Articles | Volume 8, issue 8
https://doi.org/10.5194/gmd-8-2611-2015
https://doi.org/10.5194/gmd-8-2611-2015
Model description paper
 | 
24 Aug 2015
Model description paper |  | 24 Aug 2015

MEMLS3&a: Microwave Emission Model of Layered Snowpacks adapted to include backscattering

M. Proksch, C. Mätzler, A. Wiesmann, J. Lemmetyinen, M. Schwank, H. Löwe, and M. Schneebeli

Related authors

Observation and modelling of snow at a polygonal tundra permafrost site: spatial variability and thermal implications
Isabelle Gouttevin, Moritz Langer, Henning Löwe, Julia Boike, Martin Proksch, and Martin Schneebeli
The Cryosphere, 12, 3693–3717, https://doi.org/10.5194/tc-12-3693-2018,https://doi.org/10.5194/tc-12-3693-2018, 2018
Short summary
Measured and Modeled Snow Cover Properties across the Greenland Ice Sheet
Sascha Bellaire, Martin Proksch, Martin Schneebeli, Masashi Niwano, and Konrad Steffen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-55,https://doi.org/10.5194/tc-2017-55, 2017
Preprint withdrawn
Nordic Snow Radar Experiment
Juha Lemmetyinen, Anna Kontu, Jouni Pulliainen, Juho Vehviläinen, Kimmo Rautiainen, Andreas Wiesmann, Christian Mätzler, Charles Werner, Helmut Rott, Thomas Nagler, Martin Schneebeli, Martin Proksch, Dirk Schüttemeyer, Michael Kern, and Malcolm W. J. Davidson
Geosci. Instrum. Method. Data Syst., 5, 403–415, https://doi.org/10.5194/gi-5-403-2016,https://doi.org/10.5194/gi-5-403-2016, 2016
Anisotropy of seasonal snow measured by polarimetric phase differences in radar time series
Silvan Leinss, Henning Löwe, Martin Proksch, Juha Lemmetyinen, Andreas Wiesmann, and Irena Hajnsek
The Cryosphere, 10, 1771–1797, https://doi.org/10.5194/tc-10-1771-2016,https://doi.org/10.5194/tc-10-1771-2016, 2016
Short summary
Arctic Snow Microstructure Experiment for the development of snow emission modelling
William Maslanka, Leena Leppänen, Anna Kontu, Mel Sandells, Juha Lemmetyinen, Martin Schneebeli, Martin Proksch, Margret Matzl, Henna-Reetta Hannula, and Robert Gurney
Geosci. Instrum. Method. Data Syst., 5, 85–94, https://doi.org/10.5194/gi-5-85-2016,https://doi.org/10.5194/gi-5-85-2016, 2016
Short summary

Related subject area

Cryosphere
Evaluation of MITgcm-based ocean reanalyses for the Southern Ocean
Yoshihiro Nakayama, Alena Malyarenko, Hong Zhang, Ou Wang, Matthis Auger, Yafei Nie, Ian Fenty, Matthew Mazloff, Armin Köhl, and Dimitris Menemenlis
Geosci. Model Dev., 17, 8613–8638, https://doi.org/10.5194/gmd-17-8613-2024,https://doi.org/10.5194/gmd-17-8613-2024, 2024
Short summary
Improvements in the land surface configuration to better simulate seasonal snow cover in the European Alps with the CNRM-AROME (cycle 46) convection-permitting regional climate model
Diego Monteiro, Cécile Caillaud, Matthieu Lafaysse, Adrien Napoly, Mathieu Fructus, Antoinette Alias, and Samuel Morin
Geosci. Model Dev., 17, 7645–7677, https://doi.org/10.5194/gmd-17-7645-2024,https://doi.org/10.5194/gmd-17-7645-2024, 2024
Short summary
A three-stage model pipeline predicting regional avalanche danger in Switzerland (RAvaFcast v1.0.0): a decision-support tool for operational avalanche forecasting
Alessandro Maissen, Frank Techel, and Michele Volpi
Geosci. Model Dev., 17, 7569–7593, https://doi.org/10.5194/gmd-17-7569-2024,https://doi.org/10.5194/gmd-17-7569-2024, 2024
Short summary
A global–land snow scheme (GLASS) v1.0 for the GFDL Earth System Model: formulation and evaluation at instrumented sites
Enrico Zorzetto, Sergey Malyshev, Paul Ginoux, and Elena Shevliakova
Geosci. Model Dev., 17, 7219–7244, https://doi.org/10.5194/gmd-17-7219-2024,https://doi.org/10.5194/gmd-17-7219-2024, 2024
Short summary
Design and performance of ELSA v2.0: an isochronal model for ice-sheet layer tracing
Therese Rieckh, Andreas Born, Alexander Robinson, Robert Law, and Gerrit Gülle
Geosci. Model Dev., 17, 6987–7000, https://doi.org/10.5194/gmd-17-6987-2024,https://doi.org/10.5194/gmd-17-6987-2024, 2024
Short summary

Cited articles

Arnaud, L., Picard, G., Champollion, N., Domine, F., Gallet, J. C., Lefebvre, E., Fily, M., and Barnola, J. M.: Measurement of vertical profiles of snow specific surface area with a 1 cm resolution using infrared reflectance: instrument description and validation, J. Glaciol., 57, 17–29, https://doi.org/10.3189/002214311795306664, 2011.
Chandrasekhar, S.: Radiative Transfer, Dover Publ., New York, NY, 1960.
Chang, W., Tan, S., Lemmetyinen, J., Tsang, L., Xu, X., and Yueh, S.: Dense media radiative transfer applied to SnowScat and SnowSAR, IEEE J. Sel. Top. Appl., 7, 3811–3825, https://doi.org/10.1109/JSTARS.2014.2343519, 2014.
Denoth, A., Foglar, A., Weiland, P., Mätzler, C., and Aebischer, H.: A comparative study of instruments for measuring the liquid water content of snow, J. Appl. Phys., 56, 2154–2160, https://doi.org/10.1063/1.334215, 1984.
Ding, K.-H., Xu, X., and Tsang, L.: Electromagnetic scattering by bicontinuous random microstructures with discrete permittivities, IEEE T. Geosci. Remote, 48, 3139–3151, 2010.
Download
Short summary
The measurement of snow properties on global scale relies on microwave remote sensing data. The interpretation of the data is however challenging. Here we introduce MEMLS3&a, an extension of the snow emission model MEMLS, to include a backscatter model for active microwave remote sensing. In MEMLS3&a, snow input parameters can be derived by objective measurement methods, which avoids fitting the scattering efficiency of snow. The model is validated with combined active and passive measurements.