Articles | Volume 18, issue 4
https://doi.org/10.5194/gmd-18-921-2025
https://doi.org/10.5194/gmd-18-921-2025
Development and technical paper
 | 
19 Feb 2025
Development and technical paper |  | 19 Feb 2025

Advances in land surface forecasting: a comparison of LSTM, gradient boosting, and feed-forward neural networks as prognostic state emulators in a case study with ecLand

Marieke Wesselkamp, Matthew Chantry, Ewan Pinnington, Margarita Choulga, Souhail Boussetta, Maria Kalweit, Joschka Bödecker, Carsten F. Dormann, Florian Pappenberger, and Gianpaolo Balsamo

Related authors

The ECOSENSE forest: A distributed sensor and data management system for real-time monitoring of ecosystem processes and stresses
Jasmin Tesch, Kathrin Kühnhammer, Delon Wagner, Andreas Christen, Carsten Dormann, Julian Frey, Rüdiger Grote, Teja Kattenborn, Markus Sulzer, Ulrike Wallrabe, Markus Weiler, Christiane Werner, Samaneh Baghbani, Julian Brzozon, Laura Maria Comella, Lea Dedden, Stefanie Dumberger, Yasmina Frey, Matthias Gassilloud, Timo Gerach, Anna Göritz, Simon Haberstroh, Johannes Klüppel, Luis Kremer, Jürgen Kreuzwieser, Hojin Lee, Joachim Maack, Julian Müller, Oswald Prucker, Sanam Kumari Rajak, Jürgen Rühe, Stefan J. Rupitsch, Helmer Schack-Kirchner, Christian Scharinger, Uttunga Shinde, Till Steinmann, Clara Stock, and Josef Strack
EGUsphere, https://doi.org/10.5194/egusphere-2025-4979,https://doi.org/10.5194/egusphere-2025-4979, 2025
This preprint is open for discussion and under review for Geoscientific Instrumentation, Methods and Data Systems (GI).
Short summary
A GNN Routing Module Is All You Need for LSTM Rainfall–Runoff Models
Hamidreza Mosaffa, Florian Pappenberger, Christel Prudhomme, Matthew Chantry, Christoph Rüdiger, and Hannah Cloke
EGUsphere, https://doi.org/10.5194/egusphere-2025-5008,https://doi.org/10.5194/egusphere-2025-5008, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
AIFS 1.1.0: An update to ECMWF's machine-learned weather forecast model AIFS
Gabriel Moldovan, Ewan Pinnington, Ana Prieto Nemesio, Simon Lang, Zied Ben Bouallègue, Jesper Dramsch, Mihai Alexe, Mario Santa Cruz, Sara Hahner, Harrison Cook, Helen Theissen, Mariana Clare, Cathal O'Brien, Jan Polster, Linus Magnusson, Gert Mertes, Florian Pinault, Baudouin Raoult, Patricia de Rosnay, Richard Forbes, and Matthew Chantry
EGUsphere, https://doi.org/10.5194/egusphere-2025-4716,https://doi.org/10.5194/egusphere-2025-4716, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Comprehensive Global Assessment of 23 Gridded Precipitation Datasets Across 16,295 Catchments Using Hydrological Modeling
Ather Abbas, Yuan Yang, Ming Pan, Yves Tramblay, Chaopeng Shen, Haoyu Ji, Solomon H. Gebrechorkos, Florian Pappenberger, Jong Cheol Pyo, Dapeng Feng, George Huffman, Phu Nguyen, Christian Massari, Luca Brocca, Tan Jackson, and Hylke E. Beck
EGUsphere, https://doi.org/10.5194/egusphere-2024-4194,https://doi.org/10.5194/egusphere-2024-4194, 2025
Short summary
Multi-year simulations at kilometre scale with the Integrated Forecasting System coupled to FESOM2.5 and NEMOv3.4
Thomas Rackow, Xabier Pedruzo-Bagazgoitia, Tobias Becker, Sebastian Milinski, Irina Sandu, Razvan Aguridan, Peter Bechtold, Sebastian Beyer, Jean Bidlot, Souhail Boussetta, Willem Deconinck, Michail Diamantakis, Peter Dueben, Emanuel Dutra, Richard Forbes, Rohit Ghosh, Helge F. Goessling, Ioan Hadade, Jan Hegewald, Thomas Jung, Sarah Keeley, Lukas Kluft, Nikolay Koldunov, Aleksei Koldunov, Tobias Kölling, Josh Kousal, Christian Kühnlein, Pedro Maciel, Kristian Mogensen, Tiago Quintino, Inna Polichtchouk, Balthasar Reuter, Domokos Sármány, Patrick Scholz, Dmitry Sidorenko, Jan Streffing, Birgit Sützl, Daisuke Takasuka, Steffen Tietsche, Mirco Valentini, Benoît Vannière, Nils Wedi, Lorenzo Zampieri, and Florian Ziemen
Geosci. Model Dev., 18, 33–69, https://doi.org/10.5194/gmd-18-33-2025,https://doi.org/10.5194/gmd-18-33-2025, 2025
Short summary

Cited articles

Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M.: Optuna: A Next-generation Hyperparameter Optimization Framework, in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD '19: The 25th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 4–8 August 2019, Anchorage AK, USA, 2623–2631, https://doi.org/10.1145/3292500.3330701, 2019. 
Baker, E., Harper, A. B., Williamson, D., and Challenor, P.: Emulation of high-resolution land surface models using sparse Gaussian processes with application to JULES, Geosci. Model Dev., 15, 1913–1929, https://doi.org/10.5194/gmd-15-1913-2022, 2022. 
Balsamo, G., Bousseea, S., Dutra, E., Beljaars, A., Viterbo, P., and Van den Hurk, B.: ECMWF Newsleeer No 127, Meteorology, Spring 2011, 17–22, https://doi.org/10.21957/x1j3i7bz, 2011. 
Bassi, A., Höge, M., Mira, A., Fenicia, F., and Albert, C.: Learning landscape features from streamflow with autoencoders, Hydrol. Earth Syst. Sci., 28, 4971–4988, https://doi.org/10.5194/hess-28-4971-2024, 2024. 
Bengtsson, L. K., Magnusson, L., and Källén, E.: Independent Estimations of the Asymptotic Variability in an Ensemble Forecast System, Mon. Weather Rev., 136, 4105–4112, https://doi.org/10.1175/2008MWR2526.1, 2008. 
Download
Short summary
We compared spatiotemporal forecasts of three machine learning models that learned water and energy
states on the land surface from a physical model scheme. The forecasting models were developed with reanalysis data and simulations on a European scale and transferred to the globe. We found that all approaches deliver highly accurate approximations of the physical dynamic at long time horizons, implying their usefulness to advance land surface forecasting with synthetic data. 
Share