Articles | Volume 8, issue 9
https://doi.org/10.5194/gmd-8-2701-2015
https://doi.org/10.5194/gmd-8-2701-2015
Methods for assessment of models
 | 
01 Sep 2015
Methods for assessment of models |  | 01 Sep 2015

Using field observations to inform thermal hydrology models of permafrost dynamics with ATS (v0.83)

A. L. Atchley, S. L. Painter, D. R. Harp, E. T. Coon, C. J. Wilson, A. K. Liljedahl, and V. E. Romanovsky

Related authors

Temporal persistence of postfire flood hazards under present and future climate conditions in southern Arizona, USA
Tao Liu, Luke A. McGuire, Ann M. Youberg, Charles J. Abolt, and Adam L. Atchley
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-151,https://doi.org/10.5194/nhess-2024-151, 2024
Preprint under review for NHESS
Short summary
New insights into the drainage of inundated ice-wedge polygons using fundamental hydrologic principles
Dylan R. Harp, Vitaly Zlotnik, Charles J. Abolt, Bob Busey, Sofia T. Avendaño, Brent D. Newman, Adam L. Atchley, Elchin Jafarov, Cathy J. Wilson, and Katrina E. Bennett
The Cryosphere, 15, 4005–4029, https://doi.org/10.5194/tc-15-4005-2021,https://doi.org/10.5194/tc-15-4005-2021, 2021
Short summary
New insights into the drainage of inundated Arctic polygonal tundra using fundamental hydrologic principles
Dylan R. Harp, Vitaly Zlotnik, Charles J. Abolt, Brent D. Newman, Adam L. Atchley, Elchin Jafarov, and Cathy J. Wilson
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-100,https://doi.org/10.5194/tc-2020-100, 2020
Manuscript not accepted for further review
Short summary
Estimation of subsurface porosities and thermal conductivities of polygonal tundra by coupled inversion of electrical resistivity, temperature, and moisture content data
Elchin E. Jafarov, Dylan R. Harp, Ethan T. Coon, Baptiste Dafflon, Anh Phuong Tran, Adam L. Atchley, Youzuo Lin, and Cathy J. Wilson
The Cryosphere, 14, 77–91, https://doi.org/10.5194/tc-14-77-2020,https://doi.org/10.5194/tc-14-77-2020, 2020
Short summary
Brief communication: Rapid machine-learning-based extraction and measurement of ice wedge polygons in high-resolution digital elevation models
Charles J. Abolt, Michael H. Young, Adam L. Atchley, and Cathy J. Wilson
The Cryosphere, 13, 237–245, https://doi.org/10.5194/tc-13-237-2019,https://doi.org/10.5194/tc-13-237-2019, 2019
Short summary

Related subject area

Cryosphere
Tuning parameters of a sea ice model using machine learning
Anton Korosov, Yue Ying, and Einar Ólason
Geosci. Model Dev., 18, 885–904, https://doi.org/10.5194/gmd-18-885-2025,https://doi.org/10.5194/gmd-18-885-2025, 2025
Short summary
WRF-Chem simulations of snow nitrate and other physicochemical properties in northern China
Xia Wang, Tao Che, Xueyin Ruan, Shanna Yue, Jing Wang, Chun Zhao, and Lei Geng
Geosci. Model Dev., 18, 651–670, https://doi.org/10.5194/gmd-18-651-2025,https://doi.org/10.5194/gmd-18-651-2025, 2025
Short summary
Clustering simulated snow profiles to form avalanche forecast regions
Simon Horton, Florian Herla, and Pascal Haegeli
Geosci. Model Dev., 18, 193–209, https://doi.org/10.5194/gmd-18-193-2025,https://doi.org/10.5194/gmd-18-193-2025, 2025
Short summary
SnowQM 1.0: a fast R package for bias-correcting spatial fields of snow water equivalent using quantile mapping
Adrien Michel, Johannes Aschauer, Tobias Jonas, Stefanie Gubler, Sven Kotlarski, and Christoph Marty
Geosci. Model Dev., 17, 8969–8988, https://doi.org/10.5194/gmd-17-8969-2024,https://doi.org/10.5194/gmd-17-8969-2024, 2024
Short summary
Simulation of snow albedo and solar irradiance profile with the Two-streAm Radiative TransfEr in Snow (TARTES) v2.0 model
Ghislain Picard and Quentin Libois
Geosci. Model Dev., 17, 8927–8953, https://doi.org/10.5194/gmd-17-8927-2024,https://doi.org/10.5194/gmd-17-8927-2024, 2024
Short summary

Cited articles

Anderson, E. A.: A point energy and mass balance model of a snow cover, NOAA Tech. Rep., NWS-19, 1976.
Atmospheric Radiation Measurement (ARM) Climate Research Facility:. Surface Meteorological Instrumentation (MET). 2010-01-01 to 2013-12-31, 71.323 N 156.609 W: North Slope Alaska (NSA) Central Facility, Barrow AK (C1), compiled by: Kyrouac, J. and Holdridge, D., Atmospheric Radiation Measurement (ARM) Climate Research Facility Data Archive: Oak Ridge, Tennessee, USA, http://dx.doi.org/10.5439/1025220, updated hourly (last access: 19 May 2014), 1993.
Atmospheric Radiation Measurement (ARM) Climate Research Facility: Sky Radiometers on Stand for Downwelling Radiation (SKYRAD60S). 2010-01-01 to 2013-12-31, 71.323 N 156.609 W: North Slope Alaska (NSA) Central Facility, Barrow AK (C1), compiled by: Morris, V., Sengupta, M., Habte, A., Reda, I., Anderberg, M., Dooraghi, M., Gotseff, P., Morris, V., Andreas, A., and Kutchenreiter, M., Atmospheric Radiation Measurement (ARM) Climate Research Facility Data Archive, Oak Ridge, Tennessee, USA, available at: http://dx.doi.org/10.5439/1025281, updated hourly (last access: 19 May 2014), 1996.
Benson, C. S. and Sturm, M.: Structure and wind transport of seasonal snow on the Arctic slope of Alaska, Ann. Glaciol., 18, 261–267, 1993.
Beringer, J., Lynch, A. H., Chapin III, F. S., Mack, M., and Bonan, G. B.: The representation of Arctic soils in the Land Surface Model: The importance of Mosses, J. Climate, 14, 3324–3335, 2001.
Download
Short summary
Development and calibration of a process-rich model representation of thaw-depth dynamics in Arctic tundra is presented. Improved understanding of polygonal tundra thermal hydrology processes, of thermal conduction, surface and subsurface saturation and snowpack dynamics is gained by using measured field data to calibrate and refine model structure. The refined model is then used identify future data needs and observational studies.
Share