Articles | Volume 17, issue 1
https://doi.org/10.5194/gmd-17-335-2024
https://doi.org/10.5194/gmd-17-335-2024
Development and technical paper
 | 
15 Jan 2024
Development and technical paper |  | 15 Jan 2024

Sweep interpolation: a cost-effective semi-Lagrangian scheme in the Global Environmental Multiscale model

Mohammad Mortezazadeh, Jean-François Cossette, Ashu Dastoor, Jean de Grandpré, Irena Ivanova, and Abdessamad Qaddouri

Related authors

Implementation of the MOSAIC Aerosol Module (v1.0) in the Canadian Air Quality Model GEM-MACH (v3.1)
Kirill Semeniuk, Ashu Dastoor, and Alex Lupu
EGUsphere, https://doi.org/10.5194/egusphere-2024-2958,https://doi.org/10.5194/egusphere-2024-2958, 2024
Short summary
The Multi-Compartment Hg Modeling and Analysis Project (MCHgMAP): Mercury modeling to support international environmental policy
Ashu Dastoor, Hélène Angot, Johannes Bieser, Flora Brocza, Brock Edwards, Aryeh Feinberg, Xinbin Feng, Benjamin Geyman, Charikleia Gournia, Yipeng He, Ian M. Hedgecock, Ilia Ilyin, Terry Keating, Jane Kirk, Che-Jen Lin, Igor Lehnherr, Robert Mason, David McLagan, Marilena Muntean, Peter Rafaj, Eric M. Roy, Andrei Ryjkov, Noelle E. Selin, Francesco De Simone, Anne L. Soerensen, Frits Steenhuisen, Oleg Travnikov, Shuxiao Wang, Xun Wang, Simon Wilson, Rosa Wu, Qingru Wu, Yanxu Zhang, Jun Zhou, Wei Zhu, and Scott Zolkos
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-65,https://doi.org/10.5194/gmd-2024-65, 2024
Revised manuscript under review for GMD
Short summary
DCMIP2016: the tropical cyclone test case
Justin L. Willson, Kevin A. Reed, Christiane Jablonowski, James Kent, Peter H. Lauritzen, Ramachandran Nair, Mark A. Taylor, Paul A. Ullrich, Colin M. Zarzycki, David M. Hall, Don Dazlich, Ross Heikes, Celal Konor, David Randall, Thomas Dubos, Yann Meurdesoif, Xi Chen, Lucas Harris, Christian Kühnlein, Vivian Lee, Abdessamad Qaddouri, Claude Girard, Marco Giorgetta, Daniel Reinert, Hiroaki Miura, Tomoki Ohno, and Ryuji Yoshida
Geosci. Model Dev., 17, 2493–2507, https://doi.org/10.5194/gmd-17-2493-2024,https://doi.org/10.5194/gmd-17-2493-2024, 2024
Short summary
An improved representation of aerosol mixing state for air quality–weather interactions
Robin Stevens, Andrei Ryjkov, Mahtab Majdzadeh, and Ashu Dastoor
Atmos. Chem. Phys., 22, 13527–13549, https://doi.org/10.5194/acp-22-13527-2022,https://doi.org/10.5194/acp-22-13527-2022, 2022
Short summary
Impact of Athabasca oil sands operations on mercury levels in air and deposition
Ashu Dastoor, Andrei Ryjkov, Gregor Kos, Junhua Zhang, Jane Kirk, Matthew Parsons, and Alexandra Steffen
Atmos. Chem. Phys., 21, 12783–12807, https://doi.org/10.5194/acp-21-12783-2021,https://doi.org/10.5194/acp-21-12783-2021, 2021
Short summary

Related subject area

Numerical methods
The Measurement Error Proxy System Model: MEPSM v0.2
Matt J. Fischer
Geosci. Model Dev., 17, 6745–6760, https://doi.org/10.5194/gmd-17-6745-2024,https://doi.org/10.5194/gmd-17-6745-2024, 2024
Short summary
Numerical stabilization methods for level-set-based ice front migration
Gong Cheng, Mathieu Morlighem, and G. Hilmar Gudmundsson
Geosci. Model Dev., 17, 6227–6247, https://doi.org/10.5194/gmd-17-6227-2024,https://doi.org/10.5194/gmd-17-6227-2024, 2024
Short summary
Modelling chemical advection during magma ascent
Hugo Dominguez, Nicolas Riel, and Pierre Lanari
Geosci. Model Dev., 17, 6105–6122, https://doi.org/10.5194/gmd-17-6105-2024,https://doi.org/10.5194/gmd-17-6105-2024, 2024
Short summary
Consistent point data assimilation in Firedrake and Icepack
Reuben W. Nixon-Hill, Daniel Shapero, Colin J. Cotter, and David A. Ham
Geosci. Model Dev., 17, 5369–5386, https://doi.org/10.5194/gmd-17-5369-2024,https://doi.org/10.5194/gmd-17-5369-2024, 2024
Short summary
A Joint Reconstruction and Model Selection Approach for Large Scale Inverse Modeling
Malena Sabaté Landman, Julianne Chung, Jiahua Jiang, Scot Miller, and Arvind Saibaba
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-90,https://doi.org/10.5194/gmd-2024-90, 2024
Revised manuscript accepted for GMD
Short summary

Cited articles

Aires, F., Catherine, P., and Rossow, W. B.: Temporal interpolation of global surface skin temperature diurnal cycle over land under clear and cloudy conditions, J. Geophys. Res.-Atmos., 109, D04313, https://doi.org/10.1029/2003JD003527, 2004. 
Arakawa, A.: Finite-difference methods in climate modelling, in: Physically-Based Modelling and Simulation of Climate and Climatic Change, 243, 79–168, https://doi.org/10.1007/978-94-009-3041-4_3, 1988. 
Bradley, A. M., Bosler, P. A., and Guba, O.: Islet: interpolation semi-Lagrangian element-based transport, Geosci. Model Dev., 15, 6285–6310, https://doi.org/10.5194/gmd-15-6285-2022, 2022. 
Charron, M., Polavarapu, S., Buehner, M., Vaillancourt, P. A., Charette, C., Roch, M., Morneau, J., Garand, L., Aparicio, J. M., MacPherson, S., Pellerin, S., St-James, J., and Heilliette, S.: The Stratospheric Extension of the Canadian Global Deterministic Medium-Range Weather Forecasting System and Its Impact on Tropospheric Forecasts, Mon. Weather Rev., 140, 1924–1944, https://doi.org/10.1175/MWR-D-11-00097.1, 2012. 
Cossette, J.-F., Smolarkiewicz, P. K., and Charbonneau, P.: The Monge-Ampère trajectory correction for semi-Lagrangian schemes, J. Comput. Phys., 274, 208–229, https://doi.org/10.1016/j.jcp.2014.05.016 , 2014. 
Download
Short summary
The interpolation process is the most computationally expensive step of the semi-Lagrangian (SL) approach. In this paper we implement a new interpolation scheme into the semi-Lagrangian approach which has the same computational cost as a third-order polynomial scheme but with the accuracy of a fourth-order interpolation scheme. This improvement is achieved by using two third-order backward and forward polynomial interpolation schemes in two consecutive time steps.