Articles | Volume 17, issue 1
https://doi.org/10.5194/gmd-17-301-2024
https://doi.org/10.5194/gmd-17-301-2024
Methods for assessment of models
 | 
15 Jan 2024
Methods for assessment of models |  | 15 Jan 2024

Scalable Feature Extraction and Tracking (SCAFET): a general framework for feature extraction from large climate data sets

Arjun Babu Nellikkattil, Danielle Lemmon, Travis Allen O'Brien, June-Yi Lee, and Jung-Eun Chu

Related authors

A new metrics framework for quantifying and intercomparing atmospheric rivers in observations, reanalyses, and climate models
Bo Dong, Paul Ullrich, Jiwoo Lee, Peter Gleckler, Kristin Chang, and Travis A. O'Brien
Geosci. Model Dev., 18, 961–976, https://doi.org/10.5194/gmd-18-961-2025,https://doi.org/10.5194/gmd-18-961-2025, 2025
Short summary
Moving beyond post hoc explainable artificial intelligence: a perspective paper on lessons learned from dynamical climate modeling
Ryan J. O'Loughlin, Dan Li, Richard Neale, and Travis A. O'Brien
Geosci. Model Dev., 18, 787–802, https://doi.org/10.5194/gmd-18-787-2025,https://doi.org/10.5194/gmd-18-787-2025, 2025
Short summary
Huge Ensembles Part I: Design of Ensemble Weather Forecasts using Spherical Fourier Neural Operators
Ankur Mahesh, William Collins, Boris Bonev, Noah Brenowitz, Yair Cohen, Joshua Elms, Peter Harrington, Karthik Kashinath, Thorsten Kurth, Joshua North, Travis O'Brien, Michael Pritchard, David Pruitt, Mark Risser, Shashank Subramanian, and Jared Willard
EGUsphere, https://doi.org/10.48550/arXiv.2408.03100,https://doi.org/10.48550/arXiv.2408.03100, 2024
Short summary
Huge Ensembles Part II: Properties of a Huge Ensemble of Hindcasts Generated with Spherical Fourier Neural Operators
Ankur Mahesh, William Collins, Boris Bonev, Noah Brenowitz, Yair Cohen, Peter Harrington, Karthik Kashinath, Thorsten Kurth, Joshua North, Travis A. O'Brien, Michael Pritchard, David Pruitt, Mark Risser, Shashank Subramanian, and Jared Willard
EGUsphere, https://doi.org/10.48550/arXiv.2408.01581,https://doi.org/10.48550/arXiv.2408.01581, 2024
Short summary
Earth’s future climate and its variability simulated at 9 km global resolution
Ja-Yeon Moon, Jan Streffing, Sun-Seon Lee, Tido Semmler, Miguel Andrés-Martínez, Jiao Chen, Eun-Byeoul Cho, Jung-Eun Chu, Christian Franzke, Jan P. Gärtner, Rohit Ghosh, Jan Hegewald, Songyee Hong, Nikolay Koldunov, June-Yi Lee, Zihao Lin, Chao Liu, Svetlana Loza, Wonsun Park, Woncheol Roh, Dmitry V. Sein, Sahil Sharma, Dmitry Sidorenko, Jun-Hyeok Son, Malte F. Stuecker, Qiang Wang, Gyuseok Yi, Martina Zapponini, Thomas Jung, and Axel Timmermann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2491,https://doi.org/10.5194/egusphere-2024-2491, 2024
Short summary

Related subject area

Numerical methods
Enhancing single precision with quasi-double precision: achieving double-precision accuracy in the Model for Prediction Across Scales – Atmosphere (MPAS-A) version 8.2.1
Jiayi Lai, Lanning Wang, Qizhong Wu, Yizhou Yang, and Fang Wang
Geosci. Model Dev., 18, 1089–1102, https://doi.org/10.5194/gmd-18-1089-2025,https://doi.org/10.5194/gmd-18-1089-2025, 2025
Short summary
Advances in land surface forecasting: a comparison of LSTM, gradient boosting, and feed-forward neural networks as prognostic state emulators in a case study with ecLand
Marieke Wesselkamp, Matthew Chantry, Ewan Pinnington, Margarita Choulga, Souhail Boussetta, Maria Kalweit, Joschka Bödecker, Carsten F. Dormann, Florian Pappenberger, and Gianpaolo Balsamo
Geosci. Model Dev., 18, 921–937, https://doi.org/10.5194/gmd-18-921-2025,https://doi.org/10.5194/gmd-18-921-2025, 2025
Short summary
Subgrid corrections for the linear inertial equations of a compound flood model – a case study using SFINCS 2.1.1 Dollerup release
Maarten van Ormondt, Tim Leijnse, Roel de Goede, Kees Nederhoff, and Ap van Dongeren
Geosci. Model Dev., 18, 843–861, https://doi.org/10.5194/gmd-18-843-2025,https://doi.org/10.5194/gmd-18-843-2025, 2025
Short summary
Introducing Iterative Model Calibration (IMC) v1.0: a generalizable framework for numerical model calibration with a CAESAR-Lisflood case study
Chayan Banerjee, Kien Nguyen, Clinton Fookes, Gregory Hancock, and Thomas Coulthard
Geosci. Model Dev., 18, 803–818, https://doi.org/10.5194/gmd-18-803-2025,https://doi.org/10.5194/gmd-18-803-2025, 2025
Short summary
Development of a high-order global dynamical core using the discontinuous Galerkin method for an atmospheric large-eddy simulation (LES) and proposal of test cases: SCALE-DG v0.8.0
Yuta Kawai and Hirofumi Tomita
Geosci. Model Dev., 18, 725–762, https://doi.org/10.5194/gmd-18-725-2025,https://doi.org/10.5194/gmd-18-725-2025, 2025
Short summary

Cited articles

Avila, L. A., Stewart, S. R., Berg, R., and Hagen, A. B.: Hurricane Dorian, Tech. rep., National Hurricane Center, https://www.nhc.noaa.gov/data/tcr/AL052019_Dorian.pdf (last access: 20 December 2023), 2020. a
Balaji, V., Taylor, K. E., Juckes, M., Lawrence, B. N., Durack, P. J., Lautenschlager, M., Blanton, C., Cinquini, L., Denvil, S., Elkington, M., Guglielmo, F., Guilyardi, E., Hassell, D., Kharin, S., Kindermann, S., Nikonov, S., Radhakrishnan, A., Stockhause, M., Weigel, T., and Williams, D.: Requirements for a global data infrastructure in support of CMIP6, Geosci. Model Dev., 11, 3659–3680, https://doi.org/10.5194/gmd-11-3659-2018, 2018. a
Bengtsson, L., Kanamitsu, M., Kållberg, P., and Uppala, S.: FGGE Research Activities at ECMWF, B. Am. Meteorol. Soc., 63, 277–303, https://doi.org/10.1175/1520-0477-63.3.277, 1982. a
Bengtsson, L., Botzet, M., and Esch, M.: Hurricane-type vortices in a general circulation model, Tellus A, 47, 175–196, https://doi.org/10.1034/j.1600-0870.1995.t01-1-00003.x, 1995. a
Biard, J. C. and Kunkel, K. E.: Automated detection of weather fronts using a deep learning neural network, Adv. Stat. Clim. Meteorol. Oceanogr., 5, 147–160, https://doi.org/10.5194/ascmo-5-147-2019, 2019. a
Download
Short summary
This study introduces a new computational framework called Scalable Feature Extraction and Tracking (SCAFET), designed to extract and track features in climate data. SCAFET stands out by using innovative shape-based metrics to identify features without relying on preconceived assumptions about the climate model or mean state. This approach allows more accurate comparisons between different models and scenarios. 
Share