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Abstract. The paper presents the transport module of the

System for Integrated modeLling of Atmospheric coMposi-

tion SILAM v.5 based on the advection algorithm of Michael

Galperin. This advection routine, so far weakly presented

in the international literature, is positively defined, stable

at any Courant number, and efficient computationally. We

present the rigorous description of its original version, along

with several updates that improve its monotonicity and shape

preservation, allowing for applications to long-living species

in conditions of complex atmospheric flows. The scheme

is connected with other parts of the model in a way that

preserves the sub-grid mass distribution information that is

a cornerstone of the advection algorithm. The other parts

include the previously developed vertical diffusion algo-

rithm combined with dry deposition, a meteorological pre-

processor, and chemical transformation modules.

The quality of the advection routine is evaluated using a

large set of tests. The original approach has been previously

compared with several classic algorithms widely used in op-

erational dispersion models. The basic tests were repeated

for the updated scheme and extended with real-wind simu-

lations and demanding global 2-D tests recently suggested

in the literature, which allowed one to position the scheme

with regard to sophisticated state-of-the-art approaches. The

advection scheme performance was fully comparable with

other algorithms, with a modest computational cost.

This work was the last project of Dr. Sci. Michael

Galperin, who passed away on 18 March 2008.

1 Introduction

One of the key problems in atmospheric composition mod-

elling is the accuracy and reliability of numerical schemes.

A less appreciated but important issue is the consistency of

the approaches applied in different modules of the modelling

system. Usually, model construction follows process-wise

split (Yanenko, 1971; Marchuk, 1995; Seinfeld and Pandis,

2006), thus considering separately the advection and diffu-

sion algorithms, physical and chemical transformations, and

dry and wet deposition. In practical model developments,

features of the transport algorithms, first of all, the advec-

tion scheme, largely shape the model and determine its area

of application.

1.1 Advection schemes

There are numerous types of advection schemes currently

employed in atmospheric dispersion models. Two major cat-

egories refer to Lagrangian or Eulerian treatment of tracers:

as small-size masses (Lagrangian particles) or as the concen-

tration fields discretised in a prescribed grid. The Eulerian

schemes, the primary subject of this paper, can be divided

into flux-form finite volume, semi-Lagrangian, or expansion-

function schemes. The expansion-function schemes approx-

imate the solution with a given set of basis functions and, in

turn, can be divided into spectral, pseudospectral and finite-

element approaches. Some classic schemes are also based

on finite-difference approximations of the advective term of

the transport equation. The basic principles of all these ap-

proaches were formulated several decades ago and, with cer-
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tain modifications, are still in use. Many modern schemes

combine several approaches.

The large diversity of the advection algorithms is ex-

plained by a long list of requirements for such schemes. The

most important ones are positive definition, minimal numer-

ical diffusion, limited non-monotonicity and non-linearity,

stability with regard to high Courant numbers (the number of

the model grid cells passed within one advection time step),

small phase error, local and global mass conservation, and

high numerical efficiency. Some of these requirements con-

tradict each other. For example, numerical diffusion “blurs”

the resulting patterns but also makes them smoother, thus im-

proving the monotonicity.

The finite-difference schemes involve direct discretisation

of the dispersion equation and various interpolation functions

to evaluate derivatives of the concentration fields (see the re-

views of Richtmyer, 1962; Leith, 1965; Roach, 1980, as well

as Sect. 3.1 in Rood, 1987); specific examples are, for in-

stance, Russell and Lerner (1981), and Van Leer (1974, 1977,

1979). These schemes, being once popular, usually suffer

from large numerical diffusion and limited stability, which

sets stringent limitations on the Courant number, usually re-

quiring it to be substantially less than 1. Therefore, the in-

terest has gradually shifted towards flux, finite-element, and

semi-Lagrangian schemes.

The flux schemes represent the transport via mass fluxes

at the grid cell borders, which are calculated from concentra-

tions in the neighbouring cells and wind characteristics. They

are inherently mass conservative and have become popular

in atmospheric chemistry transport models (Kukkonen et al.,

2012). Probably the most widely used flux-type scheme is the

one made by A. Bott (Bott, 1989, 1992, 1993), especially if

one would count the numerous Bott-type schemes (see exam-

ples in Syrakov, 1996; Syrakov and Galperin, 1997; Syrakov

and Galperin, 2000; Walcek and Aleksic, 1998; Walcek,

2000; Yamartino, 1993), which are based on the same prin-

ciple but involve different approximation functions, mono-

tonicity and normalisation procedures, etc.

The semi-Lagrangian schemes have been among the most

widely used approaches for decades, with numerous algo-

rithms using its basic concept (Crowley, 1968; Egan and Ma-

honey, 1972; Pedersen and Prahm, 1974; Pepper and Long,

1978; Prather, 1986; Smolarkiewicz, 1982; Staniforth and

Cote, 1991, and references therein; Lowe et al., 2003; Sofiev,

2000, etc.). In the forward form, these schemes consider the

transport of mass starting from the grid mesh points (de-

parture points) and calculate the masses at the grid points

closest to the arrival point. Backward algorithms start from

arrival grid points and find the grid points near the depar-

ture point. The schemes can be based on tracking either grid

points or grid cells along their trajectories. The grid-point-

based schemes are not inherently mass-conserving, whereas

the volume-based schemes achieve mass conservation by

integrating the mass over the departure volume. They can

sometimes be described as a combination of finite-volume

and semi-Lagrangian methods (Lin and Rood 1996, 1997).

Stability of these schemes can be ensured for a wide range

of Courant numbers (Leonard, 2002). A general review can

be found in Lauritzen et al. (2011), whereas a comparison of

19 modern schemes is discussed in Lauritzen et al. (2014),

hereinafter referred to as L14.

Modelling in spectral space is another approach with a

long history (Ritchie, 1988; Kreiss and Oliger, 1972; Zlatev

and Berkowicz, 1988; Prahm and Christensen, 1977), but is

not widely used today.

One of the main problems of the existing schemes is sub-

stantial numerical diffusion originating from the finite-step

discretisation along space and time. Seemingly inevitable in

an Eulerian context, this phenomenon, however, does not ex-

ist in Lagrangian advection schemes, which do not contain

explicit discretisation of particle movement. The Lagrangian

domain is a continuous space rather than a set of pre-defined

grid meshes, and the position of the particles can be calcu-

lated precisely. As a result, numerical diffusion of purely La-

grangian schemes is always zero – at a cost of strongly non-

monotonous concentration fields due to limited spatial rep-

resentativeness of a single Lagrangian particle and a limited

number of particles.

One of the ways to reduce the diffusivity of an Eule-

rian scheme is to store additional prognostic variables to de-

scribe the state of each grid cell with higher spatial resolution

than the formal cell size: a sub-grid mass distribution. This

can take the form of extra conservation equation(s) for e.g.

first- or higher-order moments (Egan and Mahoney, 1972;

Prather, 1986). There are other approaches that use differ-

ent kinds of extra information. For instance, the conservative

semi-Lagrangian schemes (Yabe and Aoki, 1991; Yabe et al.,

2001) use a semi-Lagrangian step to evaluate the mixing ra-

tio at cell interfaces, and then use the interface values along

with the cell integrals to derive an interpolant representing

the sub-grid distribution.

In a series of works, Michael Galperin developed a semi-

Lagrangian scheme that used the sub-grid information on

mass centre location inside the cell. The scheme was made

fully non-diffusive for isolated plumes, positively defined,

and very efficient computationally (Galperin et al., 1994,

1995, 1997; Galperin, 1999; Galperin and Sofiev, 1998;

Galperin and Sofiev, 1995; Galperin, 2000). The early ver-

sion of this scheme applied in the large-scale modelling

by Sofiev (2000) resembled the “moving-centre” approach

widely used in aerosol dynamics models (Kokkola et al.

2008) and shared its characteristic weakness – high non-

monotonicity. The later developments substantially reduced

it without damaging other features (Galperin, 1999, 2000).

Further development of this scheme is the subject of the cur-

rent paper.
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1.2 Horizontal and vertical diffusion, dry deposition

Diffusion algorithms are less diverse than advection

schemes. The physical reason for one of the common dif-

fusion parameterisations is described in detail by Smagorin-

sky (1963), who suggested a formula for grid-scale scalar

eddy diffusivity based on the model resolution and wind

speed derivatives, thus connecting the numerical features

of the simulations and hydrodynamics. It is widely used in

chemical transport models (Kukkonen et al., 2012).

The dry deposition is usually accounted for as a bound-

ary condition for the vertical advection–diffusion equation.

Computation of dry deposition for gases practically al-

ways follows the electrical analogy, for which one of the

first comprehensive parameterisations was suggested by We-

sely (1989). Among the extensions of this approach, one

was suggested by Sofiev (2002), who combined it with ver-

tical diffusion and connected it with the Galperin advection

scheme. The algorithm used an effective mean diffusion co-

efficient over thick layers calculated from high-resolution

meteorological vertical profiles, the direction also recom-

mended by Venkatram and Pleim (1999). These thick lay-

ers were determined using the subgrid information available

from the advection scheme, which increased the accuracy of

both algorithms (Sofiev, 2002).

For aerosol species, the electrical analogy is not cor-

rect (Venkatram and Pleim 1999). Compromising approaches

suggested by Slinn (1982) and Zhang et al. (2001) and up-

dated by Petroff and Zhang (2010) involve numerous empir-

ical relations, sometimes on thin ground. A more rigorous

approach unifying the gas and aerosol deposition parameter-

isations into a single solution was developed by Kouznetsov

and Sofiev (2012).

1.3 Organisation of the paper

The current paper describes the Eulerian transport algorithm

of the System for Integrated modeLling of Atmospheric

coMposition SILAM v.5, which is based on the advection

scheme of Michael Galperin with several updates.

The paper is organised as follows. Section 2 describes

the original algorithm of Michael Galperin and positions the

scheme among other approaches. Section 3 presents the im-

provements made during its implementation and testing in

SILAM. Section 4 outlines the scheme interconnections with

other model parts. Standard and advanced model tests are

shown in Sect. 5. Finally, the discussion in Sect. 6 includes

an analysis of the scheme performance in the tests, as well as

comparison with other algorithms.

Following the SILAM standards, all units throughout the

paper are the basic SI: (mole) for chemicals, (kg) for aerosols

without chemical speciation, (m) for distance and size, (s) for

time, etc. The model operates with concentrations (mol m−3)

or (kg m−3). Some of the tests below are formulated in mix-

ing ratios (mol mol−1) or (kg kg−1).

2 Background

2.1 Basic equations

We consider the forward dispersion equation with the first-

order K-theory-based closure for diffusion:

Lϕ = E, where L=
∂

∂t
+

∂

∂ξi
(ui)

−
∂

∂ξi
ρµij

∂

∂ξj

1

ρ
+ ζ. (1)

Here ϕ is the concentration of the pollutant, t is time,

E is the emission term, ξi , i = 1..3 denote the three spatial

axes, ui are components of the transport velocity vector along

these axes, µij are components of the turbulent diffusivity

tensor, ρ is air density, and ζ represents the transformation

source and sink processes.

Equation (1) is considered on the time interval t ∈ (t0, tN )

in the domain {ξi} ∈4= [h1,H ]×�, where the heights h1

and H are the lower and upper boundaries of the compu-

tational domain and � is the horizontal computational area

with border ∂�. The initial conditions are

ϕ
∣∣
t=t0 = ϕ0(ξ). (2)

Boundary conditions depend on the type of the simula-

tions. In a general form, they constrain concentration and/or

its first derivative:

α
∂ϕ

∂ξi

∣∣∣∣
ξj∈ ∂ 4

+ β ϕ|ξj∈ ∂ 4 = γ. (3)

Here the values of α, β, and γ depend on the type of the

boundary. In particular, dry deposition at the surface ξ3 = h1

is described via α = µ33, β =−vd (dry deposition velocity),

and γ = 0; prescribed concentration ϕl at the lateral bound-

aries ξ1,2 ∈ ∂� implies α = 0, β = 1, γ = ϕl , etc. A global

domain would require periodic longitudinal conditions.

2.2 Advection scheme of Michael Galperin

The current section presents the advection algorithm sug-

gested by Michael Galperin in the 2000s as a contribution

to the Eulerian transport scheme of SILAM. The idea of the

scheme can be found in a short methodological publication

of Galperin (2000) (in Russian) and conference materials

(Galperin, 1999; Sofiev et al., 2008). It is very briefly out-

lined by Petrova et al. (2008) (hereinafter referred to as P08),

but no systematic description exists so far.

For the 1-D case, let us define the simulation grid, ξ1 = x,

as a set of I grid cells i = 1..I . Let the coordinate of the

centre of the ith grid cell be xi , and the coordinates of the

cell left- and right-hand borders be xi−0.5 and xi+0.5, respec-

tively. The 1-D cell size is then Vi = xi+0.5−xi−0.5. The ad-

vected field ϕ, in each grid cell i, is defined via the total
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Figure 1. Advection step of the scheme of Michael Galperin.

mass in the cell Mi and the position of the centre of mass

Xi , Xi ∈ [xi−0.5,xi+0.5]:

Mi =

xi+0.5∫
xi−0.5

ϕ(x)dx,

Xi =
1
Mi

xi+0.5∫
xi−0.5

xϕ(x)dx.

(4)

Let us represent the mass distribution in each grid cell via

the rectangular slab:

πni (x)=


1

2ωni
,

∣∣x−Xni ∣∣≤ ωni
0, otherwise

, (5)

where n is the time step and ωni =

min
( ∣∣Xni − xi−0.5

∣∣ , ∣∣Xni − xi+0.5

∣∣ ) is the distance from

the centre of mass Xni to the nearest border of the cell i.

Equation (5) defines the widest unit-volume slab that can be

confined inside the cell (Fig. 1) for the given centre of mass.

The advection scheme consists of a transport step and a re-

projection step. At the transport step, each slab πi is moved

along the velocity field u(x). Advection of the slab does not

change its shape within the time step δt = tn+1− tn, but can

move it anywhere over the domain or bring it outside. In

essence, the slab transport is replaced with advection of its

mass centre, which during this time step becomes analogous

to a Lagrangian particle:

Xn+1
i =Xni +

tn+1∫
tn

u(Xni , t)dt, (6)

where u(Xni , t) is the wind speed at the mass centre location.

The original Galperin scheme employed wind at the cell

mid-point xi and used explicit first-order time discretisation:

u(xni , tn)= u
n
i . Then the transported slab is given by

π̃ni (x)= π
n
i (x− u

n
i δt). (7)

Following the transport step (7), the masses Mk and cen-

tres of massXk of the receiving set of cells k ∈K are updated

using the transported slabs π̃ni :

Mn+1
k =

Nk∑
i=1

αi,kM
n
i ,

Xn+1
k =

1

Mn+1
k

Nk∑
i=1

βi,kM
n
i ,

(8)

where αi,k =
∫ xk+0.5

xk−0.5
π̃ni (x)dx and βi,k =

∫ xk+0.5

xk−0.5
xπ̃ni (x)dx

correspond to the mass and the first-moment fractions arriv-

ing from the cell i into cell k. The integrals are easy to eval-

uate due to the simple form of πni (x) in Eq. (5). In essence,

Eq. (8) describes a mass-conservative projection of the ad-

vected slab to the computation grid.

The coefficients αi,0 =
∫ 0.5

−∞
π̃ni (x)dx and αi,I+1 =∫

∞

I+0.5
π̃ni (x)dx determine the transport outside the domain

through the left and right borders, respectively; that is,

the scheme is fully accountable and mass-conservative

since
∑
k

αi,k =
∞∫
−∞

π̃ni (x)dx = 1 for each i. Also, since the

functions πni (x) are nonnegative, the coefficients αi,k are

nonnegative, and consequently Mn+1
k ≥ 0 as long as Mn

i ≥ 0

for all i. It means that the scheme is positively defined for

any simulation set-up: u,1t, and discretisation grid.

In multiple dimensions, the slabs are described by the to-

tal mass in multidimensional cells and centres of mass along

each dimension. In two dimensions, an analogue of Eq. (5)

will be

5ni,j (x,y)= π
n
i,j (x)π

n
i,j (y), (9)

where the functions πi,j (x) and πi,j (y) depend on Xi,j and

Yi,j , respectively. The advection step in the form of Eq. (7)

and the slab projection integrals Eq. (8) are then defined in

2-D space.

However, a simpler procedure used in the original scheme

is obtained with dimensional splitting, where the transport in

each dimension is processed sequentially with the grid pro-

jection applied in between. For an x−y split, the intermediate

distribution for each row j is obtained by setting

5
n+1/2
i,j (x,y)= π̃ni,j (x)π

n
i,j (y), (10)

evaluating αi,k and βi,k from π̃ni,j (x) and updating

Mi,j , Xi,j and Yi,j . Since
∫ yj+0.5

yj−0.5 πi,j (y)dy = 1 and∫ yj+0.5

yj−0.5 yπi,j (y)dy = Y
n
i,j , the 2-D slab projection simplifies
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to

M
n+1/2
k,j =

Nx∑
i=1

αi,kM
n
i,j

X
n+1/2
k,j =

1

M
n+1/2
k,j

Nx∑
i=1

βi,kM
n
i,j

Y
n+1/2
k,j =

1

M
n+1/2
k,j

Ni∑
i=1

αi,kM
n
i,jY

n
i,j .

(11)

The y advection is then performed by taking the transport

step for π
n+1/2
i,j (y) starting from Y

n+1/2
i , evaluating αi,k and

βi,k from π̃
n+1/2
i,j (y), and applying the re-projection Eq. (11)

with X and Y inverted. The generalisation to three dimen-

sions is analogous.

2.3 Relation of the Galperin scheme to other

approaches

The Galperin scheme shares some features with other ap-

proaches (see the reviews of Rood, 1987, and Lauritzen et

al., 2011). Arguably the closest existing scheme is the finite-

volume approach of Egan and Mahoney (1972), hereinafter

referred to as EM72, and Prather (1986), hereinafter P86.

The main similarity between these schemes is the represen-

tation of the mass distribution as a set of slabs (rectangular

in EM72 and continuous polynomial distributions in P86),

one per grid cell, with the mass centre identified via the slab

first moment, plus additional constraints. During the EM72

and P86 advection steps, mass and the first moment are con-

served, similarly to the reprojection step (8). However, the

similarity ends here.

There are several principal differences between the

EM72/P86 and Galperin algorithms.

Firstly, in EM72 the slab width is computed via the second

moment (variance) of the mass distribution in the grid cell.

P86 uses the second moments to constrain the shape of the

polynomials. As a result, this moment has to be computed

and stored for the whole grid, and the corresponding conser-

vation equation has to be added, on top of those for the mass

and the first moment. Galperin’s approach does not require

the second moment, instead positioning the slab against the

cell wall. In fact, EM72 pointed out that the second moment

can be omitted, but did not use the wall-based constraint in

such a “degenerated” scheme, which severely affected its ac-

curacy.

Secondly, EM72 uses the movements of the slabs in ad-

jacent grid cells to calculate the mass flows across the bor-

der. Such local consideration requires the Courant number

to be less than 1: the so-called “portioning parameter” (a

close analogy to the Courant number in the scheme) is lim-

ited between 0 and 1. The same limitation is valid for the P86

approach. Galperin’s scheme can be applied at any Courant

number and its re-projection step can rather be related to Lin

and Rood (1996).

3 Updates of the scheme in SILAM v.5

There are several features of the original scheme which make

it difficult to use in large-scale chemical transport simula-

tions. These are listed here and the corresponding improve-

ments are introduced in the following sub-sections.

– The scheme is formulated with zero inflow boundary

conditions.

– Real-wind tests have shown that the scheme has difficul-

ties in complex-wind and complex-terrain conditions,

similar to EM72 (Ghods et al. 2000).

– The explicit forward-in-time advection (Eq. 7) is inac-

curate.

– The scheme, being very good with individual sharp

plumes over zero background, noticeably distorts the

smoother fields with a non-zero background – see P08.

In addition, the accuracy of the dimension split was increased

via symmetrisation: the order of dimensions in SILAM rou-

tines is inverted each time step: x−y−z−z−y−x (Marchuk,

1995).

3.1 Lateral and top boundary conditions

The open boundary for the outgoing masses is kept in

SILAM regional simulations. The inflow into a limited-area

domain is defined via prescribed concentration at the bound-

ary (Eq. 3), α = 0, β = 1, γ = ϕl . The mass coming into the

domain during a single time step is equal to

M in
1 = ϕl(x0.5) u(x0.5) ℵ(u(x0.5))δt,

M in
I = ϕl(xI+0.5) |u(xI+0.5)| ℵ(−u(xI+0.5))δt.

(12)

Here ℵ(u) is a Heaviside function (= 1 if u > 0, = 0 if

u≤ 0). Assuming the locally constant wind, we find that

M in is distributed uniformly inside the slab, similar to that

of Eq. (5). For e.g. the left-hand border, the continuous form

will read

5n+1
in (x)={
ϕl(x0.5) ℵ(u(x0.5, tk))δt, x ∈

[
x0.5, x0.5+ u(x0.5, tn) ℵ(u(x0.5, tn)) δt

]
0, otherwise .

(13)

It is then projected to the calculation grid following Eq. (8).

The top boundary follows the same rules as the lateral

boundaries. At the surface, the vertical wind component is

zero, which is equivalent to closure of the domain with re-

gard to advection.

Global-domain calculations require certain care: SILAM

operates in longitude–latitude grids; that is, it has singular-

ity points at the poles and a cut along the 180◦ E line. For

longitude, if a position of a slab part appears to be west of

−180◦ E or east of 180◦ E, it is increased or decreased by

www.geosci-model-dev.net/8/3497/2015/ Geosci. Model Dev., 8, 3497–3522, 2015
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360◦, respectively. Resolving the pole singularity is done by

reserving a cylindrical reservoir over each pole. The radius of

the reservoirs depends on the calculation grid resolution but

is kept close to 2◦. The calculation grid reaches the borders

of the reservoirs, whose mean concentrations are used for the

lateral boundary conditions:

ϕ
∣∣
y2=y2_0.5

= ϕS_pole(t,z);

ϕ
∣∣
y2=y2_J+0.5

= ϕN_pole(t,z).
(14)

Vertical motion in the pole cylinders is calculated sepa-

rately using the vertical wind component diagnosed from the

global non-divergence requirement.

3.2 Extension of the scheme for complex wind patterns

The original Galperin scheme tends to accumulate mass at

stagnation points where one of the wind components is small.

Similar problems were reported by Ghods et al. (2000) for

the EM72. Ghods et al. (2000) also suggested an explanation

and a generic principle for solving the problem: increasing

the number of points at which the wind is evaluated inside

the grid cell. For application in the Galperin scheme, it can be

achieved by separate advection of each slab edge instead of

advecting the slab as a whole. This allows for shrinking and

stretching of the slab following the gradient of the velocity

field. Formally, this can be written as follows.

Let us again consider the 1-D slab that has been formed

according to Eq. (5). Its edges are

XL, i =Xi −ωi, XR,i =Xi +ωi . (15)

The advection step takes the wind velocity at the left and

right slab edges and transports them in a way similar to

Eq. (6) with the corresponding wind velocities. The new slab

is formed as a uniform distribution between the new positions

of the edges:

π̃k+1
i (x)=


1

X̃kR,i−X̃
k
L ,i

, X̃k+1
L,i ≤ x ≤ X̃

k+1
R,i

0, otherwise

, (16)

where X̃kL,i, X̃
k
R,i are the new positions of the slab edges at

the end of the time step. This new slab is then projected fol-

lowing Eq. (8).

3.3 Changing wind along the mass-centre trajectory

The explicit advection step (Eq. 7) is inaccurate and can be

improved under the assumption of linear change of wind in-

side each grid cell, with values at the borders coming from

the meteo input:

u(x)=u(xi−0.5, tn)
(xi+0.5− x)

(xi+0.5− xi−0.5)

+ u(xi+0.5, tn)
(x− xi−0.5)

(xi+0.5− xi−0.5)

xi−0.5 ≤ x ≤ xi+0.5. (17)

Then, the trajectory equation (6) can be piece-wise inte-

grated analytically for each slab edge. Let us denote 1u=

ui+0.5− ui−0.5, 1t = tn+1− tn, α =1u/1t and consider

the transport starting at e.g. xi−0.5. Then, the time needed for

passing through the entire cell, 1x = xi+0.5− xi−0.5, is

Tcell = log(1+α1x ui)/α. (18)

If1t < Tcell, the point will not pass through the whole cell

and stop at

x1t = xi−0.5+ ui(expαt − 1)/α. (19)

Applying sequentially Eqs. (18) and (19) until completing

the model time step 1t , one obtains the analytical solution

for the final position of the slab edges.

This approach neglects the change of wind with time.

However, the integration method is robust, since the linearly

interpolated wind field is Lipschitz-continuous everywhere,

which in turn guarantees the uniqueness of the trajectories of

XL and XR . Therefore, using the analytic solution Eqs. (18)

and (19), the borders of the slabs will never cross.

3.4 Reducing the shape distortions

The original scheme tends to artificially sharpen the plume

edges and to gradually redistribute the background mass in

the vicinity of the plume towards it (Fig. 2, blue shapes).

Similar “antidiffusive” distortions were also reported by P08

and by EM72 – for their scheme.

The reason for the feature can be seen from Eq. (8): if a

large mass is concentrated at one of the grid cell sides, the

centre of mass becomes insensitive to the low-mass part of

the cell; that is, a small mass that appears there from the

neighbouring cell is just added to the big slab with little effect

on its position and width.

A cheap, albeit not rigorous, way to confront the effect is

to compensate for it via an additional small pull of the mass

centre towards the cell mid-point before forming the slab for

advection:

X̂ni = xi + (X
n
i − xi)(1− ε), (20)

where ε is the smoothing factor. The adjusted mass centre X̂ni
is then used to form the slab Eq. (5).

The way this smoother works becomes clearer if one no-

tices that the Galperin scheme becomes similar to the up-

wind algorithm if the locations of the centres of masses are

always forced to the middle of the grid cells at the beginning

of the time step. The upwind scheme is very diffusive, and

relaxation towards it confronts the antidiffusive features of

the Galperin approach. The actual value of ε cannot be eas-

ily obtained from some optimisation problems. Its increase

from 0 up to 1 gradually makes the scheme more and more

diffusive, with the above distortions becoming negligible by
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a)     b)  

c)     d)  

Figure 2. Shape preservation tests: (a) step, (b) triangle peak, (c) sine-shaped dip, and (d) sine-shaped peak. Sequential positions are shown:

“r” denotes the scheme without a smoother, “r_diff” with it. The legend includes the number of times steps made. Wind is from left to right;

Courant = 0.4.

ε ∼ 0.08 (Fig. 2, red shapes). This behaviour and the value

were similar for various Courant numbers and tests. It is also

seen from the spectral features of the scheme in the next sec-

tion – and further discussed in relation to scheme tests.

3.5 Analysis in frequency space

The non-linearity introduced by the coupling of cell mass and

centre of mass in Eq. (8) makes formal stability and conver-

gence analysis after Charney et al. (1950) difficult. However,

the features of the scheme can be investigated numerically

following the approach of Kaas and Nielsen (2010).

The scheme was run for 200 time steps in a 1-D domain

with 100 grid points. For each wave number up to 25, the

scheme was initialised with the corresponding sine function

and run with Courant numbers ranging from 0.05 to 0.95 in

steps of 0.05. This allowed evaluation of the spectrally re-

solved root mean squared error (RMSE) and, after a Fourier

transform, the spectral amplification factor (cumulative for

the 200 steps) for each wave number. The amplification fac-

tor quantifies the scheme’s ability to resolve the correspond-

ing harmonics, while the RMSE additionally includes the ef-

fect of phase errors and possible spurious modes. Since the

scheme is formulated for nonnegative concentrations, a con-

stant background B = 1 is added to each waveform.

Figure 3 presents the amplification factor and RMSE for

the Galperin scheme without the smoother (panels a, d) and

with it, ε = 0.08 (panels c, f). Furthermore, the impact of

doubling the background component to twice the wave am-

plitude is shown (panels b, e). In the case of B = 1, the

scheme without the smoother shows only minor damping of

all considered wave numbers (k up to 25). The RMSE has a

maximum for k of between 5 and 10 but stays almost con-

stant from k = 10 to k = 25. This shows the scheme’s ability

to resolve sharp gradients when there is no significant back-

ground. The cumulative amplifying factors for some wave-

lengths exceed 1, but this does not imply instability, since the

single-step amplifying factors fluctuate depending on the po-

sitions of the centres of mass. If the integration is continued

over a large number of time steps (not shown), the solution

converges to a combination of rectangular pulses (a similar

feature was mentioned in EM72 for that scheme).

Introducing the smoothing ε = 0.08 resulted in strong at-

tenuation of high-frequency components and increased the

RMSE for wave numbers above ∼ 10. Since the smooth-

ing factor effectively damps the fluctuations of the centres

of mass, the amplification factors are below 1 for all wave

numbers. Adding a background term also reduces the respon-

siveness of the mass centres to newly coming amounts (see
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a)  b)  c)  

d)  e)  f)  

 
Figure 3. Spectral analysis for 1-D. Panels (a) and (d): amplification factor (AF) and RMSE, respectively, for the Galperin scheme without

a smoother; (b), (e): AF and RMS for the Galperin scheme with a large background; (c), (f): AF and RMSE for the Galperin scheme with

smoother ε = 0.08.

Eq. 8), which leads to a similar damping of the higher fre-

quencies as in Fig. 3c, f.

To further investigate the spectral response of the scheme,

it was evaluated with a broadband input:

f (x)= sin(2πx cos(20πx))+B. (21)

Figure 4, right panel, depicts the power spectral densities for

the exact and numerical solutions after a single revolution

with CF= 0.7 and 100 grid points. The corresponding solu-

tions are shown in the leftpanel. For the comparison, results

are also shown for the fourth-order Bott (1989) scheme with-

out shape preservation, and for a generic non-conservative

upstream semi-Lagrangian scheme with cubic spline inter-

polation.

With B = 1, all schemes capture the first spectral peaks

around k = 10 and therefore resolve most of the spectral con-

tent. Without a smoother, the Galperin scheme that follows

the spectrum of the true solution also resolves the spectral

features around k = 30. Application of the smoother leads to

a damping effect throughout the spectrum, including the spu-

rious high-frequency components, such as the peak at k = 40.

This illustrates the use of the smoother for reducing over- and

under-shoots, as discussed in Sect. 3.4.

Similarly to the single-harmonic tests, the situation

changes in the presence of a significant background (B = 2).

Regardless of smoothing, the Galperin scheme damps the

spectral peaks starting around k = 10, which corresponds to

the reduction of amplitude visible in the numerical solution.

4 Connection of the advection scheme with other

SILAM modules

Construction of the dispersion model using the Galperin ad-

vection scheme as its transport core is not trivial because all

other modules should support the use of the sub-grid infor-

mation on positions of the mass centres. In some cases it is

straightforward, but in others one can only make the module

to return them undamaged back to advection.

4.1 Vertical axis: combined advection, diffusion, and

dry deposition

For the vertical axis, SILAM combines the Galperin advec-

tion with the vertical diffusion algorithm following the ex-

tended resistance analogy (Sofiev, 2002), which considers the

air column as a sequence of thick layers. Vertical slabs within

these layers are controlled by the same 1-D advection, which

is performed in absolute coordinates – either z- or p-, de-

pending on the vertical (height above the surface or hybrid).

Settling of particles is included in advection for all layers ex-

cept for the first one, where the exchange with the surface is

treated by the dry deposition scheme.

The centres of masses are used but not modified by dif-

fusion: the effective diffusion coefficient between the neigh-

bouring thick layers is taken as an inverse of aerodynamic re-

sistance between the centres of mass of these layers (Sofiev,

2002):

<Ki,i+1>=
1zi,i+1

Zi+1∫
Zi

dz
Kz(z)

. (22)
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a)  b)  

c)  d)  

 
Figure 4. Example of input and output spectra for broadband input to the advection schemes with zero and nonzero background levels.

Left panels: exact and numerical solutions. Right panels: power spectrum densities initially and after one revolution. Top: B = 0; bottom:

B = 1.0.

The effective thickness 1zi,i+1 is taken to be proportional

to the pressure drop between the centres of masses, which

ensures equilibration of mixing ratios due to diffusion.

In the lowest layer, the dry deposition velocity is calcu-

lated at the height of the centre of mass Z1 following the

approach of Kouznetsov and Sofiev (2012).

The advantages of using the mass centres as the vertical

diffusion meshes are discussed in detail by Sofiev (2002),

where it is shown that the effect can be substantial if an in-

version layer appears inside the thick dispersion layer. Then

the location of the mass centre above/below the inversion can

change the up/down diffusion fluxes by a factor of several

times.

4.2 Emission-to-dispersion interface

Emission data are the only source of sub-grid information

apart from the advection itself: location of the sources is

transformed into the mass centre positions of their emission.

For point sources, the mass is added to the corresponding

grid cell and centres of masses are updated:

M̂ijk =Mijk +Mems

X̂ijk = (XijkMijk +MemsXems)/M̂ijk

Ŷijk = (YijkMijk +MemsYems)/M̂ijk

Ẑkijk = (Z
k
ijkMijk +MemsZ

k
ems)/M̂ijk

, (23)

whereMems is the mass emitted to the cell (i,j,k) during the

time step, Xems,Yems are the coordinates of the source in the

grid and Zkems is the effective injection height in the layer k,

equal to the middle of the layer if no particular information

is available.

For area sources, the approach depends on the source grid.

If it is the same as the computational one, the mass centre

is put to the middle of the cell (no extra information can be

obtained). If the grids are different, the source is re-projected.

For each computational grid cell (i,j), the centre of mass of

emission is

Xem,ij =

∫∫
(x,y)∈(i,j)

xM(x,y)dx dy∫∫
(x,y)∈(i,j)

M(x,y)dx dy
, (24)

Yem,ij =

∫∫
(x,y)∈(i,j)

yM(x,y)dx dy∫∫
(x,y)∈(i,j)

M(x,y)dx dy
,

whereM(x,y) denotes the original source distribution. After

that, the procedure is the same as in the case of point source

Eq. (23).

4.3 Meteo-to-dispersion interface

Modifications described in Sect. 3 require staggered wind

fields, which have to be provided by the meteo pre-processor
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(unless they are directly available from the input data). More-

over, the pre-processor needs to ensure consistency between

the flow and air density fields (Prather et al. 1987; Rotman et

al., 2004; Robertson and Langner, 1999). This is particularly

important with the present advection scheme, since mixing

ratio perturbations caused by the mass-flow inconsistency are

not suppressed by numerical diffusion.

The wind pre-processing follows the idea of a “pressure

fixer”, which means adding a correction δV to the original

horizontal wind field V 0 such that for their sum, the vertical

integral of mass flux divergence corresponds to the surface

pressure tendency:∫ ps

0

∇ · (V 0+ δV )dp =−
∂ps

∂t
, (25)

where the surface pressure tendency ∂ps/∂t is evaluated

from the meteorological input data. The correction δV is not

uniquely determined, and SILAM adopts the algorithm of

Heimann and Keeling (1989), where the correction term is

given by the gradient of a 2-D potential function:

δV =∇ψ(x,y). (26)

Substituting Eq. (26) into (25) yields a Poisson equation

forψ(x,y), which is solved to subsequently recover δV . The

obtained correction flux is then distributed within the column

proportionally to the air mass in each layer, ending up with

the corrections to the horizontal winds. The vertical wind is

then evaluated in each column to enforce the proper air-mass

change in each cell.

4.4 Chemical module interface

This interface is implemented in a very simple manner: the

mass centres are not affected by the transformations. The

chemical module deals exclusively with concentrations in the

grid cells. The newly created mass is added to the existing

one, thus accepting its centre position in the cell. If some

species did not exist before the transformation, the new mass

centre is put to the middle point of the cell.

5 Testing the Galperin advection algorithm

5.1 Standard tests

A set of basic tests and comparison with some classical ap-

proaches has been presented by Galperin (1999) and P08 for

the original scheme, along with Bott, Holmgren, and several

other schemes. Their main conclusions were that the scheme

is very good for sharp-edge patterns: in particular, it trans-

ports delta functions without any distortions. It had, however,

issues with long slopes, smooth shapes, etc., where the ten-

dency to gradually convert them to a collection of rectangles

was noticeable.

Figure 5. Linear-motion tests with a constant-release point source at

Xs and varying wind speed along the x axis. Upper panel: Courant

number; lower panel: concentration (arbitrary unit). Wind blows

from left to right. Without smoother.

Addressing these concerns, tests used during the scheme

improvements and implementation in SILAM included puff-

over-background, conical and sine-shaped peaks and dips,

etc. (some examples are shown in Fig. 2), a divergent 1-

D high-Courant wind test in the 1-D divergent wind field

(Fig. 5), a constant-level background field in eight vortices

with stagnation points (Fig. 6), and rotation tests for various

shapes (Fig. 7).

The scheme stays stable at arbitrarily high Courant num-

bers and handles the convergence and divergence of the flows

(Fig. 5).

Transport and rotation tests of the improved scheme main-

tain low distortions of the shapes: the L2 norm of the er-

ror varies from 0.1 % up to 3.8 % of the initial-shape norm

– for the most challenging task in Fig. 7. The effect of the

improvements in comparison with the original scheme is

demonstrated in Fig. 2, where the blue contours show the

results of the original scheme. In particular, application of

the smoothing Eq. (20) reduced the distortions of smooth

shapes (red curves), largely resolving the concerns of P08:

Fig. 2b presents the same test as one of the P08 exercises.

However, the smoother also leads to a certain numerical vis-

cosity of the scheme, so its use in problems requiring non-

diffusive schemes (e.g. narrow plumes from accidental re-

leases) should be avoided.

The test with eight vortices was difficult for the origi-

nal scheme (Fig. 6a) due to its insufficient sub-grid reso-

lution, but the improvement Eqs. (15)–(16), Sect. 3.2, re-

solved the problem (Fig. 6b). This refinement is instrumental

in complex-topography domains.
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 Figure 6. Test with eight non-divergent 2-D vortices. Left panel: test of the original scheme (5)–(7), time step 8; right panel: improved

scheme (15)–(16), time step 50. Both tasks were initialised with constant value 0.4, also used as boundary conditions. Without smoother.

5.2 Global 2-D tests

Performance of Galperin’s advection scheme in the global

spherical domain was assessed with the collection of de-

manding tests of Lauritzen et al. (2012). The cases are de-

signed to evaluate the accuracy of transport schemes at a

wide range of resolutions and Courant numbers. The tests

used a prescribed non-divergent 2-D velocity field defined on

a sphere and consisting of deformation and rotation, so that

the initial concentration pattern is reconstructed at the end

of the test, t = T , providing the exact solution ϕ(t = 0)=

ϕ(t = T ).

Four initial concentration distributions were used (Fig. 8):

“Gaussian hills” with unity maximum value, “cosine bells”

with a background of 0.1 and maxima of 1, “slotted cylin-

ders” – a rough pattern with a 0.1 background and 1 max-

imum level, and “correlated cosine bells” – the distribution

obtained from “cosine bells” with a function

ϕccb = 0.9− 0.8ϕ2
cb. (27)

The tests were run with SILAM on a global regular non-

rotated lon–lat grid, with R = 6400 km and T = 12 h. Spatial

resolutions were 6, 3, 1.5, 0.75, 0.375, and 0.1875◦, each run

with mean Courant numbers of ∼ 5.12, ∼ 2.56, and ∼ 0.85

(for a 6◦ grid they correspond to the model time step of

T/12= 1 h, T/24= 30 min, and T/72= 5 min), and a total

of 18 runs for each initial pattern.

Examples of the most challenging runs with slotted cylin-

ders at t = T/2 and at t = T are shown in Figs. 9 and 10,

respectively. The corresponding error fields are collected in

Fig. 11 as decimal logarithms of the absolute difference be-

tween the corresponding field in Fig. 10 and the slotted-

cylinder initial shape of Fig. 8. The main complexity of the

test was in reproducing the very tiny sharp-edge structures

obtained from the cylinder cut at t = T/2 – and then return-

ing them back by t = T . The pictures, together with the error

field at t = T (Fig. 11), show that already 24 time steps al-

low the scheme to make the shape recognisable (3◦,C = 5.12

pattern), whereas 48 time steps allow for the main details to

show up. Expectedly, certain deviations at the cylinder edge

remain at any resolution – as is visible from the error fields.

Deviation of the resulting field ϕT = ϕ(t = T ) from the

initial shape ϕ0 = ϕ(t = 0) was considered in three spaces:

L2, L∞, and L1. The corresponding distance metrics are de-

fined as follows:

l2 =

[
S[(ϕT −ϕ0)

2
]

S[ϕ2
0 ]

]1/2

, l∞ =
max |ϕT −ϕ0|

maxϕ0

,

l1 =

[
S[|ϕT −ϕ0|]

S[|ϕ0|]

]
, (28)

where S[•] is an area-weighted sum over latitude and longi-

tude. The values of these three metrics for all model runs are

presented in Fig. 12. The main interest of these curves is that

they show the rate of the scheme convergence (straight grey

lines correspond to the first- and second-order convergence

rates). Expectedly, the rates depend on the transported shape

(the smoother the shape, the faster the convergence) and on

the norm used. Thus, the scheme converges in L1 faster than

in L2, whereas in L∞ no convergence in the case of sharp

edges is an expected result. The rate in the L2 norm is in be-

tween the first and the second order, whereas in L1 it is close

to the latter one.

Advection should also keep the local ratio of the tracer’s

concentrations. Such a ratio between “cosine bells” and “cor-

related cosine bells” was calculated at t = T/2 and t = T .
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Figure 7. Double-vortex rotation tests for a rectangular split between the vortices (upper panels); three single-cell peaks and two connected

rectangles (middle panels); and sin- and cone-shaped surfaces (lower panels). A series of time steps is shown in the left panels, except for the

low panel (shown t = 361). Right panels: error field after one full revolution (obs 10-fold more sensitive scale and relative L2 norm given

above each plot). Max Courant ∼ 1.5. Grid dimensions 400× 200. Without smoother.
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Figure 8. Initial shapes of the puffs for the 2-D global test on the sphere.

Since these initial patterns are related by Eq. (27), the con-

centration fields during the tests should maintain the same

relation. The scatter plots of the concentrations in these two

tests give an indication of how the ratio is kept. Ideal advec-

tion would keep all points on a line given by Eq. (28). The

results of the tests for t = T/2 are shown in Fig. 13, where

the results with and without the smoother in Eq. (20) are pre-

sented. The smoother improves the scheme mixing preserva-

tion; that is, it can be recommended to chemical composi-

tion computations, which usually also tolerate some numeri-

cal viscosity.

5.3 Global 3-D test with real wind

Testing the scheme with real-wind conditions has one ma-

jor difficulty: there is no accurate solution that can be used

as a reference. An exception is simulations of the constant-

mixing-ratio 3-D field, which, once initialised, must stay

constant throughout the run. Deviation from this constant is

then the measure of the model quality. Such a test verifies

both the scheme and the meteo-to-dispersion interface, which

has to provide the consistent wind fields.

The constant-vmr test was set with winds taken from the

ERA-Interim archive of ECMWF, for the arbitrarily selected

month of January 1991 (Fig. 15). The model was initialised

with vmr= 1 and run with 3◦ of lon–lat resolution and a time

step of 30 min (max Courant number exceeding 13 in the

stratosphere and reaching up to 2–3 in the troposphere). The

model top was closed at 10 Pa, which corresponds to the top

level of the ERA-Interim fields. The procedure described in

Sect. 4.3 was used to diagnose the vertical wind component.

The results of the test are shown in Fig. 15, which depicts

the model state after 240 h of the run, panel a) showing the

boundary-layer vmr, and panel b) presenting it in the strato-

sphere. The zonally averaged vertical cross section is shown

in panel c). Green colours in the pictures correspond to less

than 1 % of the instant-field error.

An important message is that the limited distortions about

1–2 % are visible in a few places, but they are not related

to topography, rather being associated with the frontal zones

and cyclones. The comparatively coarse spatial and tempo-

ral resolution of the test makes the associated changes of

the wind quite sharp, so that the dimension-split errors start

manifesting themselves. Smoother flows in the stratosphere

posed minor challenges for the scheme. The L2 error (not

shown) is approximately proportional to the model time step.

6 Discussion

The presented SILAM v.5 transport module is based on the

semi-Lagrangian advection scheme of Michael Galperin with

subgrid information available through the positions of cen-

tres of masses. It poses certain challenges in implementation.

Firstly, one has to organise the sub-grid information use and

transmission between the advection and other model units.

Secondly, the scheme requires storage of four full fields

for each transported species (mass and moments) and care

should be taken to maintain an efficient exchange between

the processors and the computer memory. Thirdly, the possi-

bility to run with high Courant numbers and MPI paralleli-

sation via horizontal domain split can be utilised only if the

MPI split allows for sufficient buffer zones. Finally, the bet-

ter performance of the advection at a Courant number greater

than 1 challenges the implementation of other modules, first

of all, chemistry and emission. Indeed, introduction of emit-

ted mass once per long time step would result in a broken

plume unless the mass is spread downwind over the corre-

sponding distance. Similar problems show up in chemical
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Figure 9. Half-period (t = T/2) shapes for the 2-D global test with slotted cylinders for different spatial and temporal resolutions. Without

smoother.
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Figure 10. Final shapes (t = T ) for the 2-D global tests with slotted cylinders for different spatial and temporal resolutions. Without smoother.
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Figure 11. The error fields for the final shapes of Fig. 10 as compared with the slotted cylinder initial shape in Fig. 8. Without smoother.
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Figure 12. Dependence of the performance metrics l1, l2, and l∞ for the spherical 2-D tests with initial shapes of Fig. 8. Dashed straight

lines mark the slope for the first and second order of convergence. Without smoother.

transformation calculations. At present, the actual SILAM

applications are performed with Courant close to but mostly

smaller than 1 to avoid such problems.

The above challenges are mostly technical and their solu-

tion allows the scheme to demonstrate strong performance

with low computational costs.

In particular, by attributing the release from point source to

its actual location, one can reduce the impact of the common

problem of Eulerian models: point release is immediately di-

luted over the model grid cell. This substantially improves

the transport but does not solve the problem completely:

(i) the chemical module still receives the diluted plume con-

centration, and (ii) the slab size in the case of the source near

the centre of the grid cell will still be as large as the grid

cell itself. A more accurate solution would be the plume-in-

grid or similar approaches, which is being built in SILAM.

Another example of the sub-grid information usage is utili-

sation of full meteorological vertical resolution to calculate

effective values of meteo variables for thick dispersion layers

(Sofiev, 2002).

The model can operate at any Courant number (Fig. 5).

Its time step is limited not by grid cell size, but by a spatial

scale of the wind-shear field; that is, it has to satisfy a much

less restrictive Lipschitz criterion, which relates spatial and

temporal truncation errors (Pudykiewicz et al., 1985). It fol-

lows from the advection step Eq. (6) and the reprojection step

Eq. (8), which do not restrict new positions of the slabs: they

can find themselves anywhere in the grid or outside it after

the time step is made.
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Scatter plot t=T/2, v5-ref vs v5-d092

CU=05.12, ∆λ = 0.75 deg CU=02.56, ∆λ = 0.75 deg CU=00.85, ∆λ = 0.75 deg
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2

Figure 13. Mixing preservation test for cosine bells and correlated cosine bells Eq. (27) at t = T/2. Every two lines show the tests without

(upper line) and with (lower line) a smoother (20).

SILAM heavily relies on such features of Galperin scheme

as mass conservation and accountability: the scheme pro-

vides complete mass budget including transport across the

domain boundaries. In particular, nesting of the calculations

is straightforward and does not need the relaxation buffer at

the edges of the inner domain: the inflow through the bound-

aries is described by the same slabs as the main advection.

The scheme is also shape-preserving – in the sense this term

is used by L14 – that is, it does not result in unphysical so-

lutions, such as a negative mixing ratio. Some distortions are
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Figure 14. A histogram of the mixing diagnostic (stacked) for the

same resolutions, Courant number and smoother factor as in Fig. 13.

Metrics are the following (see text and Lauritzen et al. (2012) for

more details): lr is “real mixing”, lu is “range-preserving unmix-

ing”, and lo is “overshooting”. Values are relative to the reference

CSLAM performance in L14 tests. The picture is comparable with

panel (b) of Fig. 15 in L14.

still possible (Fig. 2), which can be reduced by the smoother

described in Sect. 3.4, Eq. (20).

6.1 Standard advection tests

Evaluating the Galperin scheme with the simple tests

(Figs. 2–7), one can point out the known issues of the classi-

cal schemes resolved in the Galperin approach: high-order

algorithms suffer from numerical diffusion, oscillations at

sharp gradients (require special efforts for limiting their am-

plitude), high computational costs and stringent limits to

Courant number. None of these affects the Galperin scheme.

The main issue noticed during the implementation of the

original scheme was the unrealistically high concentrations

near the wind stagnation points. Thus, the concentration pat-

tern at the test Fig. 6a resembles the situation of a divergent

wind field. However, it is not the case: the 2-D wind pattern

is strictly solenoidal. The actual reason is insufficient reso-

lution of the advection grid: one centre of mass point is not

enough if the spatial scale of the wind variation is compa-

rable with the grid cell size. Tracking the edges of the slab

rather than its centre resolves the problem (Fig. 6b).

The other challenging tasks for Galperin algorithm were

those with smooth background and soft gradients, a frequent

issue for semi-Lagrangian schemes, which is easily handled

by more diffusive approaches. This feature was visible in the

P08 tests where the scheme noticeably distorts the Gaussian

and conical plumes. For the puff-over-background pattern,

the scheme makes a single low-mass dip in the vicinity of

the puff, which receives this mass (Fig. 2). From a formal

point of view, the scheme does not conserve the higher mo-

a)     

b)     

c)  

Figure 15. Constant-vmr test with real-wind conditions after

122 h. (a) vmr within the boundary layer, (b) vmr above the

tropopause, and (c) zone-average vertical cross section of vmr.

Without smoother.

ments inside the grid cell, which becomes a problem when

the pattern changes at a spatial scale shorter than the grid

cell size. The smoothing step (20) may be advised despite it

having no rigorous basis and, as in L14 evaluation of other

schemes, may damage some formal quality scores (adding

this step introduces numerical viscosity – Fig. 2).
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6.2 Global 2-D and real-wind advection tests

The application of the scheme to the highly challenging tests

of Lauritzen et al. (2012) allowed its evaluation in a global

2-D case and comparison with the state-of-the-art schemes

evaluated by L14 and Kaas et al. (2013).

Performing these tests with different spatial and temporal

resolutions, as well as Courant numbers, suggested that the

scheme has an “optimal” Courant number for each spatial

resolution where the error metrics reach their minimum, so

that the increase in temporal resolution is not beneficial. In-

deed, in Fig. 12 the low Courant runs are by no means the

most accurate. This is not surprising: for an ideal scheme,

increasing the grid resolution and reducing the time step

should both lead to gradual convergence of the algorithm;

that is, the error metrics should reduce. For real schemes,

higher temporal resolution competes with accumulation of

the scheme errors with increasing number of steps. Conver-

gence in L14 tests was still solid for all fixed Courant num-

ber series (Fig. 12), but excessive temporal resolution (spe-

cific to each particular grid cell size) was penalised by higher

errors. Similarly, the most accurate representation of the cor-

related patterns is obtained from the runs with the intermedi-

ate Courant numbers (Fig. 13). This seems to be a common

feature: the same behaviour was noticed by L14 for several

schemes.

High optimal Courant numbers, however, should be taken

with care. For L14, the smooth wind fields reduced the

dimension-split error and made the long time steps partic-

ularly beneficial.

It is also seen (Fig. 11) that the best performance, in case of

a near-optimal Courant, is demonstrated by the high-spatial-

resolution simulations, which have reproduced both the sharp

edges of the slotted cylinders, the flat background and the

cylinder’s top planes.

The scheme demonstrated a convergence rate higher than

1 for all metrics and all tests with smooth initial patterns.

Even for the most stringent test with the slotted cylinders,

the scheme showed the first-order convergence rate in the L1

norm (Fig. 12).

Among the other features of the solution, one can notice a

certain inhomogeneity of the background field away from the

transported bodies. The error is very small (< 10−4) for high-

resolution cases (Fig. 11) and < 0.1 % for inexpensive set-

ups, such as 1λ= 0.75, C = 2.56. For coarser resolutions,

it grows. The inhomogeneity also grows with Courant num-

ber, which is opposite to the decreasing error of representa-

tion of the shapes themselves. The issue originates from the

dimension-split error in polar areas, where the spatial scale of

wind change becomes comparable with the distance passed

by the slabs within one time step.

Similar non-monotonicity of background is visible for

some schemes tested by L14. Unfortunately, no error fields

are given there, but Figs. 7–10 there are comparable with

our Fig. 9 (results without a smoother). With few excep-

tions (schemes TTS-I and LPM, notations of L14), all algo-

rithms manifested such patterns unless filters are applied. For

some schemes (SFF-CSLAM3, SFF-CSLAM4, UCISOM-

CS, CLAW, and CAM), these inhomogeneities are visible

also for the tests with shape-preserving filters. One should

note however that the 0.1 level, which distinguishes between

the two violet colours in Figs. 9 and 7–10 of L14, corre-

sponds to the background level in the slotted-cylinder test. As

a result, even a very small deviation leads to the appearance

of such shapes in the plots (note the stripes in the background

of Fig. 8).

Comparing the so-called “minimal resolution” threshold

forL2, the norm of cosine bells to reach 0.033 (Fig. 3 of L14)

for SILAM was about 0.75◦, which puts it in the middle of

that multi-model chart (the specific place depends on whether

the shape preservation is considered or not).

Another criterion can be the optimal convergence of L2

and L∞ norms for Gaussian hills: about 1.7–1.8 for SILAM

– this is again in the middle of the L14 histograms, in

the second half if the unlimited schemes (without shape-

preservation filters) are considered and in the first half if the

unphysical negative concentrations are suppressed (since the

Galperin advection is strictly positively defined, no extra ef-

forts are needed to satisfy this requirement).

Interestingly, the L14 tests were limited with 3◦ as the

coarsest resolution, and it was pointed out that the schemes

start converging only when a certain limit, specific to each

scheme, is reached. The SILAM results show similar be-

haviour only for the lowest Courant number (red lines in

Fig. 12), which indeed required appropriate resolution to start

working. Higher Courant set-ups were much less restrictive

(the errors decrease with growing resolution also for coarse

grids) and, as already pointed out, often worked better than

the low Courant runs (similar to many L14 schemes).

The scheme demonstrated limited distortion of pre-

existing functional dependence – see the cosine bells and

correlated cosine bells tests in Eq. (27) (Fig. 13). Formal

scores suggested by Lauritzen et al. (2012) calculated for the

Galperin scheme are shown in Fig. 14. Notations are the fol-

lowing. lo, “overshooting”, describes the values that fell out-

side the rectangular [0.1 : 1] (Fig. 13), lu, “shape-preserving

unmix”, describes the values inside that rectangular but out-

side the “lens” formed by its diagonal (0.1, 1)–(1, 0.1) and

the curve, and lr, “real mixing”, describes the values inside

the “lens”. Comparison with L14 (Fig. 15, middle panel)

shows that the Galperin scheme outperforms CLAW, SLFV-

ML, SLFV-SL, and all set-ups of ICON schemes, being close

to CAM-SE, MIPAS, and HOMME, and trailing behind the

runs with CSLAM, HEL, SFF, and UCISCOM schemes.

A peculiarity of the mixing diagnostic scores is that they

are significantly affected by the background areas far from

the advected bells, which occupy only a small fraction of the

domain (Fig. 8). As a result, small background fluctuations

discussed above in application to slotted cylinders (see the

error field in Fig. 11) contribute significantly to the mixing
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diagnostic scores too. In particular, the high Courant simula-

tions, which accurately reproduce the bells themselves (the

dots are close to the curve in the scatter plots in Fig. 13),

still show poor formal scores due to non-zero width of the

cloud near the location (0.1, 1), where all background dots

should arrive. This issue contributes most significantly to the

“overshooting” part of the error, but also to the other two

components.

Expectedly, the smoother improves the mixing diagnostic

scores, mainly affecting the representation of the bells them-

selves (Fig. 13). This is in contrast with the schemes tested in

L14, where the shape-preservation filters mostly removed the

penalty for overshooting the background but rarely improved

the other two components, sometimes worsening them.

Following the conclusions of Sect. 3.4 and the 1-D tests,

we used the smoothing factor of 0.08, which is a compromise

between the scheme diffusivity and distortion reduction. As

a result, some non-linearity exists also in the smoothed so-

lution. The test showed that a simple increase in temporal

resolution leads to an increase in the number of steps and re-

lated re-projections, which then worsen the representation of

the bells – but improve the background field by reducing the

dimension-split errors. A synchronous rise of the resolution

in time and space with the same Courant number (columns in

Fig. 13) showed better results for higher-resolving set-ups.

Further investigating the flat-field behaviour in complex

wind patterns, the simulations with the constant-vmr initial

conditions (Fig. 15) were performed, showing that the model

has no major problem in keeping the homogeneous distri-

bution: deviations do not exceed a few %, with no relation

to topography. The existing ups and downs of the vmr are

related to cyclones and atmospheric fronts, which challenge

the dimension-splitting algorithm rather than the core 1-D

advection (it transports the homogeneous field perfectly – no

distortion was found after 105 steps regardless of the Courant

number). Increasing the resolution leads to a lower “un-

mix” of the pattern (not shown). This experiment refines the

“optimal Courant” recommendation of the L14 test, which

had smoother wind fields and, consequently, a higher op-

timal Courant number. For real-life applications, especially

with coarse grids, it may be necessary to choose a time step

short enough to ensure comparable levels of time- and space-

wise truncation errors (Pudykiewicz et al., 1985). This case

also argues for developing the 2-D implementation of the

Galperin scheme, which would eliminate the horizontal di-

mension split.

6.3 Where to use the smoother

When deciding whether to apply the smoother Eq. (20), one

has to keep in mind that the Galperin scheme is always pos-

itively defined and does not need a shape-preserving filter

to provide a “physically meaningful” solution, i.e. without

negative values. It is free from this caveat. The purpose of

the smoother is only to reduce the non-linear distortions of

fields.

The smoother has both a positive and negative impact on

the scheme performance. Among the positive ones are that

(i) it damps the distortions of smooth shapes and gradients

(Sect. 3.4), (ii) it reduces the amplification factor, preclud-

ing it from exceeding 1 even for a few time steps (Sect. 3.5),

and that (iii) it reduces the unmixing problem (Fig. 14). Its

negative features are that (i) the obtained solution is diffusive

(Sect. 3.4), (ii) moderate and high frequencies in the solution

spectrum are damped (Sect. 3.5), and that (iii) formal scores

and convergence rates are lower in some tests (Sects. 5.2 and

6.2). The smoother has little impact on background inhomo-

geneity.

Most of the positive and negative features coincide with

the impact of shape-preserving filters (e.g. L14), despite the

different idea and formulations.

Since the smoother computational cost is negligible, one

can decide whether to apply it depending only on the prob-

lem at hand. Strict interconnections between the species,

smooth patterns and tolerance to diffusion form a case for the

smoother. Conversely, sharp plumes over zero background

(e.g. the accidental release case) argue against it.

The smoother impact grows monotonically with its param-

eter ε. Numerous tests showed that the distortions and above

1 amplification factor essentially disappear at ε ∼ 0.08,

where the diffusivity also becomes significant. This value ap-

peared stable with regard to Courant number and set-up of

the tests.

6.4 Efficiency of the Galperin advection scheme

Evaluation of the scheme efficiency is always very difficult as

it strongly depends on the algorithm implementation, but also

on computers, parallelisation, compiler options, etc. Never-

theless, basic characteristics of the scheme can be deduced

from comparison of its original version with several classical

schemes made by Galperin (2000). It included, in particular,

EM72 and Bott, which appeared > 5 and > 3 times slower,

respectively. Comparison with another implementation of the

Bott routine by Petrova et al. (2008) showed a 7–15 times

difference, depending on tests. The updated scheme version,

however, is bound to be heavier. It is also worth putting it in

line with modern approaches.

In this section, the efficiency of the updated Galperin

scheme is evaluated from several points of view: (i) the scal-

ability with regard to the number of transported species, spa-

tial and temporal resolution, specific to the problem at hand,

(ii) comparison with “standard implementation” of the Bott

algorithm and the semi-Lagrangian scheme, and (iii) com-

parison of the run time in the L14 tests with the HEL and

CSLAM schemes.
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6.5 SILAM run time vs. number of species, temporal

and spatial resolution

The scalability of the scheme and the whole SILAM model

was tested in real-wind global simulations for an arbitrarily

taken 3 days (15–17 May 2012). The reference run was set

with 0.5◦ resolution, six vertical layers, a time step of 30 min,

and one aerosol species. Two types of emission were con-

sidered: an artificial 1 h long source filling up the whole 3-

D domain, and the SILAM own wind-blown dust emission

model, which created dust plumes from sandy areas of the

Sahara. Vertical diffusion, which is coupled with vertical 1-D

advection, was turned off for artificial source tests but turned

on for dust sources in order to allow the model to quickly

populate the upper layers of the domain. Then, the number

of aerosol species, spatial and temporal resolutions were re-

peatedly doubled (one change at a time).

The model was run in a single-processor mode but com-

piled with O3 optimisation and OMP code pre-processing.

Runs were made in a notebook with an Intel Core i7 pro-

cessor and repeated in a workstation with an Intel Xeon E5.

The scaling differed by 10–20 %, which was considered to

be negligible.

The results (Fig. 16) highlight the scalability of the scheme

and its implementation in SILAM. The species-unrelated

time of horizontal 2-D advection (Fig. 16a, offset in regres-

sion line) is ∼ 30 % of a single-species computation time

(represented via the slope). This “overhead” is, in fact, the

transport-step integrals Eqs. (17)–(19), which are computed

only once and used for all species. Higher overhead of the

vertical advection is due to the necessity to handle the uneven

vertical layers, which makes its scaling just 20 % better than

the 2-D horizontal one. It also has larger species-independent

overhead.

With the chemical module turned off, advection consti-

tutes ∼ 85 % of the total model run time.

Since the scheme operates with the source grid cells, it can

check that Mn
i > 0 before going into computations, which

gives a very substantial speed-up in the case of limited-

volume plumes (Fig. 16b). In the Saharan dust run, the hori-

zontal advection time is about twice lower, whereas the ver-

tical advection, even together with diffusion, becomes all

but negligible, owing to efficient filtering of zero columns

in comparison with lon or lat stripes.

A faster-than-proportional growth of the horizontal advec-

tion time with increasing spatial resolution (Fig. 16c, nor-

malised run time) is a result of a growing Courant number:

for a 4-times smaller grid cell (0.25◦ lon–lat resolution), the

time step of 30 min means C� 1 over a large part of the

domain. As a result, transport integrals Eqs. (17)–(19) have

to be analysed over longer paths. Still, the growth is much

smaller than the cost of 4-fold reduction of the time step,

which makes the high-C computations attractive. Vertical ad-

vection is not affected and its time is proportional to the num-

ber of columns to analyse.

The time spent by advection is practically proportional to

the temporal resolution (Fig. 16c); that is, it follows the num-

ber of times the advection is computed in the run.

6.6 Comparison with efficiency of other schemes

Comparison with other schemes is arguably the most

uncertain part of the exercise: the scheme efficiency is

strongly dependent on the quality of the implementation

(note the different results for the Bott scheme obtained

by Galperin, 2000, and Petrova et al., 2008). To obtain

reproducible results, we made this comparison against the

“standard implementation” of the Bott code available from

the Internet (http://www2.meteo.uni-bonn.de/forschung/

gruppen/tgwww/people/abott/fortran/fortran_english.html,

visited 28 September 2015). Since our code is also available,

this comparison is reproducible.

The test with 104 time steps, 2000 grid points in a 1-D

periodic grid, Courant number= 0.1, and one species took

0.92 s for the Galperin scheme (∼ 0.3 s for cell border ad-

vection, ∼ 0.6 s for slab reprojection) and 0.85 s for the Bott

scheme. This confirms the expectation that the updates of the

Galperin scheme from its initial version about tripled its run

time, which is now similar to that of the Bott scheme. How-

ever, the Galperin scheme still scales better with the number

of species: as shown in the previous section, only reprojec-

tion is multiplied by the number of species, whereas the Bott

scheme does not have such a saving possibility.

The above numbers should be considered as indicative

only since the environment for the tests was completely arti-

ficial: the schemes were used as a stand-alone code applied

in 1-D space. The Galperin scheme needed only one moment

instead of three, which would be the case for 3-D advection.

Despite very limited extra computations, this would still raise

the memory exchange. The Bott scheme was taken without

a shape-preservation filter, which would be needed for any

real-life applications.

The tests were also made for our own implementation of

the semi-Lagrangian scheme (took ∼ 50 % longer than the

above timing), but its efficiency was not carefully verified.

The L14 tests allowed rough benchmarking of the SILAM

implementation of the scheme in 2-D tasks. In particular,

the run with 0.75◦ resolution and 120 time steps can be re-

lated to the performance of the HEL and CSLAM schemes,

which were tested against the same test collection by Kaas

et al. (2013). Extrapolating the charts of Fig. 13 of Kaas

et al. (2013) to one species (the range given there is 2–20

species), the test takes about 190 s for HEL and 300 s for

CSLAM, but only 47 s for SILAM; i.e., the difference was

about 4 and 6 times, respectively.

Formal benchmarks of the computers, the main uncer-

tainty in this comparison, are essentially the same: Kaas et

al. (2013) used an Intel Core2 Duo E6550 processor (Intel

Linpack 20 GFlops, http://www.techpowerup.com, visited

8 October 2015). Our tests were run on a simple notebook
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Figure 16. Scalability of the Galperin advection scheme and the SILAM model. Panel (a) Full-grid run time for different numbers of species,

(b) sparse-plume run time for different numbers of species, (c) full-grid run time for varying horizontal grid resolutions, and (d) full-grid run

time for varying time steps.

with a mobile Intel Core i5-540M Duo (Intel Linpack 18.5

GFlops). These CPUs were also compared in http://www.

cpubenchmark.net (visited 8 October 2015), which also put

them within 20 % of each other, albeit that the i5-540M

was put forward. The memory bandwidth of our notebook,

as always for compact computers, was modest: 7.2 GB s−1

(STREAM test, http://www.cs.virginia.edu/stream/ref.html

accessed 5 October 2015). We used a GNU compiler with

–O3 optimisation without parallelisation, similar to Kaas et

al. (2013).

6.7 Further boosting the scheme efficiency:

parallelisation

In SILAM applications, advection is parallelised using the

shared-memory OMP technology, whereas the MPI-based

domain split is being developed. The OMP parallelisation

is readily applicable along each dimension, thus exploiting

the dimensional split of the advection scheme. For MPI, care

should be taken to allow for a sufficient width of the buffer

areas to handle the Courant > 1 cases.

The original scheme was formulated for the bulk mass of

all transported tracers, thus performing the advection step

for all species at once: the tracer’s mass in the slab defini-

tion Eq. (5) was the sum of masses of all species. This is

much faster than the species-wise advection and reduces the

number of the moments per dimension down to 1 regard-

less of the number of tracers. It is also useful in the case

of strong chemical interconnections between the species be-

cause the bulk advection keeps all pre-existing relations be-

tween the species. However, transport accuracy diminishes if

the species have substantially different lifetimes in the atmo-

sphere, are emitted from substantially different sources, or

otherwise decorrelated in space.

7 Summary

The current paper presents the transport module of the Sys-

tem for Integrated modeLling of Atmospheric coMposition

SILAM v.5, which is based on the improved advection rou-

tine of Michael Galperin combined with separate develop-

ments for vertical diffusion and dry deposition.

The cornerstone of the advection scheme is the subgrid

information on distribution of masses inside the grid cells,

which is generated at the emission calculation stage and

maintained in a consistent way throughout the whole model,

including chemical transformation, deposition, and transport

itself. This information, albeit requiring substantial storage

for handling, allows for accurate representation of transport.

The scheme is shown to be particularly efficient for point

sources and sharp gradients of the concentration fields, still

showing solid performance for smooth patterns. The most

challenging task was found to be the puff-over-plain test,

where the scheme showed noticeable distortions of the con-
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centration pattern. Application of a simple smoother effi-

ciently reduces the problem at a cost of non-zero viscosity

of the resulting scheme.

Advanced tests and comparison with state-of-the-art algo-

rithms confirmed the compromise between the efficiency and

accuracy. SILAM performance was fully comparable with

the other algorithms, outperforming some of them.

Among the future developments, implementation of the

scheme in 2-D space and replacement of the smoother with

extensions of the core advection algorithm are probably the

most pressing ones.

Code availability

SILAM is a publicly available model. Our experience shows

however that its successful application critically depends on

the user’s modelling skills and understanding of the model

concepts. Therefore, SILAM is available on an on-request

basis from the authors of this paper, who also provide support

in the initial model installation and set-up. The model de-

scription, operational and research products, as well as refer-

ence documentation, are presented at http://silam.fmi.fi (ac-

cessed 5 October 2015). The model user’s guide is available

at http://silam.fmi.fi/doc/SILAM_v5_userGuide_general.pdf

(accessed 5 October 2015). Potential model users are also

encouraged to refer to the SILAM Winter School material

at http://silam.fmi.fi/open_source/SILAM_school/index.htm

(accessed 5 October 2015).

The stand-alone code of the Galperin advection scheme

used in the above 1-D tests is available at http://silam.fmi.fi/

open_source/public/advection_Galperin_stand_alone.zip.
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