJ, CABLE 

PgC, kg/m2, 

PgC, kgC/m2 

Carbon stocks in living wood, roots and leaves 

Regulating Regulation of 

freshwater 

quantity, 

location and 

timing 

Monthly Runoff  LPJ-GUESS, 

LPJ, CABLE 

Pg/s, kg/m2s, 

Pg/month, 

kg/m2 month, 

Pg/s, kg/m2/s  

Sum of drainage, surface and base waterflow 

Maximum monthly runoff - monthly combined surface and 

subsurface runoff summed 

Regulating Regulation of 

freshwater 

quantity, 

location and 

timing 

Total Runoff CABLE km3/yr, mm/yr Total surface and subsurface runoff summed over the year 

Regulating Regulation of 

freshwater 

quantity, 

location and 

timing 

Water Scarcity 

Index 

GLOBIO-ES   Ratio demand / availability of renewable water, monthly-

weighted (0-1) (Wada and Bierkens, 2014)  

Regulating Regulation of 

freshwater and 

coastal water 

quality 

Nitrogen Leaching LPJ-GUESS PgN/s, 

kgN/m2s 

Nitrogen lost from the grid-cell, after subtracting an estimate 

for gaseous N losses 

Regulating Regulation of 

freshwater and 

coastal water 

quality 

Nitrogen in Water GLOBIO-ES mgN/l Total N concentration in the water, i.e. emissions divided by 

water discharge. The emissions are the sum of urban and 

diffuse sources, accumulated over the upstream catchment of a 

cell. The retention in the water network is accounted for 

Nitrogen concentration in water [mgN/l] per cell, means and 

quartiles per region. 

Regulating Regulation of 

freshwater and 

coastal water 

quality 

Phosphorous in 

Water 

GLOBIO-ES mgN/l Total P concentration in the water, i.e. emissions divided by 

water discharge. The emissions are the sum of urban and 

diffuse sources, accumulated over the upstream catchment of a 

cell. The retention in the water network is accounted for 

Phosphorus concentration in water [mgP/l] per cell, means and 

quartiles per region. 



 

Types of 

services 

NCP Metric Models Units Definitions and formula 

Regulating Regulation of 

freshwater and 

coastal water 

quality 

Nitrogen Export InVEST Tons N/year The model maps nutrient sources from watersheds and their 

transport to the stream. This spatial information can be used to 

assess the service of nutrient retention by natural vegetation. 

The retention service is of particular interest for surface water 

quality issues and can be valued in economic or social terms 

(e.g. avoided treatment costs, improved water security through 

access to clean drinking water). 

Regulating Regulation of 

freshwater and 

coastal water 

quality 

Nitrogen 

Export*Capita 

InVEST Tons 

N*people 

/year 

Nitrogen export times rural population, as an indication of 

where people are most vulnerable to changes in drinking water 

quality, because rural communities typically have fewer water 

treatment options or use well-water that may show similar 

patterns of nitrate leaching. 

Regulating Formation, 

protection and 

decontamination 

of soils and 

sediments  

Erosion Protection: 

fraction with low 

risk relative to the 

area that needs 

protection 

GLOBIO-ES index (0-100) Erosion risk calculation for pasture, rangeland, cropland and 

urban from the USLE as implemented in the IMAGE model. 

Based on soil characteristics (e.g. texture, depths and slope), 

climate characteristics (e.g. precipitation) and land-use 

sensitivity.  

The risk is calculated as a relative figure between 0 and 100, 

from high to low risk.    

Sum: total area with low risk (ER > 80)  

Regulating Formation, 

protection and 

decontamination 

of soils and 

sediments  

Soil Protection GLOSP % The amount of vegetation cover (in %cover) across all pixels 

within a specific subset (e.g., global, region ‘x’).  

For each observed year, these values vary between 0 and 1 and 

for the change index negative values represent the rate of 

decrease in relation to a reference year. 

Regulating Regulation of 

hazards and 

extreme events 

Flood Risk: number 

of people exposed 

to river flood risk 

GLOBIO-ES people 

affected 

The number of people exposed to river flood risk calculated 

based on the frequency of daily river discharge exceeding the 

river’s capacity, the potentially inundated area and the 

population density in that area. ‘Normal’ predictable yearly 

flooding is left out.  

Sum = number of people affected, per region 

Regulating Regulation of 

hazards and 

extreme events 

Coastal 

Vulnerability Index  

InVEST unitless score 

from 1 (min) 

to 5 (max)  

Geophysical and natural habitat characteristics of coastlines are 

used to compare relative exposure to erosion and flooding in 

severe weather across space and different scenarios (Arkema et 

al., 2013). 

Regulating Regulation of 

hazards and 

extreme events 

Coastal 

Vulnerability 

*Capita 

InVEST unitless 

score*people 

Total exposure risk times population within 2km of shore.  

When overlaid with data on coastal population density, the 

model’s outputs can be used to identify where humans face 

higher risks of damage from storm waves and surge. 



 

Types of 

services 

NCP Metric Models Units Definitions and formula 

Regulating Regulation of 

detrimental 

organisms and 

biological 

processes 

Pest Control: 

fraction of cropland 

potentially 

protected, relative to 

all available 

cropland 

GLOBIO-ES km2 Cropland area that is potentially covered by sufficient pest 

predators. Pest control by natural predators is assumed to be 

more effective in cropland situated near natural land. The pest 

control efficiency is related to distance from natural elements, 

relation is based on literature review.  

A consequence is that pollination increases with the fraction of 

nature in a cell. We use the relationship between pollination 

efficiency and the fraction of natural area within a cell 0.5 by 

0.5 degrees (Schulp et al., 2012). 

If NatPerc < 35, then pest control =  0.48 * NatPerc + 12,75,  

else pest control = 0.67 * NatPerc  + 7.25   

Sum: Total cropland potentially covered by natural predators 
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