Articles | Volume 8, issue 10
https://doi.org/10.5194/gmd-8-3333-2015
https://doi.org/10.5194/gmd-8-3333-2015
Development and technical paper
 | 
22 Oct 2015
Development and technical paper |  | 22 Oct 2015

A parallelization scheme to simulate reactive transport in the subsurface environment with OGS#IPhreeqc 5.5.7-3.1.2

W. He, C. Beyer, J. H. Fleckenstein, E. Jang, O. Kolditz, D. Naumov, and T. Kalbacher

Related authors

Groundwater head responses to droughts across Germany
Pia Ebeling, Andreas Musolff, Rohini Kumar, Andreas Hartmann, and Jan H. Fleckenstein
EGUsphere, https://doi.org/10.5194/egusphere-2024-2761,https://doi.org/10.5194/egusphere-2024-2761, 2024
Short summary
SAFENET – Fracture evolution in crystalline rocks (from lab to in-situ scale)
Olaf Kolditz, Christopher McDermott, Jeoung Seok Yoon, Jörg Renner, Li Zhuang, Andrew Fraser-Harris, Michael Chandler, Samuel Graham, Ju Wang, and Mostafa Mollaali
Saf. Nucl. Waste Disposal Discuss., https://doi.org/10.5194/sand-2024-2,https://doi.org/10.5194/sand-2024-2, 2024
Preprint under review for SaND
Short summary
GeoLaB – Geothermal Laboratory in the crystalline Basement: synergies with research for a nuclear waste repository
Thomas Kohl, Ingo Sass, Olaf Kolditz, Christoph Schüth, Wolfram Rühaak, Jürgen Schamp, Judith Bremer, Bastian Rudolph, Katharina Schätzler, and Eva Schill
Saf. Nucl. Waste Disposal, 2, 135–136, https://doi.org/10.5194/sand-2-135-2023,https://doi.org/10.5194/sand-2-135-2023, 2023
Short summary
AREHS: effects of changing boundary conditions on the development of hydrogeological systems: numerical long-term modelling considering thermal–hydraulic–mechanical (–chemical) coupled effects
René Kahnt, Heinz Konietzky, Thomas Nagel, Olaf Kolditz, Andreas Jockel, Christian B. Silbermann, Friederike Tiedtke, Tobias Meisel, Florian Zill, Anton Carl, Aron D. Gabriel, and Marcel Schlegel
Saf. Nucl. Waste Disposal, 2, 117–118, https://doi.org/10.5194/sand-2-117-2023,https://doi.org/10.5194/sand-2-117-2023, 2023
Short summary
Time to change the geoscientific perspective!?
Michael Kühn, Dirk Bosbach, Horst Geckeis, Vinzenz Brendler, and Olaf Kolditz
Saf. Nucl. Waste Disposal, 2, 195–195, https://doi.org/10.5194/sand-2-195-2023,https://doi.org/10.5194/sand-2-195-2023, 2023
Short summary

Related subject area

Hydrology
Development and performance of a high-resolution surface wave and storm surge forecast model: application to a large lake
Laura L. Swatridge, Ryan P. Mulligan, Leon Boegman, and Shiliang Shan
Geosci. Model Dev., 17, 7751–7766, https://doi.org/10.5194/gmd-17-7751-2024,https://doi.org/10.5194/gmd-17-7751-2024, 2024
Short summary
Deep dive into hydrologic simulations at global scale: harnessing the power of deep learning and physics-informed differentiable models (δHBV-globe1.0-hydroDL)
Dapeng Feng, Hylke Beck, Jens de Bruijn, Reetik Kumar Sahu, Yusuke Satoh, Yoshihide Wada, Jiangtao Liu, Ming Pan, Kathryn Lawson, and Chaopeng Shen
Geosci. Model Dev., 17, 7181–7198, https://doi.org/10.5194/gmd-17-7181-2024,https://doi.org/10.5194/gmd-17-7181-2024, 2024
Short summary
PyEt v1.3.1: a Python package for the estimation of potential evapotranspiration
Matevž Vremec, Raoul A. Collenteur, and Steffen Birk
Geosci. Model Dev., 17, 7083–7103, https://doi.org/10.5194/gmd-17-7083-2024,https://doi.org/10.5194/gmd-17-7083-2024, 2024
Short summary
Prediction of hysteretic matric potential dynamics using artificial intelligence: application of autoencoder neural networks
Nedal Aqel, Lea Reusser, Stephan Margreth, Andrea Carminati, and Peter Lehmann
Geosci. Model Dev., 17, 6949–6966, https://doi.org/10.5194/gmd-17-6949-2024,https://doi.org/10.5194/gmd-17-6949-2024, 2024
Short summary
Regionalization in global hydrological models and its impact on runoff simulations: a case study using WaterGAP3 (v 1.0.0)
Jenny Kupzig, Nina Kupzig, and Martina Flörke
Geosci. Model Dev., 17, 6819–6846, https://doi.org/10.5194/gmd-17-6819-2024,https://doi.org/10.5194/gmd-17-6819-2024, 2024
Short summary

Cited articles

Bailey, R. T., Morway, E. D., Niswonger, R. G., and Gates, T. K.: Modeling variably saturated multispecies reactive groundwater solute transport with MODFLOW-UZF and RT3D, Ground Water, 51, 752–761, 2013.
Ballarini, E., Beyer, C., Bauer, R. D., Griebler, C., and Bauer, S.: Model based evaluation of a contaminant plume development under aerobic and anaerobic conditions in 2-D bench-scale tank experiments, Biodegradation, 25, 351–371, 2014.
Beyer, C., Li, D., De Lucia, M., Kühn, M., and Bauer, S.: Modelling CO2-induced fluid-rock interactions in the Altensalzwedel gas reservoir. Part II: coupled reactive transport simulation, Environ. Earth Sci., 67, 573–588, 2012.
Centler, F., Shao, H. B., De Biase, C., Park, C. H., Regnier, P., Kolditz, O., and Thullner, M.: GeoSysBRNS – A flexible multidimensional reactive transport model for simulating biogeochemical subsurface processes, Comput. Geosci., 36, 397–405, 2010.
Charlton, S. R. and Parkhurst, D. L.: Modules based on the geochemical model PHREEQC for use in scripting and programming languages, Comput. Geosci., 37, 1653–1663, 2011.
Download
Short summary
This technical paper presents a new tool to simulate reactive transport processes in subsurface systems and which couples the open-source software packages OpenGeoSys and IPhreeqc. A flexible parallelization scheme was developed and implemented to enable an optimized allocation of computer resources. The performance tests of the coupling interface and parallelization scheme illustrate the promising efficiency of this generally valid approach to simulate reactive transport problems.