Articles | Volume 7, issue 6
https://doi.org/10.5194/gmd-7-3135-2014
https://doi.org/10.5194/gmd-7-3135-2014
Model description paper
 | 
19 Dec 2014
Model description paper |  | 19 Dec 2014

MeteoIO 2.4.2: a preprocessing library for meteorological data

M. Bavay and T. Egger

Related authors

Multitemporal analysis of Sentinel-1 backscattering during snow melt using high-resolution field measurements and radiative transfer modeling
Francesca Carletti, Carlo Marin, Chiara Ghielmini, Mathias Bavay, and Michael Lehning
EGUsphere, https://doi.org/10.5194/egusphere-2025-974,https://doi.org/10.5194/egusphere-2025-974, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Unlocking the potential of melting calorimetry: a field protocol for liquid water content measurement in snow
Riccardo Barella, Mathias Bavay, Francesca Carletti, Nicola Ciapponi, Valentina Premier, and Carlo Marin
The Cryosphere, 18, 5323–5345, https://doi.org/10.5194/tc-18-5323-2024,https://doi.org/10.5194/tc-18-5323-2024, 2024
Short summary
Monitoring snow wetness evolution from satellite with Sentinel-1 multi-track composites
Gwendolyn Dasser, Valentin T. Bickel, Marius Rüetschi, Mylène Jacquemart, Mathias Bavay, Elisabeth D. Hafner, Alec van Herwijnen, and Andrea Manconi
EGUsphere, https://doi.org/10.5194/egusphere-2024-1510,https://doi.org/10.5194/egusphere-2024-1510, 2024
Short summary
Unlocking the Potential of Melting Calorimetry: A Field Protocol for Liquid Water Content Measurement in Snow
Riccardo Barella, Mathias Bavay, Francesca Carletti, Nicola Ciapponi, Valentina Premier, and Carlo Marin
EGUsphere, https://doi.org/10.5194/egusphere-2023-2892,https://doi.org/10.5194/egusphere-2023-2892, 2024
Preprint archived
Short summary
A comparison of hydrological models with different level of complexity in Alpine regions in the context of climate change
Francesca Carletti, Adrien Michel, Francesca Casale, Alice Burri, Daniele Bocchiola, Mathias Bavay, and Michael Lehning
Hydrol. Earth Syst. Sci., 26, 3447–3475, https://doi.org/10.5194/hess-26-3447-2022,https://doi.org/10.5194/hess-26-3447-2022, 2022
Short summary

Related subject area

Cryosphere
Towards deep-learning solutions for classification of automated snow height measurements (CleanSnow v1.0.2)
Jan Svoboda, Marc Ruesch, David Liechti, Corinne Jones, Michele Volpi, Michael Zehnder, and Jürg Schweizer
Geosci. Model Dev., 18, 1829–1849, https://doi.org/10.5194/gmd-18-1829-2025,https://doi.org/10.5194/gmd-18-1829-2025, 2025
Short summary
Quantitative sub-ice and marine tracing of Antarctic sediment provenance (TASP v1.0)
James W. Marschalek, Edward Gasson, Tina van de Flierdt, Claus-Dieter Hillenbrand, Martin J. Siegert, and Liam Holder
Geosci. Model Dev., 18, 1673–1708, https://doi.org/10.5194/gmd-18-1673-2025,https://doi.org/10.5194/gmd-18-1673-2025, 2025
Short summary
Tuning parameters of a sea ice model using machine learning
Anton Korosov, Yue Ying, and Einar Ólason
Geosci. Model Dev., 18, 885–904, https://doi.org/10.5194/gmd-18-885-2025,https://doi.org/10.5194/gmd-18-885-2025, 2025
Short summary
WRF-Chem simulations of snow nitrate and other physicochemical properties in northern China
Xia Wang, Tao Che, Xueyin Ruan, Shanna Yue, Jing Wang, Chun Zhao, and Lei Geng
Geosci. Model Dev., 18, 651–670, https://doi.org/10.5194/gmd-18-651-2025,https://doi.org/10.5194/gmd-18-651-2025, 2025
Short summary
Clustering simulated snow profiles to form avalanche forecast regions
Simon Horton, Florian Herla, and Pascal Haegeli
Geosci. Model Dev., 18, 193–209, https://doi.org/10.5194/gmd-18-193-2025,https://doi.org/10.5194/gmd-18-193-2025, 2025
Short summary

Cited articles

Ballou, D. P. and Pazer, H. L.: Modeling data and process quality in multi-input, multi-output information systems, Manage. Sci., 31, 150–162, 1985.
Barrenetxea, G., Ingelrest, F., Schaefer, G., Vetterli, M., Couach, O., and Parlange, M.: Sensorscope: Out-of-the-box environmental monitoring, In Information Processing in Sensor Networks, 2008, IPSN'08, International Conference, 332–343, IEEE, 2008.
Beck, K. and Andres, C.: Extreme Programming Explained: Embrace Change, Addison-Wesley Professional, 2nd Edn., 2004.
Brutsaert, W.: On a derivable formula for long-wave radiation from clear skies, Water Resour. Res., 11, 742–744, 1975.
Butterworth, S.: On the theory of filters amplifiers, Experimental Wireless & the Wireless Engineer, 7, 536–541, 1930.
Download
Short summary
The open-source MeteoIO library has been designed to perform the data preprocessing required by numerical models using large meteorological data sets, with a strong emphasis on simplicity and modularity. It retrieves, filters and resamples the data if necessary as well as provides spatial interpolations and parameterizations. It presents a uniform interface to meteorological data in the models, hides the complexity of the preprocessing and guarantees a robust behaviour in case of data errors.
Share