Articles | Volume 9, issue 2
https://doi.org/10.5194/gmd-9-857-2016
https://doi.org/10.5194/gmd-9-857-2016
Development and technical paper
 | 
01 Mar 2016
Development and technical paper |  | 01 Mar 2016

ORCHIDEE-CROP (v0), a new process-based agro-land surface model: model description and evaluation over Europe

X. Wu, N. Vuichard, P. Ciais, N. Viovy, N. de Noblet-Ducoudré, X. Wang, V. Magliulo, M. Wattenbach, L. Vitale, P. Di Tommasi, E. J. Moors, W. Jans, J. Elbers, E. Ceschia, T. Tallec, C. Bernhofer, T. Grünwald, C. Moureaux, T. Manise, A. Ligne, P. Cellier, B. Loubet, E. Larmanou, and D. Ripoche

Related authors

Radiation, soil water content, and temperature effects on carbon cycling in an alpine swamp meadow of the northeastern Qinghai–Tibetan Plateau
Junqi Wei, Xiaoyan Li, Lei Liu, Torben Røjle Christensen, Zhiyun Jiang, Yujun Ma, Xiuchen Wu, Hongyun Yao, and Efrén López-Blanco
Biogeosciences, 19, 861–875, https://doi.org/10.5194/bg-19-861-2022,https://doi.org/10.5194/bg-19-861-2022, 2022
Short summary
A 406-year non-growing-season precipitation reconstruction in the southeastern Tibetan Plateau
Maierdang Keyimu, Zongshan Li, Bojie Fu, Guohua Liu, Fanjiang Zeng, Weiliang Chen, Zexin Fan, Keyan Fang, Xiuchen Wu, and Xiaochun Wang
Clim. Past, 17, 2381–2392, https://doi.org/10.5194/cp-17-2381-2021,https://doi.org/10.5194/cp-17-2381-2021, 2021
Short summary

Related subject area

Biogeosciences
Soil nitrous oxide emissions from global land ecosystems and their drivers within the LPJ-GUESS model (v4.1)
Jianyong Ma, Almut Arneth, Benjamin Smith, Peter Anthoni, Xu-Ri, Peter Eliasson, David Wårlind, Martin Wittenbrink, and Stefan Olin
Geosci. Model Dev., 18, 3131–3155, https://doi.org/10.5194/gmd-18-3131-2025,https://doi.org/10.5194/gmd-18-3131-2025, 2025
Short summary
Parameterization toolbox for a physical–biogeochemical model compatible with FABM – a case study: the coupled 1D GOTM–ECOSMO E2E for the Sylt–Rømø Bight, North Sea
Hoa Nguyen, Ute Daewel, Neil Banas, and Corinna Schrum
Geosci. Model Dev., 18, 2961–2982, https://doi.org/10.5194/gmd-18-2961-2025,https://doi.org/10.5194/gmd-18-2961-2025, 2025
Short summary
H2MV (v1.0): global physically constrained deep learning water cycle model with vegetation
Zavud Baghirov, Martin Jung, Markus Reichstein, Marco Körner, and Basil Kraft
Geosci. Model Dev., 18, 2921–2943, https://doi.org/10.5194/gmd-18-2921-2025,https://doi.org/10.5194/gmd-18-2921-2025, 2025
Short summary
NN-TOC v1: global prediction of total organic carbon in marine sediments using deep neural networks
Naveenkumar Parameswaran, Everardo González, Ewa Burwicz-Galerne, Malte Braack, and Klaus Wallmann
Geosci. Model Dev., 18, 2521–2544, https://doi.org/10.5194/gmd-18-2521-2025,https://doi.org/10.5194/gmd-18-2521-2025, 2025
Short summary
China Wildfire Emission Dataset (ChinaWED v1) for the period 2012–2022
Zhengyang Lin, Ling Huang, Hanqin Tian, Anping Chen, and Xuhui Wang
Geosci. Model Dev., 18, 2509–2520, https://doi.org/10.5194/gmd-18-2509-2025,https://doi.org/10.5194/gmd-18-2509-2025, 2025
Short summary

Cited articles

Asseng, S., Ewert, F., Rosenzweig, C., Jones, J., Hatfield, J., Ruane, A., Boote, K., Thorburn, P., Rötter, R., and Cammarano, D.: Uncertainty in simulating wheat yields under climate change, Nature Climate Change, 3, 827–832, 2013.
Barr, A., Morgenstern, K., Black, T., McCaughey, J., and Nesic, Z.: Surface energy balance closure by the eddy-covariance method above three boreal forest stands and implications for the measurement of the CO2 flux, Agr. Forest Meteorol., 140, 322–337, 2006.
Beniston, M., Stephenson, D. B., Christensen, O. B., Ferro, C. A., Frei, C., Goyette, S., Halsnaes, K., Holt, T., Jylhä, K., and Koffi, B.: Future extreme events in European climate: an exploration of regional climate model projections, Climatic Change, 81, 71–95, 2007.
Berg, A., Sultan, B., and de Noblet-Ducoudré, N.: Including tropical croplands in a terrestrial biosphere model: application to West Africa, Climatic Change, 104, 755–782, 2011.
Download
Short summary
The response of crops to changing climate and atmospheric CO2 could have large effects on food production, terrestrial carbon, water, energy fluxes and the climate feedbacks. We developed a new process-oriented terrestrial biogeochemical model named ORCHIDEE-CROP (v0), which integrates a generic crop phenology and harvest module into the land surface model ORCHIDEE. Our model has good ability to capture the spatial gradients of crop phenology, carbon and energy-related variables across Europe.
Share