Articles | Volume 11, issue 4
https://doi.org/10.5194/gmd-11-1591-2018
https://doi.org/10.5194/gmd-11-1591-2018
Development and technical paper
 | 
19 Apr 2018
Development and technical paper |  | 19 Apr 2018

Continuous state-space representation of a bucket-type rainfall-runoff model: a case study with the GR4 model using state-space GR4 (version 1.0)

Léonard Santos, Guillaume Thirel, and Charles Perrin

Related authors

On the use of streamflow transformations for hydrological model calibration
Guillaume Thirel, Léonard Santos, Olivier Delaigue, and Charles Perrin
EGUsphere, https://doi.org/10.5194/egusphere-2023-775,https://doi.org/10.5194/egusphere-2023-775, 2023
Short summary
Technical note: RAT – a robustness assessment test for calibrated and uncalibrated hydrological models
Pierre Nicolle, Vazken Andréassian, Paul Royer-Gaspard, Charles Perrin, Guillaume Thirel, Laurent Coron, and Léonard Santos
Hydrol. Earth Syst. Sci., 25, 5013–5027, https://doi.org/10.5194/hess-25-5013-2021,https://doi.org/10.5194/hess-25-5013-2021, 2021
Short summary
Technical note: Pitfalls in using log-transformed flows within the KGE criterion
Léonard Santos, Guillaume Thirel, and Charles Perrin
Hydrol. Earth Syst. Sci., 22, 4583–4591, https://doi.org/10.5194/hess-22-4583-2018,https://doi.org/10.5194/hess-22-4583-2018, 2018
Short summary

Related subject area

Hydrology
GPEP v1.0: the Geospatial Probabilistic Estimation Package to support Earth science applications
Guoqiang Tang, Andrew W. Wood, Andrew J. Newman, Martyn P. Clark, and Simon Michael Papalexiou
Geosci. Model Dev., 17, 1153–1173, https://doi.org/10.5194/gmd-17-1153-2024,https://doi.org/10.5194/gmd-17-1153-2024, 2024
Short summary
GEMS v1.0: Generalizable Empirical Model of Snow Accumulation and Melt, based on daily snow mass changes in response to climate and topographic drivers
Atabek Umirbekov, Richard Essery, and Daniel Müller
Geosci. Model Dev., 17, 911–929, https://doi.org/10.5194/gmd-17-911-2024,https://doi.org/10.5194/gmd-17-911-2024, 2024
Short summary
mesas.py v1.0: a flexible Python package for modeling solute transport and transit times using StorAge Selection functions
Ciaran J. Harman and Esther Xu Fei
Geosci. Model Dev., 17, 477–495, https://doi.org/10.5194/gmd-17-477-2024,https://doi.org/10.5194/gmd-17-477-2024, 2024
Short summary
rSHUD v2.0: advancing the Simulator for Hydrologic Unstructured Domains and unstructured hydrological modeling in the R environment
Lele Shu, Paul Ullrich, Xianhong Meng, Christopher Duffy, Hao Chen, and Zhaoguo Li
Geosci. Model Dev., 17, 497–527, https://doi.org/10.5194/gmd-17-497-2024,https://doi.org/10.5194/gmd-17-497-2024, 2024
Short summary
GLOBGM v1.0: a parallel implementation of a 30 arcsec PCR-GLOBWB-MODFLOW global-scale groundwater model
Jarno Verkaik, Edwin H. Sutanudjaja, Gualbert H. P. Oude Essink, Hai Xiang Lin, and Marc F. P. Bierkens
Geosci. Model Dev., 17, 275–300, https://doi.org/10.5194/gmd-17-275-2024,https://doi.org/10.5194/gmd-17-275-2024, 2024
Short summary

Cited articles

Andréassian, V., Hall, A., Chahinian, N., and Schaake, J.: Large sample basin experiments for hydrological model parametrization, chap. Introduction and Synthesis: Why should hydrologists work on a large number of basin data sets?, IAHS-AISH P., 307, 1–5, 2006. a
Bergström, S. and Forsman, A.: Development of a conceptual and deterministic rainfall-runoff model, Nord. Hydrol., 4, 147–170, 1973. a
Burnash, R. J. C.: The NWS river forecast system – catchment modeling, chap. 10, in: Computer Model of Watershed Hydrology, Water Resources Publications, Highlands Ranch, Colorado, USA, 311–366, 1995. a, b
Clark, M. P. and Kavetski, D.: Ancient numerical daemons of conceptual hydrological modeling: 1. Fidelity and efficiency of time stepping schemes, Water Resour. Res., 46, W10510, https://doi.org/10.1029/2009wr008894, 2010. a, b, c, d, e, f, g
Coron, L., Andréassian, V., Perrin, C., Lerat, J., Vaze, J., Bourqui, M., and Hendrickx, F.: Crash testing hydrological models in contrasted climate conditions: An experiment on 216 Australian catchments, Water Resour. Res., 48, W05552, https://doi.org/10.1029/2011WR011721, 2012. a
Download
Short summary
Many rainfall–runoff models are based on stores. However, the differential equations that describe the stores' evolution are rarely presented in literature. This represents an issue when the temporal resolution changes. In this work, we propose and evaluate a state-space version of a simple rainfall–runoff model within a robust resolution scheme. The results show that the proposed model performs equally well or slightly better than the original one and is independent of the temporal resolution.