Articles | Volume 8, issue 11
Geosci. Model Dev., 8, 3497–3522, 2015
https://doi.org/10.5194/gmd-8-3497-2015
Geosci. Model Dev., 8, 3497–3522, 2015
https://doi.org/10.5194/gmd-8-3497-2015

Model description paper 03 Nov 2015

Model description paper | 03 Nov 2015

Construction of the SILAM Eulerian atmospheric dispersion model based on the advection algorithm of Michael Galperin

M. Sofiev et al.

Related authors

EUNADICS early warning system dedicated to support aviation in case of crisis from natural airborne hazard and radionuclide cloud
Hugues Brenot, Nicolas Theys, Lieven Clarisse, Jeroen van Gent, Daniel R. Hurtmans, Sophie Vandenbussche, Nikolaos Papagiannopoulos, Lucia Mona, Timo Virtanen, Andreas Uppstu, Mikhail Sofiev, Luca Bugliaro, Margarita Vázquez-Navarro, Pascal Hedelt, Michelle Maree Parks, Sara Barsotti, Mauro Coltelli, William Moreland, Delia Arnold-Arias, Marcus Hirtl, Tuomas Peltonen, Juhani Lahtinen, Klaus Sievers, Florian Lipok, Rolf Rüfenacht, Alexander Haefele, Maxime Hervo, Saskia Wagenaar, Wim Som de Cerff, Jos de Laat, Arnoud Apituley, Piet Stammes, Quentin Laffineur, Andy Delcloo, Robertson Lennart, Carl-Herbert Rokitansky, Arturo Vargas, Markus Kerschbaum, Christian Resch, Raimund Zopp, Matthieu Plu, Vincent-Henri Peuch, Michel Van Roozendael, and Gerhard Wotawa
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-105,https://doi.org/10.5194/nhess-2021-105, 2021
Preprint under review for NHESS
Short summary
Effect of accounting for public holidays on skills of atmospheric composition model SILAM v.5.7
Yalda Fatahi, Rostislav Kouznetsov, and Mikhail Sofiev
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-52,https://doi.org/10.5194/gmd-2021-52, 2021
Preprint under review for GMD
Short summary
Modelling of the public health costs of fine particulate matter and results for Finland in 2015
Jaakko Kukkonen, Mikko Savolahti, Yuliia Palamarchuk, Timo Lanki, Väinö Nurmi, Ville-Veikko Paunu, Leena Kangas, Mikhail Sofiev, Ari Karppinen, Androniki Maragkidou, Pekka Tiittanen, and Niko Karvosenoja
Atmos. Chem. Phys., 20, 9371–9391, https://doi.org/10.5194/acp-20-9371-2020,https://doi.org/10.5194/acp-20-9371-2020, 2020
Short summary
A volcanic-hazard demonstration exercise to assess and mitigate the impacts of volcanic ash clouds on civil and military aviation
Marcus Hirtl, Delia Arnold, Rocio Baro, Hugues Brenot, Mauro Coltelli, Kurt Eschbacher, Helmut Hard-Stremayer, Florian Lipok, Christian Maurer, Dieter Meinhard, Lucia Mona, Marie D. Mulder, Nikolaos Papagiannopoulos, Michael Pernsteiner, Matthieu Plu, Lennart Robertson, Carl-Herbert Rokitansky, Barbara Scherllin-Pirscher, Klaus Sievers, Mikhail Sofiev, Wim Som de Cerff, Martin Steinheimer, Martin Stuefer, Nicolas Theys, Andreas Uppstu, Saskia Wagenaar, Roland Winkler, Gerhard Wotawa, Fritz Zobl, and Raimund Zopp
Nat. Hazards Earth Syst. Sci., 20, 1719–1739, https://doi.org/10.5194/nhess-20-1719-2020,https://doi.org/10.5194/nhess-20-1719-2020, 2020
Short summary
Simulating age of air and the distribution of SF6 in the stratosphere with the SILAM model
Rostislav Kouznetsov, Mikhail Sofiev, Julius Vira, and Gabriele Stiller
Atmos. Chem. Phys., 20, 5837–5859, https://doi.org/10.5194/acp-20-5837-2020,https://doi.org/10.5194/acp-20-5837-2020, 2020
Short summary

Related subject area

Numerical methods
Extending legacy climate models by adaptive mesh refinement for single-component tracer transport: a case study with ECHAM6-HAMMOZ (ECHAM6.3-HAM2.3-MOZ1.0)
Yumeng Chen, Konrad Simon, and Jörn Behrens
Geosci. Model Dev., 14, 2289–2316, https://doi.org/10.5194/gmd-14-2289-2021,https://doi.org/10.5194/gmd-14-2289-2021, 2021
Short summary
Using the Després and Lagoutière (1999) antidiffusive transport scheme: a promising and novel method against excessive vertical diffusion in chemistry-transport models
Sylvain Mailler, Romain Pennel, Laurent Menut, and Mathieu Lachâtre
Geosci. Model Dev., 14, 2221–2233, https://doi.org/10.5194/gmd-14-2221-2021,https://doi.org/10.5194/gmd-14-2221-2021, 2021
Short summary
Porosity and permeability prediction through forward stratigraphic simulations using GPM™ and Petrel™: application in shallow marine depositional settings
Daniel Otoo and David Hodgetts
Geosci. Model Dev., 14, 2075–2095, https://doi.org/10.5194/gmd-14-2075-2021,https://doi.org/10.5194/gmd-14-2075-2021, 2021
Short summary
Effects of transient processes for thermal simulations of the Central European Basin
Denise Degen and Mauro Cacace
Geosci. Model Dev., 14, 1699–1719, https://doi.org/10.5194/gmd-14-1699-2021,https://doi.org/10.5194/gmd-14-1699-2021, 2021
Short summary
A note on precision-preserving compression of scientific data
Rostislav Kouznetsov
Geosci. Model Dev., 14, 377–389, https://doi.org/10.5194/gmd-14-377-2021,https://doi.org/10.5194/gmd-14-377-2021, 2021
Short summary

Cited articles

Bott, A.: A positive definite advection scheme obtained by nonlinear renormalization of the advective fluxes, Mon. Weather Rev., 117, 1006–1016, 1989.
Bott, A.: Monotone flux limitation in the area – preserving flux form advection algorithm, Mon. Weather Rev., 120, 2592–2602, 1992.
Bott, A.: The monotone area - preserving flux – form advection algorithm: reducing the time - splitting error in two – dimensional flow fields, Mon. Weather Rev., 121, 2637–2641, 1993.
Charney, J. G., Fjörtoft, R., and Von Neumann, J.: Numerical Integration of the Barotropic Vorticity Equation, Tellus A, 2, 238–254, 1950.
Crowley, W. P.: Numerical advection experiments, Mon. Weather Rev., 96, 1–11, 1968.
Download
Short summary
The paper presents a transport mechanism of SILAM CTM based on an algorithm of M. Galperin. We describe the original scheme and its updates needed for applications to long-living species, complex atmospheric flows, etc. The scheme is connected to vertical diffusion, chemical transformation and deposition algorithms. Quality of the advection routine is evaluated with a large set of tests, which showed performance fully comparable with state-of-the-art algorithms at much lower computational costs.