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Abstract. The interpolation process is the most computation-
ally expensive step of the semi-Lagrangian (SL) approach
for solving advection and is commonly used in numerical
weather prediction (NWP) models. It has a significant im-
pact on the accuracy of the solution and can potentially be
the most expensive part of model integration. The sweep
algorithm, which was first described by Mortezazadeh and
Wang (2017), performs SL interpolation with the same com-
putational cost as a third-order polynomial scheme but at the
accuracy of the fourth order. This improvement is achieved
by using two third-order backward and forward polynomial
interpolation schemes in two consecutive time steps. In this
paper, we present a new application of the sweep algorithm
within the context of global forecasts produced with Environ-
ment Climate Change Canada’s Global Environmental Mul-
tiscale (GEM) model. Results show that the SL scheme with
sweep interpolation is computationally more efficient com-
pared to a conventional SL scheme with fourth-order poly-
nomial interpolation, especially when a very large number of
passive tracers are advected. An additional advantage of this
new approach is that its implementation in a chemical and
weather forecast model requires minimum modifications of
the interpolation weighting coefficients. An analysis of the
computational performance for a set of theoretical bench-
marks as well as a global ozone forecast experiment show
that up to 15 % reduction in total wall clock time is achieved.
Forecasting experiments using the global version of the GEM
model and the new interpolation show that the sweep inter-
polation can perform very well in predicting ozone distribu-
tion, especially in the tropopause region, where transport pro-
cesses play a significant role.

1 Introduction

Following their development nearly 4 decades ago, semi-
Lagrangian (SL) schemes have been widely used by numeri-
cal weather prediction (NWP) models such as the Global En-
vironmental Multiscale (GEM) model, the Integrated Fore-
casting System (IFS), and the Global Forecast System (GFS)
(Robert, 1980; Staniforth and Côté, 1991; Ritchie et al.,
1995; Girard et al., 2014; Husain and Girard, 2017; Husain
et al., 2019; Mukhopadhyay et al., 2019). One of the main
reasons for their popularity is the fact that these schemes can
use large time steps without suffering from the same stability
issues as the Eulerian methods, which are constrained by the
Courant–Friedrich–Lewy condition (McDonald and Bates,
1987; Côté and Staniforth, 1988; Ritchie, 1988). SL schemes
can be derived from an integral along the path that links a
flow trajectory’s departure point to its arrival point located
on a fixed Eulerian grid (Smolarkiewicz and Pudykiewicz,
1992). From this perspective, the flow is considered to be a
group of discrete fluid particles following their characteristic
curves along the Lagrangian coordinate (Mortezazadeh and
Wang, 2017). The SL scheme consists of three distinct steps.
First, it finds the departure point by performing backward
integration of the kinematic relationship describing the char-
acteristic path of the fluid particles (McDonald and Haugen,
1992; Hortal, 2002). Second, an interpolation scheme maps
the data from the Eulerian grid to the position of the depar-
ture point (Williamson and Rasch, 1989; Purser and Leslie,
1991). Third, contributions from forcings are taken into ac-
count as integrals along the flow trajectories (e.g., see Cos-
sette et al., 2014, and the references therein).
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Choosing a suitable interpolation scheme plays an im-
portant role in determining the accuracy and computational
cost of the SL approach (Yabe et al., 2001). In particular,
low-order interpolation is susceptible to high dissipation er-
ror, and as a result it may induce large conservation and
shape preservation errors in the solution (Zerroukat, 2010;
Mortezazadeh and Wang, 2017). Thus, a high-order inter-
polation scheme is preferable to reduce the dissipation er-
ror. Various high-order interpolation schemes have been pro-
posed to improve the accuracy of the SL approach such as
Lagrange and Hermite polynomial interpolations, as well as
weighted essentially non-oscillatory (WENO) interpolation
(Shapiro and Hastings, 1973; Girard et al., 2014; Nakao et
al., 2022; Petras et al., 2022). One of the common polyno-
mial interpolation schemes that is used in weather and air
quality forecasting systems is the cubic Lagrange interpola-
tion scheme (Aires et al., 2004; Girard et al., 2014), which
can provide sufficient accuracy for tracer transport and ad-
vection without being prohibitively computationally expen-
sive.

Nonetheless, a significant amount of information from
neighboring grid points is required to perform any high-
order polynomial interpolation. For instance, a fourth-order-
accurate 3D Lagrange interpolation scheme uses 64 grid
points, i.e., 4 grid points in each direction. Because of the
significant computational cost of the high-order interpola-
tion, the transport of tracers in atmospheric models can sig-
nificantly affect the computational performance, especially
when considering the evolution of a large number of trac-
ers (Bradley et al., 2022). This issue is particularly important
with the extensive development of operational air quality pre-
diction systems which attempt to resolve a comprehensive set
of physicochemical processes involving a growing number
of atmospheric chemical constituents (Im et al., 2015; Makar
et al., 2015). Depending on the application, the number of
tracers used in atmospheric air quality models can vary from
few to hundreds, thereby increasing the overall cost of tracer
transport. For example, Golaz et al. (2019) showed that in an
atmospheric model with 40 tracers, 75 % of the dynamical
core wall clock time is taken by the tracer transport solver
(Golaz et al., 2019).

By contrast to the standard fourth-order-accurate interpo-
lation, the sweep interpolation scheme can reduce the cost of
the interpolation process by using fewer neighborhood grid
points but keeping almost the same accuracy as fourth-order
interpolation. This scheme is based on the alternate use of
third-order backward and forward polynomial interpolation
schemes (Mortezazadeh and Wang, 2017). This procedure is
applied in two successive time steps so that at the end of each
two time steps the truncation error is approximately equal
to the error in the cubic interpolation scheme. Performance
of the sweep interpolation scheme was investigated in 1D,
2D, and 3D benchmarks, a wave function and cavity flow in
2D and 3D squares, respectively, and complete error analysis

showing the accuracy of the scheme was reported (Morteza-
zadeh and Wang, 2017).

In this paper, the sweep interpolation scheme is imple-
mented into the Global Environmental Multiscale (GEM)
model, and its accuracy and computational performance in
tracer transport are assessed. The paper is organized as fol-
lows. In the first section we present the formulation of the
sweep interpolation scheme. Next, three benchmarks are
used to evaluate the performance of sweep interpolation. Fi-
nally, the accuracy of sweep interpolation is evaluated by
performing an ensemble of ozone forecasts over a 10-week
period within the Environment and Climate Change Canada
(ECCC) NWP global forecasting system based on the GEM
model. Additionally, we investigate the performance of the
new interpolation scheme by using different numbers of
passive tracers. ECCC’s air quality forecast model, GEM-
MACH (Global Environmental Multiscale – Modelling Air
quality and CHemistry) (Zhou et al., 2021; Stevens et al.,
2022), is an in-line chemistry–meteorology model based on
the GEM model. The benefits of the sweep interpolation
scheme in reducing computational cost of the transport of
chemical species in GEM-MACH will be tested in a future
study.

2 Methodology

GEM is used for meteorological forecasting at all scales from
15 to 2.5 km. It solves the elastic Euler equations using a two-
time-level Crank–Nicholson temporal discretization with SL
treatment of the advection terms (Girard et al., 2014). The
current version of GEM uses a finite-difference discretiza-
tion on a yin-yang grid (Qaddouri and Lee, 2011). The gov-
erning equations are formulated using spherical coordinates
together with a log-hydrostatic pressure type terrain follow-
ing vertical coordinates (Husain et al., 2020). They are dis-
cretized on an Arakawa C grid (Arakawa, 1988) in the hori-
zontal, whereas in the vertical direction, they are discretized
using a Charney–Phillips grid. Tracer transport is accom-
plished by first solving the advection equation for a passive
tracer and then by adding contributions from physics forc-
ings in split mode. The current interpolation scheme in GEM
is a fourth-order-accurate cubic Lagrange interpolation. It is
used to calculate the variables at the departure point, as well
as to perform the exchange of data on the boundaries of the
two subgrids of the global yin-yang grid. In this study, we
document the impact of using sweep interpolation for the ad-
vection of tracers as well as for the exchange of data between
yin and yang subgrids in GEM.

GEM solves a system of four prognostic equations, which
include momentum (Eq. 1), energy (Eq. 2), mass conserva-
tion (Eq. 3), and ideal gas law (Eq. 4):

dV

dt
+ f k×V +

1
ρ

∇p+ gk= F (1)
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Figure 1. Procedure of time marching in semi-Lagrangian scheme.

dT
dt
−

1
ρcp

∂p

∂t
=
Q

cp
(2)

d lnρ
dt
+∇ ·V = 0 (3)

ρ =
p

RT
, (4)

where V = (V h,w), T , p, and ρ are the velocity vector, tem-
perature, pressure, and density, respectively. Here, F and Q
are the source terms for friction and heat, respectively; g is
the gravitational force; and cp and R are the thermodynamic
parameters. The general form of the nonlinear term in the
prognostic equations and tracer transport equations can be
written as follows:

d∅
dt
= P, (5)

where ∅ represents a prognostic variable or tracer scalars,
and P is the forcings. When performing tracer advection in
GEM, we solve Eq. (5) based on two steps. At first, we solve
the pure advection equation and calculate the intermediate
solution ∅∗A.

d∅
dt
=
∂∅
∂t
+u ·

∂∅
∂X
= 0, (6)

where X= (xyz) and t specify spatial and temporal coordi-
nates. Then by using the semi-Lagrangian scheme, Eq. (6) is
written as

∅∗A =∅D. (7)

Here, A : (Xt) and D : (X−1X, t −1t) correspond to the
arrival and departure positions of flow trajectories, respec-
tively (see Fig. 1).

In the second step, we add the forcing term to the interme-
diate solution to find the results at the present time step:

∅A =∅∗A+1tP. (8)

In the semi-Lagrangian method, the most challenging part is
calculating the value of the variables at the departure point

Figure 2. One-dimensional computational stencil diagram of neigh-
borhoods near the departure point.

XD = (xD,yD,zD). To accomplish this, first we need to find
the position XD by moving back along the flow trajectory T
arriving at XA:

XD = XA−
t∫

t−1t

V (X(τ ) ,τ )dτ. (9)

By using an averaging procedure for the integral of velocity
on the right-hand side of Eq. (9), this equation can be written
as follows:

XD = XA− (BVA+ (1−B)VD), (10)

where B ≥ 0.5 is an off-centering weight. Because the posi-
tion of the departure point (XD) does not necessarily coin-
cide with a grid point, the use of an interpolation scheme is
required to transfer data from the Eulerian grid to the depar-
ture point (Williamson and Rasch, 1989; Purser and Leslie,
1991). Lagrange interpolation is used in GEM:

∅∗A =
∑
l

wl∅t−1tl , (11)

where l represents the index of neighbor grid points sur-
rounding the departure point, and wl denotes the interpola-
tion weights. The cubic interpolation currently used in GEM
uses 64 neighbor cells, i.e., 4 grids in each direction, to
achieve fourth-order spatial accuracy. Below, we explain the
Mortezazadeh and Wang (2017) method to generate a high-
order-accurate semi-Lagrangian scheme by using only 27
neighbor cells that has the same accuracy as a SL method
based on the standard cubic interpolation and which can also
lead to a faster interpolation process.

For the sake of illustrating how the sweep method works,
we use the 1D discretization of the equations based on the
uniform grid spacing size of 1x that is shown in Fig. 2.

As mentioned before, the cubic Lagrange interpolation
scheme uses four grid neighbors, along the 1D direction,
to calculate ∅D at the departure point xi,D , i.e., xl−1, xl ,
xl+1, and xl+2. Here i is the index of arrival cells or Eule-
rian grid points. Note that here using the Lagrange interpola-
tion scheme, we can construct a prediction function ∅̂(xi,D)
from the exact solution of ∅(xi,D) within the cell [xl , xl+1].
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The error in cubic interpolation can be expressed as follows:

ECubic =∅
(
xi,D

)
− ∅̂

(
xi,D

)
=

1
4!
∅(4)

(
xi,D

)
×

l+2∏
l−1

(
xi,D − xl

)
=O

(
1x4

)
. (12)

Sweep interpolation is an integration of two third-order back-
ward and forward interpolation steps that are used succes-
sively in two time steps. In the following, we show how
sweep interpolation can achieve almost the similar accuracy
to cubic interpolation by using fewer grid neighbors. Equa-
tion (13) shows the numerical errors in third-order backward
(EB) and forward (EF) polynomial interpolation schemes:

EB =
1
3!
∅(3)

(
xi,D

)
×

l+2∏
l

(
xi,D − xl

)
=−O

(
1x3

)
EF =

1
3!
∅(3)

(
xi,D

)
×

l+1∏
l−1

(
xi,D − xl

)
=O

(
1x3

)
. (13)

From Eq. (13) we find that the numerical error for the two
interpolation steps is almost the same but with opposite
sign. While use of either the backward or forward interpola-
tion scheme after two time steps can generate EB,2×1t =
2×EB, using third-order backward and forward interpolation
successively in two time steps can eliminate the third-order
numerical errorsO(1x3) and produce anO(1x4) interpola-
tion error.

E2×1t = EB+EF ≈O
(
1x4

)
. (14)

Here the analysis of the numerical errors is shown by assum-
ing a constant 1x (uniform grids) in the above equations,
but it is also valid for non-uniform grids (Mortezazadeh and
Wang, 2017). Although, as shown above, the truncation er-
rors in two backward and forward steps nearly cancel out
to produce a total truncation error with a leading term that is
proportional to the fourth power of the grid increment, the ac-
tual numerical accuracy of its implementation in SL schemes
needs to be assessed. In the next section, we assess how the
sweep interpolation approach can control the error after ev-
ery two time steps in the SL scheme in GEM. In this study,
sweep interpolation is used not only for semi-Lagrangian ad-
vection, but also for exchanging the data between yin and
yang grids in GEM. In the following, we investigate the per-
formance of the model by solving three benchmarks and an
ozone prediction case.

3 Validation

The objective of this evaluation is to illustrate the feasi-
bility of implementing the sweep interpolation within the

GEM model to replicate the forecast results achieved by the
GEM configuration based on cubic interpolation. The eval-
uation has been done by running one 2D case and three 3D
cases to represent the accuracy and performance of the pro-
posed method. Error analysis is performed to show that semi-
Lagrangian with sweep interpolation can provide similar re-
sults to cubic interpolation in a more cost-effective manner.

3.1 Two-dimensional vortex

The 2D vortex is a conventional benchmark which is used
here to compare the accuracy of the sweep interpolation with
the cubic interpolation. This case consists of a scalar field
that is deformed by two static vortices centered at the ge-
ographical poles (Nair and Machenhauer, 2002). The flow
field utilized in this benchmark is positive definite. The spa-
tial resolution used in both horizontal directions is approxi-
mately 105 km, and a time step of 7200 s is employed, which
yields a maximum Courant number value of 0.85426. By
considering (λ,ϕ) as the rotated coordinate system, North
Pole location λ0,ϕ0, and an angular velocity ω, we can write
the rotation of the scalar field as

dλ
dt
= ω

dϕ
dt
= 0. (15)

The normalized tangential velocity of the vortex is defined as

Vt =
3
√

3
2

sech2 (r) tanh(r) , (16)

where r = r0 cosϕ is the radius of the vortex, and r0 is a con-
stant. Then, the angular velocity ω is defined as

ω(ϕ)=

{
0 if r = 0
Vt
r

if r 6= 0
. (17)

The analytical solution of this case at time t is available in the
reference (Nair and Machenhauer, 2002). Figure 3a shows er-
ror in the tracer at day 12. It can be seen that the error distri-
bution inside the domain is almost similar for both schemes.

Figure 3b shows the mass error over 1 month. This fig-
ure shows an oscillation in mass error, calculated by sweep
interpolation, which comes from the inherent behavior of
sweep interpolation to control the growth of numerical er-
ror over two successive time steps. The dotted black line
in Fig. 3b shows the mass error after each two time steps,
which represents the impact of sweep interpolation to reduce
the error. This line represents the impact of sweep interpo-
lation to reduce the error. The main reason of choosing the
2D case was showing the oscillation in the mass error for
sweep interpolation. In this case, the oscillation is obvious
and helps explain the behavior of sweep interpolation. The
same behavior has been seen in the other test cases (see next
sections). For this case, the normalized infinity norm error
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Figure 3. Two-dimensional vortex: (a) horizontal cross-section of errors in tracer distribution at day 12, (b) mass conservation error (%) over
a 1 month period.

(E∞ =
max|cubic-sweep|

max|cubic| )= 0.001. Figure 3a shows that the er-
ror distribution associated with the sweep interpolation is
less noisy compared with the cubic interpolation error, es-
pecially outside the vortex region, which could be explained
by the fact that the lower-order Lagrange interpolation used
in the sweep algorithm generates less spurious oscillations
compared to the standard cubic interpolation.

3.2 Hadley-like meridional circulation

The Hadley-like meridional circulation test case is used to
emphasize the solution of horizontal-vertical coupling (Ull-
rich et al., 2013). The tracer field consists of a single layer,
which is deformed over the duration of 24 h. At the end, the
tracer field returns to its original configuration. Meridional
and vertical velocity fields for this test case are specified as

u(λ,ϕ,z, t)= u0 cosϕ (18)

v (λ,ϕ,z, t)=
aw0πρ0

Kztopρ
cosϕ sin(Kϕ)cos

(
πz

ztop

)
cos

(
πt

τ

)
(19)

w(λ,ϕ,z, t)=
w0ρ0

Kρ
(−2sin(Kϕ)sinϕ

+K cosϕ cos(Kϕ))sin
(
πz

ztop

)
cos

(
πt

τ

)
, (20)

where ρ0, K = 5, ztop = 12000 m, w0 = 0.15 m s−1, u0 =

40 m s−1, a and τ = 86400 s are the density at the surface,
number of overturning cells, height position of the model
top, reference vertical velocity, reference zonal velocity, ref-
erence earth radius, and period of motion. The horizontal
spatial resolution and time step used in this example are,
respectively, 205 km and 3600 s, which yields a horizontal
Courant number (CFL) of 5.0.

Figure 4a presents the meridional cross-sections of the er-
rors in the tracer solution after a 24 h integration period. The
results show that sweep interpolation generates a solution
(right panel) that is similar to the one generated with the
fourth-order-accurate cubic interpolation (left panel). Fig-
ure 4b shows the evolution of the error in the mass conserva-
tion (%) over the same 24 h period corresponding to both in-
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Figure 4. Hadley-like meridional circulation: (a) vertical cross-section of errors in tracer at day 1, (b) mass conservation error (%) over 1 d.

terpolations. The evolution in both solutions remains almost
the same for both sweep and cubic interpolations. Note that
here we can see the oscillations in error for the sweep inter-
polation scheme. As explained in the previous section, this
shows how sweep interpolation can control the error growth
over each two time steps. Here, the normalized infinity norm
error is E∞ = 0.03.

3.3 Atmospheric methane-like tracer

In this test case, we compare 48 h forecasts of atmospheric
methane (CH4) like passive tracer (without chemical produc-
tions and sinks) using sweep interpolation and cubic inter-
polation. These experiments were performed with the global
version of the GEM NWP model using a 30 min time step and
105 km horizontal resolution, resulting in a maximal Courant
number of 4.7. The height of the model top was chosen to be
at 0.1 hPa, and 84 vertical levels were used. The vertical grid
resolution is non-uniform as a result of the choice of vertical
coordinate, which is based on the logarithm of the hydro-
static pressure (Husain et al., 2020). The methane-like exper-

iment was initialized from a climatology based on a multi-
year simulation performed with the GEM model. The model
employs a simplified approach, in which methane produc-
tion and loss are predetermined based on present-day con-
ditions (Prather et al., 2012). Figure 5a presents meridional
cross-sections of CH4 at the end of day 1. Solutions from
both interpolators look qualitatively the same, and the sweep
interpolation provides acceptable results in comparison with
cubic interpolation. Figure 5b shows the mass error over 24 h.
It shows that both cubic and sweep interpolations could con-
trol the error and keep its range below 0.005 % after 48 time
steps of simulation. Here, the normalized infinity norm error
is E∞ = 0.018.

Although sweep interpolation was able to better control
the mass error growth over the simulation time compared to
the cubic interpolation for this case, it is not necessarily ex-
pected to perform better in all cases. Based on our discussion
in the previous section, we expect sweep interpolation to pro-
vide almost the same accuracy as cubic interpolation. This is
supported by Fig. 5b, which shows that sweep and cubic in-
terpolations produce mass errors that are of the same order

Geosci. Model Dev., 17, 335–346, 2024 https://doi.org/10.5194/gmd-17-335-2024



M. Mortezazadeh et al.: Sweep interpolation 341

Figure 5. CH4 Forecasts: (a) meridional cross-sections at 180◦ longitude at the end of day 1, (b) normalized mass error (%) over 3 d forecast.

of magnitude. However, since both methods rely on differ-
ent finite-difference approximations, we expect to see differ-
ences in the evolutions of their respective error trends, which
is confirmed by the results of Fig. 5b.

3.4 Medium-range forecast of ozone

In the upper troposphere–lower stratosphere (UTLS) region,
ozone is mainly driven by transport processes, which makes
it a valuable tracer for assessing the impact of the new inter-
polation scheme on the transport of chemical constituents.
The implementation of sweep in the ECCC GEM NWP
model allowed evaluation of its impact on the ozone pre-
dictability in the context of an operational NWP system. In
this experiment, an ensemble of 10 d ozone forecasts were
launched every 12 h from 13 June to 31 August 2019 using
the global version of the GEM NWP model. These forecasts
were performed at 15 km horizontal resolution on 84 vertical
levels with a lid at 0.1 hPa and using a 450 s time step. The
model included a prognostic representation of stratospheric
ozone based on a linearized chemistry scheme which did not
interact with the radiation (de Grandpré et al., 2016). Ozone

forecasts have been evaluated at different lead times against
operational analyses generated by the Global Deterministic
Prediction System (Charron et al., 2012). This evaluation was
done throughout the tropospheric and stratospheric regions in
various areas, including the northern and southern extratrop-
ics, North America, Asia, the Arctic, and the Antarctic.

The results from two interpolations, i.e., cubic and sweep
interpolations, at different locations over the global experi-
ments demonstrate good agreement between sweep interpo-
lation and cubic interpolation. The two main metrics of the
statistical accuracy, bias and standard deviation, are used to
show the differences between the two experiments. In the fol-
lowing figures (Figs. 6 and 7), solid and dashed lines rep-
resent the standard deviation and bias metrics, respectively.
Figure 6 represents the average of all 10 d lead time fore-
casts in the simulation time period. This figure shows that
the standard deviations for both experiments are almost the
same, but some minor deviations can be seen in the bias. The
bias for ozone variation along the vertical direction is simi-
lar for both experiments in the lower part of the troposphere
(> 500 hPa) and in the upper stratosphere (< 50 hPa). The
smaller concentration of ozone in these two regions accounts
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Figure 6. The bias (dashed line) and standard deviation (solid line) relative to Global Deterministic Prediction System (GDPS) analyses (%)
for ozone forecasts at 240 h lead time from 13 June to 31 August 2019. Boxes on the left (right) indicate statistical significance levels for
biases (standard deviation). Red (blue) boxes mean that the experiment which includes the sweep interpolation is better (worse). Small boxes
mean that differences between both experiments are not statistically significant at the 90 % confidence level.

Figure 7. Standard deviation (solid line) and bias (dashed line) er-
rors over North America for ozone at the level 200 hPa.

for the absence of sharp gradients in the vertical error pro-
files. The large maximum in the standard deviation around
250 hPa is associated with the transport of ozone across the
tropopause. This process is sensitive to the choice of in-
terpolation scheme, and the results highlight its impact on
stratosphere–troposphere exchange processes throughout the
entire upper troposphere and lower stratosphere region be-
tween 400 and 50 hPa. In this region, a minor deviation of
bias error can be seen between sweep interpolation and cu-
bic interpolation, but this deviation is small and not signifi-
cant (see Fig. 6).

Figure 7 shows the evolution of the bias and standard devi-
ation as a function of lead time for the North America region
at the 200 hPa level, which corresponds to the region where
both quantities vary the most abruptly along the vertical di-
rection. The upper panel shows the standard deviation and
bias errors over 10 d prediction. It demonstrates that sweep
interpolation is characterized by the same error growth as
the cubic interpolation. The figure also shows some improve-
ment in the bias error that was obtained by using sweep in-
terpolation. One possible explanation for this phenomenon
is that the lower-order Lagrange interpolations used in the
backward and forward steps of the sweep interpolation tend
to generate less oscillation and dispersion errors than the
standard fourth-order-accurate cubic interpolation. To con-
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Figure 8. Computational time analysis based on the number of tracers.

firm this explanation, further study needs to be done, which
is out of the scope of this paper.

4 Impact of number of tracers on computational time

In the following, we investigate the impact of increasing
the number of tracers on the timing of the cubic interpola-
tion process compared to sweep interpolation. We use the
benchmark test case 2 (i.e., 24 h forecasts of chemical CH4
tracer) from the previous section and add additional trac-
ers to the experiment. Note that in GEM we use cubic in-
terpolation not only for the advection solver but also for
exchanging the data between the yin and yang grid (Qad-
douri and Lee, 2011). In this study, we also implemented
sweep interpolation into yin and yang exchange of data.
Figure 8 shows the impact of sweep interpolation on the
timing of the advection process, the exchange of data be-
tween the yin and yang subgrids, and the total timing of
the simulation. The numbers shown in Fig. 8 correspond to
(time_cubic− time_sweep) / time_cubic× 100. It is demon-
strated that by increasing the number of tracers, the percent-
age of computational time saving increases for the semi-
Lagrangian operation, yin and yang exchange, and the total
timing of the simulation. When using only 20 tracers, the
performance of sweep interpolation is almost the same as
cubic interpolation. However, when the number of tracers is
increased to 230, sweep interpolation can reduce the compu-
tational cost of simulation in the advection step by 25 %. The
sweep interpolation reduction in yin and yang exchange is
about 18.5 %, and its impact on the total timing of the simu-
lation is about 16 %.

5 Conclusion

In this study, we implemented the sweep interpolation
scheme (an integration of two third-order backward and for-
ward interpolation steps) into ECCC’s GEM model. Two the-
oretical benchmarks and a global ozone forecast experiment
were used to investigate the performance of the model. Based
on the results, the sweep interpolation results are in good
agreement with those from the standard cubic interpolation
but achieved at a lower computational cost.

The main benefit of using sweep interpolation in GEM is
its lower computational cost compared to the cubic interpola-
tion. By using this interpolation, we can reduce the timing of
semi-Lagrangian interpolation, yin-yang exchange, and the
total wall clock time of the simulation up to 25 %, 19 %, and
15 %, respectively, for the experiments with around 250 trac-
ers. Additionally, this replacement is very simple, with min-
imum modifications required in the model. Sweep interpo-
lation is suitable to be implemented in other NWP models
which also rely on a SL approach and polynomial interpola-
tion schemes.

Although sweep interpolation is developed based on
third-order backward and forward Lagrange interpolation
schemes, it can control the growth of the mass conserva-
tion error over the forecast lead time in a way that agrees
very closely with the error growth of the standard cubic inter-
polation. The ozone forecasting experiment using the global
version of the GEM model shows that the sweep interpola-
tion has a small impact on the ozone distribution along the
vertical direction. The impact is the most significant in the
tropopause region, where transport processes play a signif-
icant role. The overall impact of the new scheme on model
biases and standard deviations was evaluated at different lead
times, which shows that the overall performance of the ozone
forecasting system has not suffered from the use of a faster
interpolation approach. In some cases, we found that sweep
interpolation can perform better and reduce the numerical er-
rors compared to those of the standard cubic interpolation.
The impact on biases in ozone experiments generally in-
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creases with longer lead time and is larger over some regions
driven by transport processes. This improvement is likely re-
lated to the lower oscillations generated by the lower order of
Lagrange interpolation schemes used in sweep compared to
the standard cubic interpolation, but this needs to be further
investigated in a future study.

Code and data availability. GEM (Global Environmental Multi-
scale), the Environment and Climate Change Canada’s online
weather prediction model, is a free software which can be redis-
tributed and/or modified under the terms of the GNU Lesser Gen-
eral Public License as published by the Free Software Founda-
tion. The GEM model is available to download from https://github.
com/ECCC-ASTD-MRD/gem/ (last access: 10 January 2024). The
GitHub repository contains the instructions that explain how to in-
stall the code, download the input data, and run the model. The
modified interpolation code can be downloaded from the Zenodo
website: https://doi.org/10.5281/zenodo.8246831 (Mortezazadeh et
al., 2023). The model output requires a large amount of mem-
ory space in a binary format specific to Environment and Cli-
mate Change Canada’s modeling systems. The conversion to
other formats is possible by an email request to Ashu Dastoor
(ashu.dastoor@canada.ca).
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