Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.240
IF5.240
IF 5-year value: 5.768
IF 5-year
5.768
CiteScore value: 8.9
CiteScore
8.9
SNIP value: 1.713
SNIP1.713
IPP value: 5.53
IPP5.53
SJR value: 3.18
SJR3.18
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 51
h5-index51
Volume 7, issue 6
Geosci. Model Dev., 7, 2831–2857, 2014
https://doi.org/10.5194/gmd-7-2831-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
Geosci. Model Dev., 7, 2831–2857, 2014
https://doi.org/10.5194/gmd-7-2831-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Model description paper 03 Dec 2014

Model description paper | 03 Dec 2014

GEOtop 2.0: simulating the combined energy and water balance at and below the land surface accounting for soil freezing, snow cover and terrain effects

S. Endrizzi et al.

Related authors

The ERA5-Land soil temperature bias in permafrost regions
Bin Cao, Stephan Gruber, Donghai Zheng, and Xin Li
The Cryosphere, 14, 2581–2595, https://doi.org/10.5194/tc-14-2581-2020,https://doi.org/10.5194/tc-14-2581-2020, 2020
Short summary
Ground subsidence and heave over permafrost: hourly time series reveal interannual, seasonal and shorter-term movement caused by freezing, thawing and water movement
Stephan Gruber
The Cryosphere, 14, 1437–1447, https://doi.org/10.5194/tc-14-1437-2020,https://doi.org/10.5194/tc-14-1437-2020, 2020
Short summary
The surface energy balance in a cold-arid permafrost environment, Ladakh Himalaya, India
John Mohd Wani, Renoj J. Thayyen, Chandra Shekhar Prasad Ojha, and Stephan Gruber
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-286,https://doi.org/10.5194/tc-2019-286, 2020
Preprint under review for TC
Short summary
Ground ice, organic carbon and soluble cations in tundra permafrost and active-layer soils near a Laurentide ice divide in the Slave Geological Province, N.W.T., Canada
Rupesh Subedi, Steven V. Kokelj, and Stephan Gruber
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-33,https://doi.org/10.5194/tc-2020-33, 2020
Preprint under review for TC
Short summary
GlobSim (v1.0): deriving meteorological time series for point locations from multiple global reanalyses
Bin Cao, Xiaojing Quan, Nicholas Brown, Emilie Stewart-Jones, and Stephan Gruber
Geosci. Model Dev., 12, 4661–4679, https://doi.org/10.5194/gmd-12-4661-2019,https://doi.org/10.5194/gmd-12-4661-2019, 2019
Short summary

Related subject area

Cryosphere
The Community Firn Model (CFM) v1.0
C. Max Stevens, Vincent Verjans, Jessica M. D. Lundin, Emma C. Kahle, Annika N. Horlings, Brita I. Horlings, and Edwin D. Waddington
Geosci. Model Dev., 13, 4355–4377, https://doi.org/10.5194/gmd-13-4355-2020,https://doi.org/10.5194/gmd-13-4355-2020, 2020
Short summary
Description and validation of the ice-sheet model Yelmo (version 1.0)
Alexander Robinson, Jorge Alvarez-Solas, Marisa Montoya, Heiko Goelzer, Ralf Greve, and Catherine Ritz
Geosci. Model Dev., 13, 2805–2823, https://doi.org/10.5194/gmd-13-2805-2020,https://doi.org/10.5194/gmd-13-2805-2020, 2020
Short summary
Evaluating integrated surface/subsurface permafrost thermal hydrology models in ATS (v0.88) against observations from a polygonal tundra site
Ahmad Jan, Ethan T. Coon, and Scott L. Painter
Geosci. Model Dev., 13, 2259–2276, https://doi.org/10.5194/gmd-13-2259-2020,https://doi.org/10.5194/gmd-13-2259-2020, 2020
Short summary
Extended enthalpy formulations in the ice flow model ISSM version 4.17: discontinuous conductivity and anisotropic SUPG
Martin Rückamp, Angelika Humbert, Thomas Kleiner, Mathieu Morlighem, and Helene Seroussi
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-78,https://doi.org/10.5194/gmd-2020-78, 2020
Revised manuscript accepted for GMD
Short summary
SICOPOLIS-AD v1: an open-source adjoint modeling framework for ice sheet simulation enabled by the algorithmic differentiation tool OpenAD
Liz C. Logan, Sri Hari Krishna Narayanan, Ralf Greve, and Patrick Heimbach
Geosci. Model Dev., 13, 1845–1864, https://doi.org/10.5194/gmd-13-1845-2020,https://doi.org/10.5194/gmd-13-1845-2020, 2020
Short summary

Cited articles

Abbott, M., Bathurst, J., Cunge, J., O'Connell, P., and Rasmussen, J.: An introduction to the European Hydrological System – Systeme Hydrologique Europeen, "SHE", 1: History and philosophy of a physically-based, distributed modelling system, J. Hydrol., 87, 45–59, 1986.
Anderson, E. A.: A point energy and mass balance model of a snow cover, Tech. rep., Office of Hydrology, National Weather Service, Silver Spring, MA, USA, 1976.
Armijo, L.: Minimization of functions having Lipschitz continuous first partial derivatives, Pacific J. Math., 6, 1–3, 1966.
Atwater, M. and Brown, P. S.: Numerical computation of the latitudinal variations of solar radiation for an atmosphere of varying opacity, J. Appl. Meteorol., 13, 289–297, 1974.
Auer, A. H. J.: The rain versus snow threshold temperatures, Weatherwise, 27, p. 67, 1974.
Publications Copernicus
Download
Short summary
GEOtop is a fine scale grid-based simulator that represents the heat and water budgets at and below the soil surface, reproduces the highly non-linear interactions between the water and energy balance during soil freezing and thawing and simulates snow cover. The core components of GEOtop 2.0. are described. Based on a synthetic simulation, it is shown that the interaction of processes represented in GEOtop 2.0. can result in phenomena that are relevant for applications involving frozen soils.
GEOtop is a fine scale grid-based simulator that represents the heat and water budgets at and...
Citation