Articles | Volume 7, issue 6
Geosci. Model Dev., 7, 2831–2857, 2014
https://doi.org/10.5194/gmd-7-2831-2014
Geosci. Model Dev., 7, 2831–2857, 2014
https://doi.org/10.5194/gmd-7-2831-2014

Model description paper 03 Dec 2014

Model description paper | 03 Dec 2014

GEOtop 2.0: simulating the combined energy and water balance at and below the land surface accounting for soil freezing, snow cover and terrain effects

S. Endrizzi et al.

Related authors

Ground ice, organic carbon and soluble cations in tundra permafrost soils and sediments near a Laurentide ice divide in the Slave Geological Province, Northwest Territories, Canada
Rupesh Subedi, Steven V. Kokelj, and Stephan Gruber
The Cryosphere, 14, 4341–4364, https://doi.org/10.5194/tc-14-4341-2020,https://doi.org/10.5194/tc-14-4341-2020, 2020
Short summary
A method for solving heat transfer with phase change in ice or soil that allows for large time steps while guaranteeing energy conservation
Niccolò Tubini, Stephan Gruber, and Riccardo Rigon
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-293,https://doi.org/10.5194/tc-2020-293, 2020
Revised manuscript accepted for TC
Short summary
The ERA5-Land soil temperature bias in permafrost regions
Bin Cao, Stephan Gruber, Donghai Zheng, and Xin Li
The Cryosphere, 14, 2581–2595, https://doi.org/10.5194/tc-14-2581-2020,https://doi.org/10.5194/tc-14-2581-2020, 2020
Short summary
Ground subsidence and heave over permafrost: hourly time series reveal interannual, seasonal and shorter-term movement caused by freezing, thawing and water movement
Stephan Gruber
The Cryosphere, 14, 1437–1447, https://doi.org/10.5194/tc-14-1437-2020,https://doi.org/10.5194/tc-14-1437-2020, 2020
Short summary
The surface energy balance in a cold-arid permafrost environment, Ladakh Himalaya, India
John Mohd Wani, Renoj J. Thayyen, Chandra Shekhar Prasad Ojha, and Stephan Gruber
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-286,https://doi.org/10.5194/tc-2019-286, 2020
Revised manuscript accepted for TC
Short summary

Related subject area

Cryosphere
PERICLIMv1.0: a model deriving palaeo-air temperatures from thaw depth in past permafrost regions
Tomáš Uxa, Marek Křížek, and Filip Hrbáček
Geosci. Model Dev., 14, 1865–1884, https://doi.org/10.5194/gmd-14-1865-2021,https://doi.org/10.5194/gmd-14-1865-2021, 2021
Short summary
Assessing the simulated soil hydrothermal regime of the active layer from the Noah-MP land surface model (v1.1) in the permafrost regions of the Qinghai–Tibet Plateau
Xiangfei Li, Tonghua Wu, Xiaodong Wu, Jie Chen, Xiaofan Zhu, Guojie Hu, Ren Li, Yongping Qiao, Cheng Yang, Junming Hao, Jie Ni, and Wensi Ma
Geosci. Model Dev., 14, 1753–1771, https://doi.org/10.5194/gmd-14-1753-2021,https://doi.org/10.5194/gmd-14-1753-2021, 2021
Short summary
CrocO_v1.0: a particle filter to assimilate snowpack observations in a spatialised framework
Bertrand Cluzet, Matthieu Lafaysse, Emmanuel Cosme, Clément Albergel, Louis-François Meunier, and Marie Dumont
Geosci. Model Dev., 14, 1595–1614, https://doi.org/10.5194/gmd-14-1595-2021,https://doi.org/10.5194/gmd-14-1595-2021, 2021
Short summary
A fully coupled Arctic sea-ice–ocean–atmosphere model (ArcIOAM v1.0) based on C-Coupler2: model description and preliminary results
Shihe Ren, Xi Liang, Qizhen Sun, Hao Yu, L. Bruno Tremblay, Bo Lin, Xiaoping Mai, Fu Zhao, Ming Li, Na Liu, Zhikun Chen, and Yunfei Zhang
Geosci. Model Dev., 14, 1101–1124, https://doi.org/10.5194/gmd-14-1101-2021,https://doi.org/10.5194/gmd-14-1101-2021, 2021
Short summary
The Framework For Ice Sheet–Ocean Coupling (FISOC) V1.1
Rupert Gladstone, Benjamin Galton-Fenzi, David Gwyther, Qin Zhou, Tore Hattermann, Chen Zhao, Lenneke Jong, Yuwei Xia, Xiaoran Guo, Konstantinos Petrakopoulos, Thomas Zwinger, Daniel Shapero, and John Moore
Geosci. Model Dev., 14, 889–905, https://doi.org/10.5194/gmd-14-889-2021,https://doi.org/10.5194/gmd-14-889-2021, 2021
Short summary

Cited articles

Abbott, M., Bathurst, J., Cunge, J., O'Connell, P., and Rasmussen, J.: An introduction to the European Hydrological System – Systeme Hydrologique Europeen, "SHE", 1: History and philosophy of a physically-based, distributed modelling system, J. Hydrol., 87, 45–59, 1986.
Anderson, E. A.: A point energy and mass balance model of a snow cover, Tech. rep., Office of Hydrology, National Weather Service, Silver Spring, MA, USA, 1976.
Armijo, L.: Minimization of functions having Lipschitz continuous first partial derivatives, Pacific J. Math., 6, 1–3, 1966.
Atwater, M. and Brown, P. S.: Numerical computation of the latitudinal variations of solar radiation for an atmosphere of varying opacity, J. Appl. Meteorol., 13, 289–297, 1974.
Auer, A. H. J.: The rain versus snow threshold temperatures, Weatherwise, 27, p. 67, 1974.
Download
Short summary
GEOtop is a fine scale grid-based simulator that represents the heat and water budgets at and below the soil surface, reproduces the highly non-linear interactions between the water and energy balance during soil freezing and thawing and simulates snow cover. The core components of GEOtop 2.0. are described. Based on a synthetic simulation, it is shown that the interaction of processes represented in GEOtop 2.0. can result in phenomena that are relevant for applications involving frozen soils.