Articles | Volume 8, issue 9
Geosci. Model Dev., 8, 2701–2722, 2015
https://doi.org/10.5194/gmd-8-2701-2015
Geosci. Model Dev., 8, 2701–2722, 2015
https://doi.org/10.5194/gmd-8-2701-2015

Methods for assessment of models 01 Sep 2015

Methods for assessment of models | 01 Sep 2015

Using field observations to inform thermal hydrology models of permafrost dynamics with ATS (v0.83)

A. L. Atchley et al.

Related authors

New insights into the drainage of inundated ice-wedge polygons using fundamental hydrologic principles
Dylan R. Harp, Vitaly Zlotnik, Charles J. Abolt, Bob Busey, Sofia T. Avendaño, Brent D. Newman, Adam L. Atchley, Elchin Jafarov, Cathy J. Wilson, and Katrina E. Bennett
The Cryosphere, 15, 4005–4029, https://doi.org/10.5194/tc-15-4005-2021,https://doi.org/10.5194/tc-15-4005-2021, 2021
Short summary
New insights into the drainage of inundated Arctic polygonal tundra using fundamental hydrologic principles
Dylan R. Harp, Vitaly Zlotnik, Charles J. Abolt, Brent D. Newman, Adam L. Atchley, Elchin Jafarov, and Cathy J. Wilson
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-100,https://doi.org/10.5194/tc-2020-100, 2020
Manuscript not accepted for further review
Short summary
Estimation of subsurface porosities and thermal conductivities of polygonal tundra by coupled inversion of electrical resistivity, temperature, and moisture content data
Elchin E. Jafarov, Dylan R. Harp, Ethan T. Coon, Baptiste Dafflon, Anh Phuong Tran, Adam L. Atchley, Youzuo Lin, and Cathy J. Wilson
The Cryosphere, 14, 77–91, https://doi.org/10.5194/tc-14-77-2020,https://doi.org/10.5194/tc-14-77-2020, 2020
Short summary
Brief communication: Rapid machine-learning-based extraction and measurement of ice wedge polygons in high-resolution digital elevation models
Charles J. Abolt, Michael H. Young, Adam L. Atchley, and Cathy J. Wilson
The Cryosphere, 13, 237–245, https://doi.org/10.5194/tc-13-237-2019,https://doi.org/10.5194/tc-13-237-2019, 2019
Short summary
Microtopographic control on the ground thermal regime in ice wedge polygons
Charles J. Abolt, Michael H. Young, Adam L. Atchley, and Dylan R. Harp
The Cryosphere, 12, 1957–1968, https://doi.org/10.5194/tc-12-1957-2018,https://doi.org/10.5194/tc-12-1957-2018, 2018
Short summary

Related subject area

Cryosphere
SNICAR-ADv3: a community tool for modeling spectral snow albedo
Mark G. Flanner, Julian B. Arnheim, Joseph M. Cook, Cheng Dang, Cenlin He, Xianglei Huang, Deepak Singh, S. McKenzie Skiles, Chloe A. Whicker, and Charles S. Zender
Geosci. Model Dev., 14, 7673–7704, https://doi.org/10.5194/gmd-14-7673-2021,https://doi.org/10.5194/gmd-14-7673-2021, 2021
Short summary
STEMMUS-UEB v1.0.0: integrated modeling of snowpack and soil water and energy transfer with three complexity levels of soil physical processes
Lianyu Yu, Yijian Zeng, and Zhongbo Su
Geosci. Model Dev., 14, 7345–7376, https://doi.org/10.5194/gmd-14-7345-2021,https://doi.org/10.5194/gmd-14-7345-2021, 2021
Short summary
A versatile method for computing optimized snow albedo from spectrally fixed radiative variables: VALHALLA v1.0
Florent Veillon, Marie Dumont, Charles Amory, and Mathieu Fructus
Geosci. Model Dev., 14, 7329–7343, https://doi.org/10.5194/gmd-14-7329-2021,https://doi.org/10.5194/gmd-14-7329-2021, 2021
Short summary
Ice Algae Model Intercomparison Project phase 2 (IAMIP2)
Hakase Hayashida, Meibing Jin, Nadja S. Steiner, Neil C. Swart, Eiji Watanabe, Russell Fiedler, Andrew McC. Hogg, Andrew E. Kiss, Richard J. Matear, and Peter G. Strutton
Geosci. Model Dev., 14, 6847–6861, https://doi.org/10.5194/gmd-14-6847-2021,https://doi.org/10.5194/gmd-14-6847-2021, 2021
Short summary
A Gaussian process emulator for simulating ice sheet–climate interactions on a multi-million-year timescale: CLISEMv1.0
Jonas Van Breedam, Philippe Huybrechts, and Michel Crucifix
Geosci. Model Dev., 14, 6373–6401, https://doi.org/10.5194/gmd-14-6373-2021,https://doi.org/10.5194/gmd-14-6373-2021, 2021
Short summary

Cited articles

Anderson, E. A.: A point energy and mass balance model of a snow cover, NOAA Tech. Rep., NWS-19, 1976.
Atmospheric Radiation Measurement (ARM) Climate Research Facility:. Surface Meteorological Instrumentation (MET). 2010-01-01 to 2013-12-31, 71.323 N 156.609 W: North Slope Alaska (NSA) Central Facility, Barrow AK (C1), compiled by: Kyrouac, J. and Holdridge, D., Atmospheric Radiation Measurement (ARM) Climate Research Facility Data Archive: Oak Ridge, Tennessee, USA, http://dx.doi.org/10.5439/1025220, updated hourly (last access: 19 May 2014), 1993.
Atmospheric Radiation Measurement (ARM) Climate Research Facility: Sky Radiometers on Stand for Downwelling Radiation (SKYRAD60S). 2010-01-01 to 2013-12-31, 71.323 N 156.609 W: North Slope Alaska (NSA) Central Facility, Barrow AK (C1), compiled by: Morris, V., Sengupta, M., Habte, A., Reda, I., Anderberg, M., Dooraghi, M., Gotseff, P., Morris, V., Andreas, A., and Kutchenreiter, M., Atmospheric Radiation Measurement (ARM) Climate Research Facility Data Archive, Oak Ridge, Tennessee, USA, available at: http://dx.doi.org/10.5439/1025281, updated hourly (last access: 19 May 2014), 1996.
Benson, C. S. and Sturm, M.: Structure and wind transport of seasonal snow on the Arctic slope of Alaska, Ann. Glaciol., 18, 261–267, 1993.
Beringer, J., Lynch, A. H., Chapin III, F. S., Mack, M., and Bonan, G. B.: The representation of Arctic soils in the Land Surface Model: The importance of Mosses, J. Climate, 14, 3324–3335, 2001.
Download
Short summary
Development and calibration of a process-rich model representation of thaw-depth dynamics in Arctic tundra is presented. Improved understanding of polygonal tundra thermal hydrology processes, of thermal conduction, surface and subsurface saturation and snowpack dynamics is gained by using measured field data to calibrate and refine model structure. The refined model is then used identify future data needs and observational studies.