Articles | Volume 17, issue 1
https://doi.org/10.5194/gmd-17-335-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-17-335-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Sweep interpolation: a cost-effective semi-Lagrangian scheme in the Global Environmental Multiscale model
Mohammad Mortezazadeh
Air Quality Research Division, Environment and Climate Change Canada, Dorval, H9P 1J3, Canada
Jean-François Cossette
Meteorological Research Division, Environment and Climate Change Canada, Dorval, H9P 1J3, Canada
Ashu Dastoor
CORRESPONDING AUTHOR
Air Quality Research Division, Environment and Climate Change Canada, Dorval, H9P 1J3, Canada
Jean de Grandpré
Air Quality Research Division, Environment and Climate Change Canada, Dorval, H9P 1J3, Canada
Irena Ivanova
Air Quality Research Division, Environment and Climate Change Canada, Dorval, H9P 1J3, Canada
Abdessamad Qaddouri
Meteorological Research Division, Environment and Climate Change Canada, Dorval, H9P 1J3, Canada
Related authors
No articles found.
Kirill Semeniuk, Ashu Dastoor, and Alex Lupu
Geosci. Model Dev., 18, 6479–6515, https://doi.org/10.5194/gmd-18-6479-2025, https://doi.org/10.5194/gmd-18-6479-2025, 2025
Short summary
Short summary
The Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) inorganic aerosol sub-model has been implemented in the Global Environmental Multiscale – Modeling Air Quality and Chemistry (GEM-MACH) air quality model. MOSAIC includes metal cation reactions and is a non-equilibrium, double-moment scheme that conserves aerosol number. Compared to the current aerosol sub-model, MOSAIC produces a more accurate size distribution and aerosol number concentration. It also improves the simulated nitrate and ammonium distribution. This work serves to expand the capacity of GEM-MACH for chemistry and weather coupling.
Ashu Dastoor, Hélène Angot, Johannes Bieser, Flora Brocza, Brock Edwards, Aryeh Feinberg, Xinbin Feng, Benjamin Geyman, Charikleia Gournia, Yipeng He, Ian M. Hedgecock, Ilia Ilyin, Jane Kirk, Che-Jen Lin, Igor Lehnherr, Robert Mason, David McLagan, Marilena Muntean, Peter Rafaj, Eric M. Roy, Andrei Ryjkov, Noelle E. Selin, Francesco De Simone, Anne L. Soerensen, Frits Steenhuisen, Oleg Travnikov, Shuxiao Wang, Xun Wang, Simon Wilson, Rosa Wu, Qingru Wu, Yanxu Zhang, Jun Zhou, Wei Zhu, and Scott Zolkos
Geosci. Model Dev., 18, 2747–2860, https://doi.org/10.5194/gmd-18-2747-2025, https://doi.org/10.5194/gmd-18-2747-2025, 2025
Short summary
Short summary
This paper introduces the Multi-Compartment Mercury (Hg) Modeling and Analysis Project (MCHgMAP) aimed at informing the effectiveness evaluations of two multilateral environmental agreements: the Minamata Convention on Mercury and the Convention on Long-Range Transboundary Air Pollution. The experimental design exploits a variety of models (atmospheric, land, oceanic ,and multimedia mass balance models) to assess the short- and long-term influences of anthropogenic Hg releases into the environment.
Justin L. Willson, Kevin A. Reed, Christiane Jablonowski, James Kent, Peter H. Lauritzen, Ramachandran Nair, Mark A. Taylor, Paul A. Ullrich, Colin M. Zarzycki, David M. Hall, Don Dazlich, Ross Heikes, Celal Konor, David Randall, Thomas Dubos, Yann Meurdesoif, Xi Chen, Lucas Harris, Christian Kühnlein, Vivian Lee, Abdessamad Qaddouri, Claude Girard, Marco Giorgetta, Daniel Reinert, Hiroaki Miura, Tomoki Ohno, and Ryuji Yoshida
Geosci. Model Dev., 17, 2493–2507, https://doi.org/10.5194/gmd-17-2493-2024, https://doi.org/10.5194/gmd-17-2493-2024, 2024
Short summary
Short summary
Accurate simulation of tropical cyclones (TCs) is essential to understanding their behavior in a changing climate. One way this is accomplished is through model intercomparison projects, where results from multiple climate models are analyzed to provide benchmark solutions for the wider climate modeling community. This study describes and analyzes the previously developed TC test case for nine climate models in an intercomparison project, providing solutions that aid in model development.
Robin Stevens, Andrei Ryjkov, Mahtab Majdzadeh, and Ashu Dastoor
Atmos. Chem. Phys., 22, 13527–13549, https://doi.org/10.5194/acp-22-13527-2022, https://doi.org/10.5194/acp-22-13527-2022, 2022
Short summary
Short summary
Absorbing particles like black carbon can be coated with other matter. How much radiation these particles absorb depends on the coating thickness. The removal of these particles by clouds and rain depends on the coating composition. These effects are important for both climate and air quality. We implement a more detailed representation of these particles in an air quality model which accounts for both coating thickness and composition. We find a significant effect on particle concentrations.
Ashu Dastoor, Andrei Ryjkov, Gregor Kos, Junhua Zhang, Jane Kirk, Matthew Parsons, and Alexandra Steffen
Atmos. Chem. Phys., 21, 12783–12807, https://doi.org/10.5194/acp-21-12783-2021, https://doi.org/10.5194/acp-21-12783-2021, 2021
Short summary
Short summary
An assessment of mercury levels in air and deposition in the Athabasca oil sands region (AOSR) in Northern Alberta, Canada, was conducted to investigate the contribution of Hg emitted from oil sands activities to the surrounding landscape using a 3D process-based Hg model in 2012–2015. Oil sands Hg emissions are found to be important sources of Hg contamination to the local landscape in proximity to the processing activities, particularly in wintertime.
Cited articles
Aires, F., Catherine, P., and Rossow, W. B.: Temporal interpolation of global surface skin temperature diurnal cycle over land under clear and cloudy conditions, J. Geophys. Res.-Atmos., 109, D04313, https://doi.org/10.1029/2003JD003527, 2004.
Arakawa, A.: Finite-difference methods in climate modelling, in: Physically-Based Modelling and Simulation of Climate and Climatic Change, 243, 79–168, https://doi.org/10.1007/978-94-009-3041-4_3, 1988.
Bradley, A. M., Bosler, P. A., and Guba, O.: Islet: interpolation semi-Lagrangian element-based transport, Geosci. Model Dev., 15, 6285–6310, https://doi.org/10.5194/gmd-15-6285-2022, 2022.
Charron, M., Polavarapu, S., Buehner, M., Vaillancourt, P. A., Charette, C., Roch, M., Morneau, J., Garand, L., Aparicio, J. M., MacPherson, S., Pellerin, S., St-James, J., and Heilliette, S.: The Stratospheric Extension of the Canadian Global Deterministic Medium-Range Weather Forecasting System and Its Impact on Tropospheric Forecasts, Mon. Weather Rev., 140, 1924–1944, https://doi.org/10.1175/MWR-D-11-00097.1, 2012.
Cossette, J.-F., Smolarkiewicz, P. K., and Charbonneau, P.: The Monge-Ampère trajectory correction for semi-Lagrangian schemes, J. Comput. Phys., 274, 208–229, https://doi.org/10.1016/j.jcp.2014.05.016 , 2014.
Côté, J. and Staniforth, A.: A two-time-level semi-Lagrangian semi-implicit scheme for spectral models, Mon. Weather Rev., 116, 2003–2012, https://doi.org/10.1175/1520-0493(1988)116<2003:ATTLSL>2.0.CO;2, 1988.
de Grandpré, J., Tanguay, M., Qaddouri, A., Zerroukat, M., and McLinden, C.: Semi-Lagrangian Advection of Stratospheric Ozone on a Yin–Yang Grid System, Mon. Weather Rev., 144, 1035–1050, https://doi.org/10.1175/MWR-D-15-0142.1, 2016.
Girard, C., Plante, A., Desgagné, M., Mctaggart-Cowan, R., Côté, J., Charron, M., Gravel, S., Lee, V., Patoine, A., Qaddouri, A., Roch, M., Spacek, L., Tanguay, M., Vaillancourt, P. A., and Zadra, A.: Staggered vertical discretization of the canadian environmental multiscale (GEM) model using a coordinate of the log-hydrostatic-pressure type, Mon. Weather Rev., 142, 1183–1196, https://doi.org/10.1175/MWR-D-13-00255.1, 2014.
Golaz, J., Caldwell, P., Van Roekel, L., Petersen, M., Tang, Q., Wolfe, J., Abeshu, G., Anantharaj, V., Asay-Davis, X., Bader, D., Baldwin, S., Bisht, G., Bogenschutz, P., Branstetter, M., Brunke, M., Brus, S., Burrows, S., Cameron-Smith, Ph., Donahue, A., Deakin, M., Easter, R., Evans, K., Feng, Y., Flanner, M., Foucar, J., Fyke, J., Griffin, B., Hannay, C., Harrop, B., Hoffman, M., Hunke, E., Jacob, R., Jacobsen, D., Jeffery, N., Jones, Ph., Keen, N., Klein, S., Larson, V., Leung, L., Li, H., Lin, W., Lipscomb, W., Ma, P., Mahajan, S., Maltrud, W., Mametjanov, A., McClean, J., McCoy, R., Neale, R., Price, S., Qian, Y., Rasch, Ph., Reeves Eyre, J., Riley, W., Ringler, T., Roberts, A., Roesler, E., Salinger, A., Shaheen, Z., Shi, X., Singh, B., Tang, J., Taylor, M., Thornton, P., Turner, A., Veneziani, M., Wan, H., Wang, H., Wang, Sh., Williams, D., Wolfram, Ph., Worley, P., Xie, Sh., Yang, Y., Yoon, J., Zelinka, M., Zender, Ch., Zeng, X., Zhang, Ch., Zhang, K., Zhang, Y., Zheng, X., Zhou, T., and Zhu, Q.: The DOE E3SM coupled model version 1: Overview and evaluation at standard resolution, Adv. Model. Earth Syst., 11, 2089–2129, https://doi.org/10.1029/2018MS001603, 2019.
Hortal, M.: The development and testing of a new two-time-level semi-Lagrangian scheme (SETTLS) in the ECMWF forecast model, Q. J. Roy. Meteor. Soc., 128, 1671–1687, https://doi.org/10.1002/qj.200212858314, 2002.
Husain, S. Z. and Girard, C.: Impact of consistent semi-Lagrangian trajectory calculations on numerical weather prediction performance, Mon. Weather Rev., 145, 4127–4150, https://doi.org/10.1175/MWR-D-17-0138.1, 2017.
Husain, S. Z., Girard, C., Qaddouri, A., and Plante, A.: A new dynamical core of the Global Environmental Multiscale (GEM) model with a height-based terrain-following vertical coordinate, Mon. Weather Rev., 147, 2555–2578, https://doi.org/10.1175/MWR-D-18-0438.1, 2019.
Husain, S. Z., Girard, C., Separovic, L., Plante, A., and Corvec, S.: On the progressive attenuation of finescale orography contributions to the vertical coordinate surfaces within a terrain-following coordinate system, Mon. Weather Rev., 148, 4143–4158, https://doi.org/10.1175/MWR-D-20-0085.1, 2020.
Im, U., Bianconi, R., Solazzo, E., Kioutsioukis, I., Alba Badia, A., Balzarini, A., Baró, R., Bellasio, R., Brunner, D., Chemel, Ch., Curci, G., van der Gon, H., Flemming, J., Forkel, R., Giordano, L., Jiménez-Guerrero, P., Hirtl, M., Hodzic, A., Honzak, L., Jorba, O., Knote, Ch., Makar, P., Manders-Groot, A., Neal, L., Pérez, J., Pirovano, G., Pouliot, G., San Jose, R., Savage, N., Schroder, W., Sokhi, R., Syrakov, D., Torian, A., Tuccella, P., Wang, K., Werhahn, J., Wolke, R., Zabkar, R., Zhang, Y., Zhang, J., Hogrefe, Ch., and Galmarini, S.: Evaluation of operational online-coupled regional air quality models over Europe and North America in the context of AQMEII phase 2. Part II: Particulate matter, Atmos. Sci., 115, 421–441, https://doi.org/10.1016/j.atmosenv.2014.08.072, 2015.
Makar, P., Gong, W., Milbrandt, J., Hogrefe, C., Zhang, Y., Curci, G., Zabkar, R., Im, U., Balzarini, A., Baro, R., Bianconi, R., Cheung, P., Forkel, R., Gravel, S., Hirtl, M., Honzak, L., Hou, A., Jimenez-Guerrero, P., Langer, M., Moran, M.D., Pabla B., Perez, J. L., Pirovano, G., San Jose, R., Tuccella, P., Werhahn, J., Zhang, J., and Galmarini, S.: Feedbacks between air pollution and weather, Part 1: Effects on weather, Atmos. Environ., 115, 442–469, https://doi.org/10.1016/j.atmosenv.2014.12.003, 2015.
McDonald, A. and Bates, J. R.: Improving the estimate of the departure point position in a two-time level semi-Lagrangian and semi-implicit scheme, Mon. Weather Rev., 115, 737–739, https://doi.org/10.1175/1520-0493(1987)115<0737:ITEOTD>2.0.CO;2, 1987.
McDonald, A. and Haugen, J.: A two-time-level, three-dimensional semi-Lagrangian, semi-implicit, limited-area gridpoint model of the primitive equations, Mon. Weather Rev., 120, 2603–2621, https://doi.org/10.1175/1520-0493(1992)120<2603:ATTLTD>2.0.CO;2, 1992.
Mortezazadeh, M. and Wang, L.: A high-order backward forward sweep interpolating algorithm for semi-Lagrangian method, Int. J. Num. Meth. Fluids, 84, 584–597, https://doi.org/10.1002/fld.4362, 2017.
Mortezazadeh, M., Cossette, J.-F., Dastoor, A., de Grandpré, J., Ivanova, I., and Qaddouri, A.: Sweep Interpolation: A Fourth-Order Accurate Cost Effective Scheme in the Global Environmental Multiscale Model (GEM) (GEM v5.2.0-a18), Zenodo [code], https://doi.org/10.5281/zenodo.8246831, 2023.
Mukhopadhyay, P., Prasad, V., Krishna, R., Deshpande, M., Ganai, M., Tirkey, S., Sarkar, S., Goswami, T., Johny, C., Roy, K., Mahakur, M., Durai, V., and Rajeevan, M.: Performance of a very high-resolution global forecast system model (GFS T1534) at 12.5 km over the Indian region during the 2016–2017 monsoon seasons, J. Earth Syst. Sci., 128, 1–18, https://doi.org/10.1007/s12040-019-1186-6, 2019.
Nair, R. D. and Machenhauer, B.: The mass-conservative cell-integrated semi-Lagrangian advection scheme on the sphere, Mon. Weather Rev., 130, 649–667, https://doi.org/10.1175/1520-0493(2002)130<0649:TMCCIS>2.0.CO;2, 2002.
Nakao, J., Chen, J., and Qiu, J.: An Eulerian-Lagrangian Runge-Kutta finite volume (EL-RK-FV) method for solving convection and convection-diffusion equations, J. Comput. Phys., 470, 111589, https://doi.org/10.1016/j.jcp.2022.111589, 2022.
Petras, A., Ling, L., and Ruuth, S.: Meshfree Semi-Lagrangian Methods for Solving Surface Advection PDEs, J. Sci. Comput., 93, 11, https://doi.org/10.1007/s10915-022-01966-w, 2022.
Prather, M. J., Holmes, C. D., and Hsu, J.: Reactive greenhouse gas scenarios: Systematic exploration of uncertainties and the role of atmospheric chemistry, Geophys. Res. Lett., 39, 9, https://doi.org/10.1029/2012GL051440, 2012.
Purser, R. and Leslie, L.: An efficient interpolation procedure for high-order three-dimensional semi-Lagrangian models, Mon. Weather Rev., 119, 2492–2498, https://doi.org/10.1175/1520-0493(1991)119<2492:AEIPFH>2.0.CO;2, 1991.
Qaddouri, A. and Lee, V.: The Canadian global environmental multiscale model on the Yin-Yang grid system, Q. J. Roy. Meteor. Soc., 137, 1913–1926, https://doi.org/10.1002/qj.873, 2011.
Ritchie, H.: Application of the semi-Lagrangian method to a spectral model of the shallow water equations, Mon. Weather Rev., 116, 1587–1598, https://doi.org/10.1175/1520-0493(1988)116<1587:AOTSLM>2.0.CO;2, 1988.
Ritchie, H., Temperton, C., Simmons, A., Hortal, M., Davies, T., Dent, D., and Hamrud, M.: Implementation of the semi-Lagrangian method in a high-resolution version of the ECMWF forecast model, Mon. Weather Rev., 123, 489–514, https://doi.org/10.1175/1520-0493(1995)123<0489:IOTSLM>2.0.CO;2, 1995.
Robert, A.: A stable numerical integration scheme for the primitive meteorological equations, Atmos. Ocean., 19, 35–46, https://doi.org/10.1080/07055900.1981.9649098, 1980.
Shapiro, M. and Hastings, J.: Objective cross-section analyses by Hermite polynomial interpolation on isentropic surfaces, Appl. Meteorol. Climatol., 12, 753–762, https://doi.org/10.1175/1520-0450(1973)012<0753:OCSABH>2.0.CO;2, 1973.
Smolarkiewicz, P. K. and Pudykiewicz, J. A.: A Class of Semi-Lagrangian Approximations for Fluids, Atmos. Sci., 49, 2082–2096, https://doi.org/10.1175/1520-0469(1992)049<2082:ACOSLA>2.0.CO;2, 1992.
Staniforth, A. and Côté, J.: Semi-Lagrangian integration schemes for atmospheric models – A review, Mon. Weather Rev., 119, 2206–2223, https://doi.org/10.1175/1520-0493(1991)119<2206:SLISFA>2.0.CO;2, 1991.
Stevens, R., Ryjkov, A., Majdzadeh, M., and Dastoor, A.: An improved representation of aerosol mixing state for air quality–weather interactions, Atmos. Chem. Phys., 22, 13527–13549, https://doi.org/10.5194/acp-22-13527-2022, 2022.
Ullrich, P. A., Jablonowski, C., Kent, J., Lauritzen, P. H., Nair, R. D., and Taylor, M. A.: Dynamical Core Model Intercomparison Project (DCMIP) Test Case Document, DCMIP Summer School, University of Michigan, 2013.
Williamson, D. L. and Rasch, P. J.: Two-dimensional semi-Lagrangian transport with shape-preserving interpolation, Mon. Weather Rev., 117, 102–129, https://doi.org/10.1175/1520-0493(1989)117<0102:TDSLTW>2.0.CO;2, 1989.
Yabe, T., Tanaka, R., Nakamura, T., and Xiao, F.: An exactly conservative semi-Lagrangian scheme (CIP–CSL) in one dimension, Mon. Weather Rev., 129, 332–344, https://doi.org/10.1175/1520-0493(2001)129<0332:AECSLS>2.0.CO;2, 2001.
Zerroukat, M.: A simple mass conserving semi-Lagrangian scheme for transport problems, J. Comp. Phys., 229, 9011–9019, https://doi.org/10.1016/j.jcp.2010.08.017, 2010.
Zhou, J., Obrist, D., Dastoor, A., Jiskra, M., and Ryjkov, A.: Vegetation uptake of mercury and impacts on global cycling, Nat. Rev. Earth Environ., 2, 269–284, https://doi.org/10.1038/s43017-021-00146-y, 2021.
Short summary
The interpolation process is the most computationally expensive step of the semi-Lagrangian (SL) approach. In this paper we implement a new interpolation scheme into the semi-Lagrangian approach which has the same computational cost as a third-order polynomial scheme but with the accuracy of a fourth-order interpolation scheme. This improvement is achieved by using two third-order backward and forward polynomial interpolation schemes in two consecutive time steps.
The interpolation process is the most computationally expensive step of the semi-Lagrangian (SL)...