Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.240
IF5.240
IF 5-year value: 5.768
IF 5-year
5.768
CiteScore value: 8.9
CiteScore
8.9
SNIP value: 1.713
SNIP1.713
IPP value: 5.53
IPP5.53
SJR value: 3.18
SJR3.18
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 51
h5-index51
Volume 11, issue 6
Geosci. Model Dev., 11, 2189–2207, 2018
https://doi.org/10.5194/gmd-11-2189-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Geosci. Model Dev., 11, 2189–2207, 2018
https://doi.org/10.5194/gmd-11-2189-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Development and technical paper 13 Jun 2018

Development and technical paper | 13 Jun 2018

The design, deployment, and testing of kriging models in GEOframe with SIK-0.9.8

Marialaura Bancheri et al.

Related authors

Age-ranked hydrological budgets and a travel time description of catchment hydrology
Riccardo Rigon, Marialaura Bancheri, and Timothy R. Green
Hydrol. Earth Syst. Sci., 20, 4929–4947, https://doi.org/10.5194/hess-20-4929-2016,https://doi.org/10.5194/hess-20-4929-2016, 2016
Short summary
Performance of site-specific parameterizations of longwave radiation
Giuseppe Formetta, Marialaura Bancheri, Olaf David, and Riccardo Rigon
Hydrol. Earth Syst. Sci., 20, 4641–4654, https://doi.org/10.5194/hess-20-4641-2016,https://doi.org/10.5194/hess-20-4641-2016, 2016
Short summary

Related subject area

Hydrology
Simulator for Hydrologic Unstructured Domains (SHUD v1.0): numerical modeling of watershed hydrology with the finite volume method
Lele Shu, Paul A. Ullrich, and Christopher J. Duffy
Geosci. Model Dev., 13, 2743–2762, https://doi.org/10.5194/gmd-13-2743-2020,https://doi.org/10.5194/gmd-13-2743-2020, 2020
Short summary
HydroMix v1.0: a new Bayesian mixing framework for attributing uncertain hydrological sources
Harsh Beria, Joshua R. Larsen, Anthony Michelon, Natalie C. Ceperley, and Bettina Schaefli
Geosci. Model Dev., 13, 2433–2450, https://doi.org/10.5194/gmd-13-2433-2020,https://doi.org/10.5194/gmd-13-2433-2020, 2020
Short summary
TIER version 1.0: an open-source Topographically InformEd Regression (TIER) model to estimate spatial meteorological fields
Andrew J. Newman and Martyn P. Clark
Geosci. Model Dev., 13, 1827–1843, https://doi.org/10.5194/gmd-13-1827-2020,https://doi.org/10.5194/gmd-13-1827-2020, 2020
Short summary
Automated Monte Carlo-based quantification and updating of geological uncertainty with borehole data (AutoBEL v1.0)
Zhen Yin, Sebastien Strebelle, and Jef Caers
Geosci. Model Dev., 13, 651–672, https://doi.org/10.5194/gmd-13-651-2020,https://doi.org/10.5194/gmd-13-651-2020, 2020
Short summary
glmGUI v1.0: an R-based graphical user interface and toolbox for GLM (General Lake Model) simulations
Thomas Bueche, Marko Wenk, Benjamin Poschlod, Filippo Giadrossich, Mario Pirastru, and Mark Vetter
Geosci. Model Dev., 13, 565–580, https://doi.org/10.5194/gmd-13-565-2020,https://doi.org/10.5194/gmd-13-565-2020, 2020
Short summary

Cited articles

Abera, W., Formetta, G., Borga, M., and Rigon, R.: Estimating the water budget components and their variability in a pre-alpine basin with JGrass-NewAGE, Adv. Water Resour., 104, 37–54, 2017.
Adams, B. M., Bohnhoff, W., Dalbey, K., Eddy, J., Eldred, M., Gay, D., Haskell, K., Hough, P. D., and Swiler, L. P.: Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis: Version 5.0 user's manual, Sandia National Laboratories, Tech. Rep. SAND2010-2183, 2009.
Adhikary, S. K., Muttil, N., and Yilmaz, A. G.: Genetic programming-based ordinary kriging for spatial interpolation of rainfall, J. Hydrol. Eng., 21, 04015062, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001300, 2015.
Aidoo, E. N., Mueller, U., Goovaerts, P., and Hyndes, G. A.: Evaluation of geostatistical estimators and their applicability to characterise the spatial patterns of recreational fishing catch rates, Fish. Res., 168, 20–32, 2015.
Argent, R. M.: An overview of model integration for environmental applications–components, frameworks and semantics, Environ. Modell. Softw., 19, 219–234, 2004.
Publications Copernicus
Download
Short summary
This paper presents a new modeling package for the spatial interpolation of environmental variables. It includes 11 theoretical semivariogram models and four types of Kriging interpolations. To test the performances of the package, two applications are performed: the interpolation of 1 year of temperatures and a rainfall event. Both interpolations gave good results. In comparison with gstat, the SIK package proved to be a good alternative, regarding both the easiness of use and the accuracy.
This paper presents a new modeling package for the spatial interpolation of environmental...
Citation