Articles | Volume 10, issue 12
Geosci. Model Dev., 10, 4693–4722, 2017
https://doi.org/10.5194/gmd-10-4693-2017
Geosci. Model Dev., 10, 4693–4722, 2017
https://doi.org/10.5194/gmd-10-4693-2017
Development and technical paper
22 Dec 2017
Development and technical paper | 22 Dec 2017

Towards a more detailed representation of high-latitude vegetation in the global land surface model ORCHIDEE (ORC-HL-VEGv1.0)

Arsène Druel et al.

Related authors

Implementation of a new crop phenology and irrigation scheme in the ISBA land surface model using SURFEX_v8.1
Arsène Druel, Simon Munier, Anthony Mucia, Clément Albergel, and Jean-Christophe Calvet
Geosci. Model Dev., 15, 8453–8471, https://doi.org/10.5194/gmd-15-8453-2022,https://doi.org/10.5194/gmd-15-8453-2022, 2022
Short summary
Spatio-temporal variations and uncertainty in land surface modelling for high latitudes: univariate response analysis
Didier G. Leibovici, Shaun Quegan, Edward Comyn-Platt, Garry Hayman, Maria Val Martin, Mathieu Guimberteau, Arsène Druel, Dan Zhu, and Philippe Ciais
Biogeosciences, 17, 1821–1844, https://doi.org/10.5194/bg-17-1821-2020,https://doi.org/10.5194/bg-17-1821-2020, 2020
Short summary
Improving the dynamics of Northern Hemisphere high-latitude vegetation in the ORCHIDEE ecosystem model
D. Zhu, S. S. Peng, P. Ciais, N. Viovy, A. Druel, M. Kageyama, G. Krinner, P. Peylin, C. Ottlé, S. L. Piao, B. Poulter, D. Schepaschenko, and A. Shvidenko
Geosci. Model Dev., 8, 2263–2283, https://doi.org/10.5194/gmd-8-2263-2015,https://doi.org/10.5194/gmd-8-2263-2015, 2015
Short summary

Related subject area

Climate and Earth system modeling
Ocean Modeling with Adaptive REsolution (OMARE; version 1.0) – refactoring the NEMO model (version 4.0.1) with the parallel computing framework of JASMIN – Part 1: Adaptive grid refinement in an idealized double-gyre case
Yan Zhang, Xuantong Wang, Yuhao Sun, Chenhui Ning, Shiming Xu, Hengbin An, Dehong Tang, Hong Guo, Hao Yang, Ye Pu, Bo Jiang, and Bin Wang
Geosci. Model Dev., 16, 679–704, https://doi.org/10.5194/gmd-16-679-2023,https://doi.org/10.5194/gmd-16-679-2023, 2023
Short summary
Monthly-scale extended predictions using the atmospheric model coupled with a slab ocean
Zhenming Wang, Shaoqing Zhang, Yishuai Jin, Yinglai Jia, Yangyang Yu, Yang Gao, Xiaolin Yu, Mingkui Li, Xiaopei Lin, and Lixin Wu
Geosci. Model Dev., 16, 705–717, https://doi.org/10.5194/gmd-16-705-2023,https://doi.org/10.5194/gmd-16-705-2023, 2023
Short summary
stoPET v1.0: a stochastic potential evapotranspiration generator for simulation of climate change impacts
Dagmawi Teklu Asfaw, Michael Bliss Singer, Rafael Rosolem, David MacLeod, Mark Cuthbert, Edisson Quichimbo Miguitama, Manuel F. Rios Gaona, and Katerina Michaelides
Geosci. Model Dev., 16, 557–571, https://doi.org/10.5194/gmd-16-557-2023,https://doi.org/10.5194/gmd-16-557-2023, 2023
Short summary
URANOS v1.0 – the Ultra Rapid Adaptable Neutron-Only Simulation for Environmental Research
Markus Köhli, Martin Schrön, Steffen Zacharias, and Ulrich Schmidt
Geosci. Model Dev., 16, 449–477, https://doi.org/10.5194/gmd-16-449-2023,https://doi.org/10.5194/gmd-16-449-2023, 2023
Short summary
Combining regional mesh refinement with vertically enhanced physics to target marine stratocumulus biases as demonstrated in the Energy Exascale Earth System Model version 1
Peter A. Bogenschutz, Hsiang-He Lee, Qi Tang, and Takanobu Yamaguchi
Geosci. Model Dev., 16, 335–352, https://doi.org/10.5194/gmd-16-335-2023,https://doi.org/10.5194/gmd-16-335-2023, 2023
Short summary

Cited articles

Aiba, S.-I. and Kohyama, T.: Tree Species Stratification in Relation to Allometry and Demography in a Warm-Temperate Rain Forest, J. Ecol., 84, 207–218, https://doi.org/10.2307/2261356, 1996.
Ball, J. T., Woodrow, I. E., and Berry, J. A.: A Model Predicting Stomatal Conductance and its Contribution to the Control of Photosynthesis under Different Environmental Conditions, in: Progress in Photosynthesis Research, edited by: Biggins, J., 221–224, Springer Netherlands, Dordrecht, available at: http://link.springer.com/10.1007/978-94-017-0519-6_48 (last access: 28 April 2016), 1987.
Bastrikov, V., MacBean, N., Peylin, P., Bacour, C., Santaren, D., and Kuppel, S.: Land surface model parameter optimisation using in-situ flux data: comparison of gradient-based versus random search algorithms, in preparation, Geosci. Model Dev., 2018.
Baudena, M., Dekker, S. C., van Bodegom, P. M., Cuesta, B., Higgins, S. I., Lehsten, V., Reick, C. H., Rietkerk, M., Scheiter, S., Yin, Z., Zavala, M. A., and Brovkin, V.: Forests, savannas, and grasslands: bridging the knowledge gap between ecology and Dynamic Global Vegetation Models, Biogeosciences, 12, 1833–1848, https://doi.org/10.5194/bg-12-1833-2015, 2015.
Bentley, J. R., Seegrist, D., and Blakeman, D. A.: A technique for sampling low shrub vegetation, by cromwn volume classes, Res Note PSW-RN-215 Berkeley CA US Dep. Agric. For. Serv. Pac. Southwest For. Range Exp. Stn., 12 pp., 1970.