Articles | Volume 9, issue 11
Geosci. Model Dev., 9, 4209–4225, 2016
https://doi.org/10.5194/gmd-9-4209-2016
Geosci. Model Dev., 9, 4209–4225, 2016
https://doi.org/10.5194/gmd-9-4209-2016

Development and technical paper 22 Nov 2016

Development and technical paper | 22 Nov 2016

P-CSI v1.0, an accelerated barotropic solver for the high-resolution ocean model component in the Community Earth System Model v2.0

Xiaomeng Huang et al.

Related authors

Separating emission and meteorological contributions to long-term PM2.5 trends over eastern China during 2000–2018
Qingyang Xiao, Yixuan Zheng, Guannan Geng, Cuihong Chen, Xiaomeng Huang, Huizheng Che, Xiaoye Zhang, Kebin He, and Qiang Zhang
Atmos. Chem. Phys., 21, 9475–9496, https://doi.org/10.5194/acp-21-9475-2021,https://doi.org/10.5194/acp-21-9475-2021, 2021
Short summary
Development and performance optimization of a parallel computing infrastructure for an unstructured-mesh modelling framework
Zhuang Liu, Yi Zhang, Xiaomeng Huang, Jian Li, Dong Wang, Mingqing Wang, and Xing Huang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-158,https://doi.org/10.5194/gmd-2020-158, 2020
Revised manuscript not accepted
Short summary
OpenArray v1.0: a simple operator library for the decoupling of ocean modeling and parallel computing
Xiaomeng Huang, Xing Huang, Dong Wang, Qi Wu, Yi Li, Shixun Zhang, Yuwen Chen, Mingqing Wang, Yuan Gao, Qiang Tang, Yue Chen, Zheng Fang, Zhenya Song, and Guangwen Yang
Geosci. Model Dev., 12, 4729–4749, https://doi.org/10.5194/gmd-12-4729-2019,https://doi.org/10.5194/gmd-12-4729-2019, 2019
Short summary
Evaluating statistical consistency in the ocean model component of the Community Earth System Model (pyCECT v2.0)
Allison H. Baker, Yong Hu, Dorit M. Hammerling, Yu-heng Tseng, Haiying Xu, Xiaomeng Huang, Frank O. Bryan, and Guangwen Yang
Geosci. Model Dev., 9, 2391–2406, https://doi.org/10.5194/gmd-9-2391-2016,https://doi.org/10.5194/gmd-9-2391-2016, 2016
Short summary
POM.gpu-v1.0: a GPU-based Princeton Ocean Model
S. Xu, X. Huang, L.-Y. Oey, F. Xu, H. Fu, Y. Zhang, and G. Yang
Geosci. Model Dev., 8, 2815–2827, https://doi.org/10.5194/gmd-8-2815-2015,https://doi.org/10.5194/gmd-8-2815-2015, 2015
Short summary

Related subject area

Numerical methods
Efficient Bayesian inference for large chaotic dynamical systems
Sebastian Springer, Heikki Haario, Jouni Susiluoto, Aleksandr Bibov, Andrew Davis, and Youssef Marzouk
Geosci. Model Dev., 14, 4319–4333, https://doi.org/10.5194/gmd-14-4319-2021,https://doi.org/10.5194/gmd-14-4319-2021, 2021
Short summary
Constraining stochastic 3-D structural geological models with topology information using approximate Bayesian computation in GemPy 2.1
Alexander Schaaf, Miguel de la Varga, Florian Wellmann, and Clare E. Bond
Geosci. Model Dev., 14, 3899–3913, https://doi.org/10.5194/gmd-14-3899-2021,https://doi.org/10.5194/gmd-14-3899-2021, 2021
Short summary
Retrieval of process rate parameters in the general dynamic equation for aerosols using Bayesian state estimation: BAYROSOL1.0
Matthew Ozon, Aku Seppänen, Jari P. Kaipio, and Kari E. J. Lehtinen
Geosci. Model Dev., 14, 3715–3739, https://doi.org/10.5194/gmd-14-3715-2021,https://doi.org/10.5194/gmd-14-3715-2021, 2021
Short summary
A discontinuous Galerkin finite-element model for fast channelized lava flows v1.0
Colton J. Conroy and Einat Lev
Geosci. Model Dev., 14, 3553–3575, https://doi.org/10.5194/gmd-14-3553-2021,https://doi.org/10.5194/gmd-14-3553-2021, 2021
Short summary
A nested multi-scale system implemented in the large-eddy simulation model PALM model system 6.0
Antti Hellsten, Klaus Ketelsen, Matthias Sühring, Mikko Auvinen, Björn Maronga, Christoph Knigge, Fotios Barmpas, Georgios Tsegas, Nicolas Moussiopoulos, and Siegfried Raasch
Geosci. Model Dev., 14, 3185–3214, https://doi.org/10.5194/gmd-14-3185-2021,https://doi.org/10.5194/gmd-14-3185-2021, 2021
Short summary

Cited articles

Adcroft, A., Campin, J., Dutkiewicz, S., Evangelinos, C., Ferreira, D., Forget, G., Fox-Kemper, B., Heimbach, P., Hill, C., Hill, E., Hill, H., Jahn, O., Losch, M., Marshall, J., Maze, G., Menemenlis, D., and Molod, A.: MITgcm user manual, 1–485, available at: http://mitgcm.org/public/r2_manual/latest/online_documents/manual.pdf, last access: 22 November 2016.
Beare, M. I. and Stevens, D. P.: Optimisation of a parallel ocean general circulation model, Ann. Geophys., 15, 1369–1377, https://doi.org/10.1007/s00585-997-1369-3, 1997.
Beckermann, B. and Kuijlaars, A. B. J.: Superlinear convergence of conjugate gradients, SIAM J. Numer. Anal., 39, 300–329, 2001.
Bell, H. E.: Gershgorin's theorem and the zeros of polynomials, Am. Math. Mon., 72, 292–295, 1965.
Benzi, M.: Preconditioning techniques for large linear systems: a survey, J. Comput. Phys., 182, 418–477, 2002.
Download
Short summary
Refining model resolution is helpful for representing climate processes. With resolution increasing, the computational cost will become very huge. We designed a new solver to accelerate the high-resolution ocean simulation so as to reduce the computational cost and make full use of the computing resource of supercomputers. Our results show that the simulation speed of the improved ocean component with 0.1° resolution achieves 10.5 simulated years per wall-clock day on 16875 CPU cores.