Articles | Volume 17, issue 1
https://doi.org/10.5194/gmd-17-301-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-17-301-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Scalable Feature Extraction and Tracking (SCAFET): a general framework for feature extraction from large climate data sets
Arjun Babu Nellikkattil
CORRESPONDING AUTHOR
Center for Climate Physics, Institute for Basic Science (IBS), Busan 46241, Republic of Korea
Department of Climate System, Pusan National University, Busan 46241, Republic of Korea
Danielle Lemmon
Center for Climate Physics, Institute for Basic Science (IBS), Busan 46241, Republic of Korea
Pusan National University, Busan 46241, Republic of Korea
Science and Technology Policy Fellowship Program, The American Association for the Advancement of Science, Washington, D.C., 20005, USA
Travis Allen O'Brien
Department of Earth and Atmospheric Sciences, Indiana University, Bloomington, IN 47403, USA
Climate and Ecosystem Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA 95720, USA
June-Yi Lee
Center for Climate Physics, Institute for Basic Science (IBS), Busan 46241, Republic of Korea
Department of Climate System, Pusan National University, Busan 46241, Republic of Korea
Research Center for Climate Sciences, Pusan National University, Busan 46241, Republic of Korea
Jung-Eun Chu
Low-Carbon and Climate Impact Research Centre, School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
Related authors
No articles found.
Ankur Mahesh, William D. Collins, Boris Bonev, Noah Brenowitz, Yair Cohen, Joshua Elms, Peter Harrington, Karthik Kashinath, Thorsten Kurth, Joshua North, Travis O'Brien, Michael Pritchard, David Pruitt, Mark Risser, Shashank Subramanian, and Jared Willard
Geosci. Model Dev., 18, 5575–5603, https://doi.org/10.5194/gmd-18-5575-2025, https://doi.org/10.5194/gmd-18-5575-2025, 2025
Short summary
Short summary
Simulating extreme weather events in a warming world is a challenging task for current weather and climate models. These models' computational cost poses a challenge in studying low-probability extreme weather. We use machine learning to construct a new probabilistic system. We give an in-depth explanation of how we constructed this system. We present a thorough pipeline to validate our method. Our method requires fewer computational resources than existing weather and climate models.
Ankur Mahesh, William D. Collins, Boris Bonev, Noah Brenowitz, Yair Cohen, Peter Harrington, Karthik Kashinath, Thorsten Kurth, Joshua North, Travis A. O'Brien, Michael Pritchard, David Pruitt, Mark Risser, Shashank Subramanian, and Jared Willard
Geosci. Model Dev., 18, 5605–5633, https://doi.org/10.5194/gmd-18-5605-2025, https://doi.org/10.5194/gmd-18-5605-2025, 2025
Short summary
Short summary
We use machine learning emulators to create a massive ensemble of simulated weather extremes. This ensemble provides a large sample size, which is essential to characterize the statistics of extreme weather events and study their physical mechanisms. Also, these ensembles can be beneficial to accurately forecast the probability of low-likelihood extreme weather.
Ja-Yeon Moon, Jan Streffing, Sun-Seon Lee, Tido Semmler, Miguel Andrés-Martínez, Jiao Chen, Eun-Byeoul Cho, Jung-Eun Chu, Christian L. E. Franzke, Jan P. Gärtner, Rohit Ghosh, Jan Hegewald, Songyee Hong, Dae-Won Kim, Nikolay Koldunov, June-Yi Lee, Zihao Lin, Chao Liu, Svetlana N. Loza, Wonsun Park, Woncheol Roh, Dmitry V. Sein, Sahil Sharma, Dmitry Sidorenko, Jun-Hyeok Son, Malte F. Stuecker, Qiang Wang, Gyuseok Yi, Martina Zapponini, Thomas Jung, and Axel Timmermann
Earth Syst. Dynam., 16, 1103–1134, https://doi.org/10.5194/esd-16-1103-2025, https://doi.org/10.5194/esd-16-1103-2025, 2025
Short summary
Short summary
Based on a series of storm-resolving greenhouse warming simulations conducted with the AWI-CM3 model at 9 km global atmosphere and 4–25 km ocean resolution, we present new projections of regional climate change, modes of climate variability, and extreme events. The 10-year-long high-resolution simulations for the 2000s, 2030s, 2060s, and 2090s were initialized from a coarser-resolution transient run (31 km atmosphere) which follows the SSP5-8.5 greenhouse gas emission scenario from 1950–2100 CE.
Piers M. Forster, Chris Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Christophe Cassou, Mathias Hauser, Zeke Hausfather, June-Yi Lee, Matthew D. Palmer, Karina von Schuckmann, Aimée B. A. Slangen, Sophie Szopa, Blair Trewin, Jeongeun Yun, Nathan P. Gillett, Stuart Jenkins, H. Damon Matthews, Krishnan Raghavan, Aurélien Ribes, Joeri Rogelj, Debbie Rosen, Xuebin Zhang, Myles Allen, Lara Aleluia Reis, Robbie M. Andrew, Richard A. Betts, Alex Borger, Jiddu A. Broersma, Samantha N. Burgess, Lijing Cheng, Pierre Friedlingstein, Catia M. Domingues, Marco Gambarini, Thomas Gasser, Johannes Gütschow, Masayoshi Ishii, Christopher Kadow, John Kennedy, Rachel E. Killick, Paul B. Krummel, Aurélien Liné, Didier P. Monselesan, Colin Morice, Jens Mühle, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Jan C. Minx, Matthew Rigby, Robert Rohde, Abhishek Savita, Sonia I. Seneviratne, Peter Thorne, Christopher Wells, Luke M. Western, Guido R. van der Werf, Susan E. Wijffels, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 17, 2641–2680, https://doi.org/10.5194/essd-17-2641-2025, https://doi.org/10.5194/essd-17-2641-2025, 2025
Short summary
Short summary
In a rapidly changing climate, evidence-based decision-making benefits from up-to-date and timely information. Here we compile monitoring datasets to track real-world changes over time. To make our work relevant to policymakers, we follow methods from the Intergovernmental Panel on Climate Change (IPCC). Human activities are increasing the Earth's energy imbalance and driving faster sea-level rise compared to the IPCC assessment.
Bo Dong, Paul Ullrich, Jiwoo Lee, Peter Gleckler, Kristin Chang, and Travis A. O'Brien
Geosci. Model Dev., 18, 961–976, https://doi.org/10.5194/gmd-18-961-2025, https://doi.org/10.5194/gmd-18-961-2025, 2025
Short summary
Short summary
A metrics package designed for easy analysis of atmospheric river (AR) characteristics and statistics is presented. The tool is efficient for diagnosing systematic AR bias in climate models and useful for evaluating new AR characteristics in model simulations. In climate models, landfalling AR precipitation shows dry biases globally, and AR tracks are farther poleward (equatorward) in the North and South Atlantic (South Pacific and Indian Ocean).
Ryan J. O'Loughlin, Dan Li, Richard Neale, and Travis A. O'Brien
Geosci. Model Dev., 18, 787–802, https://doi.org/10.5194/gmd-18-787-2025, https://doi.org/10.5194/gmd-18-787-2025, 2025
Short summary
Short summary
We draw from traditional climate modeling practices to make recommendations for machine-learning (ML)-driven climate science. Our intended audience is climate modelers who are relatively new to ML. We show how component-level understanding – obtained when scientists can link model behavior to parts within the overall model – should guide the development and evaluation of ML models. Better understanding yields a stronger basis for trust in the models. We highlight several examples to demonstrate.
Malte Meinshausen, Carl-Friedrich Schleussner, Kathleen Beyer, Greg Bodeker, Olivier Boucher, Josep G. Canadell, John S. Daniel, Aïda Diongue-Niang, Fatima Driouech, Erich Fischer, Piers Forster, Michael Grose, Gerrit Hansen, Zeke Hausfather, Tatiana Ilyina, Jarmo S. Kikstra, Joyce Kimutai, Andrew D. King, June-Yi Lee, Chris Lennard, Tabea Lissner, Alexander Nauels, Glen P. Peters, Anna Pirani, Gian-Kasper Plattner, Hans Pörtner, Joeri Rogelj, Maisa Rojas, Joyashree Roy, Bjørn H. Samset, Benjamin M. Sanderson, Roland Séférian, Sonia Seneviratne, Christopher J. Smith, Sophie Szopa, Adelle Thomas, Diana Urge-Vorsatz, Guus J. M. Velders, Tokuta Yokohata, Tilo Ziehn, and Zebedee Nicholls
Geosci. Model Dev., 17, 4533–4559, https://doi.org/10.5194/gmd-17-4533-2024, https://doi.org/10.5194/gmd-17-4533-2024, 2024
Short summary
Short summary
The scientific community is considering new scenarios to succeed RCPs and SSPs for the next generation of Earth system model runs to project future climate change. To contribute to that effort, we reflect on relevant policy and scientific research questions and suggest categories for representative emission pathways. These categories are tailored to the Paris Agreement long-term temperature goal, high-risk outcomes in the absence of further climate policy and worlds “that could have been”.
Ankur Mahesh, Travis A. O'Brien, Burlen Loring, Abdelrahman Elbashandy, William Boos, and William D. Collins
Geosci. Model Dev., 17, 3533–3557, https://doi.org/10.5194/gmd-17-3533-2024, https://doi.org/10.5194/gmd-17-3533-2024, 2024
Short summary
Short summary
Atmospheric rivers (ARs) are extreme weather events that can alleviate drought or cause billions of US dollars in flood damage. We train convolutional neural networks (CNNs) to detect ARs with an estimate of the uncertainty. We present a framework to generalize these CNNs to a variety of datasets of past, present, and future climate. Using a simplified simulation of the Earth's atmosphere, we validate the CNNs. We explore the role of ARs in maintaining energy balance in the Earth system.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Piers M. Forster, Christopher J. Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Mathias Hauser, Aurélien Ribes, Debbie Rosen, Nathan Gillett, Matthew D. Palmer, Joeri Rogelj, Karina von Schuckmann, Sonia I. Seneviratne, Blair Trewin, Xuebin Zhang, Myles Allen, Robbie Andrew, Arlene Birt, Alex Borger, Tim Boyer, Jiddu A. Broersma, Lijing Cheng, Frank Dentener, Pierre Friedlingstein, José M. Gutiérrez, Johannes Gütschow, Bradley Hall, Masayoshi Ishii, Stuart Jenkins, Xin Lan, June-Yi Lee, Colin Morice, Christopher Kadow, John Kennedy, Rachel Killick, Jan C. Minx, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Carl-Friedrich Schleussner, Sophie Szopa, Peter Thorne, Robert Rohde, Maisa Rojas Corradi, Dominik Schumacher, Russell Vose, Kirsten Zickfeld, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 15, 2295–2327, https://doi.org/10.5194/essd-15-2295-2023, https://doi.org/10.5194/essd-15-2295-2023, 2023
Short summary
Short summary
This is a critical decade for climate action, but there is no annual tracking of the level of human-induced warming. We build on the Intergovernmental Panel on Climate Change assessment reports that are authoritative but published infrequently to create a set of key global climate indicators that can be tracked through time. Our hope is that this becomes an important annual publication that policymakers, media, scientists and the public can refer to.
Prabhat, Karthik Kashinath, Mayur Mudigonda, Sol Kim, Lukas Kapp-Schwoerer, Andre Graubner, Ege Karaismailoglu, Leo von Kleist, Thorsten Kurth, Annette Greiner, Ankur Mahesh, Kevin Yang, Colby Lewis, Jiayi Chen, Andrew Lou, Sathyavat Chandran, Ben Toms, Will Chapman, Katherine Dagon, Christine A. Shields, Travis O'Brien, Michael Wehner, and William Collins
Geosci. Model Dev., 14, 107–124, https://doi.org/10.5194/gmd-14-107-2021, https://doi.org/10.5194/gmd-14-107-2021, 2021
Short summary
Short summary
Detecting extreme weather events is a crucial step in understanding how they change due to climate change. Deep learning (DL) is remarkable at pattern recognition; however, it works best only when labeled datasets are available. We create
ClimateNet– an expert-labeled curated dataset – to train a DL model for detecting weather events and predicting changes in extreme precipitation. This work paves the way for DL-based automated, high-fidelity, and highly precise analytics of climate data.
Travis A. O'Brien, Mark D. Risser, Burlen Loring, Abdelrahman A. Elbashandy, Harinarayan Krishnan, Jeffrey Johnson, Christina M. Patricola, John P. O'Brien, Ankur Mahesh, Prabhat, Sarahí Arriaga Ramirez, Alan M. Rhoades, Alexander Charn, Héctor Inda Díaz, and William D. Collins
Geosci. Model Dev., 13, 6131–6148, https://doi.org/10.5194/gmd-13-6131-2020, https://doi.org/10.5194/gmd-13-6131-2020, 2020
Short summary
Short summary
Researchers utilize various algorithms to identify extreme weather features in climate data, and we seek to answer this question: given a
plausibleweather event detector, how does uncertainty in the detector impact scientific results? We generate a suite of statistical models that emulate expert identification of weather features. We find that the connection between El Niño and atmospheric rivers – a specific extreme weather type – depends systematically on the design of the detector.
Cited articles
Avila, L. A., Stewart, S. R., Berg, R., and Hagen, A. B.: Hurricane Dorian, Tech. rep., National Hurricane Center, https://www.nhc.noaa.gov/data/tcr/AL052019_Dorian.pdf (last access: 20 December 2023), 2020. a
Balaji, V., Taylor, K. E., Juckes, M., Lawrence, B. N., Durack, P. J., Lautenschlager, M., Blanton, C., Cinquini, L., Denvil, S., Elkington, M., Guglielmo, F., Guilyardi, E., Hassell, D., Kharin, S., Kindermann, S., Nikonov, S., Radhakrishnan, A., Stockhause, M., Weigel, T., and Williams, D.: Requirements for a global data infrastructure in support of CMIP6, Geosci. Model Dev., 11, 3659–3680, https://doi.org/10.5194/gmd-11-3659-2018, 2018. a
Bengtsson, L., Kanamitsu, M., Kållberg, P., and Uppala, S.: FGGE Research Activities at ECMWF, B. Am. Meteorol. Soc., 63, 277–303, https://doi.org/10.1175/1520-0477-63.3.277, 1982. a
Bengtsson, L., Botzet, M., and Esch, M.: Hurricane-type vortices in a general circulation model, Tellus A, 47, 175–196, https://doi.org/10.1034/j.1600-0870.1995.t01-1-00003.x, 1995. a
Biard, J. C. and Kunkel, K. E.: Automated detection of weather fronts using a deep learning neural network, Adv. Stat. Clim. Meteorol. Oceanogr., 5, 147–160, https://doi.org/10.5194/ascmo-5-147-2019, 2019. a
Bowman, M. J.: Introduction and Historical Perspective, in: Oceanic Fronts in Coastal Processes, 2–5, Springer Berlin Heidelberg, https://doi.org/10.1007/978-3-642-66987-3_1, 1978. a
Burston, R., Hodges, K., Astin, I., and Jayachandran, P. T.: Automated identification and tracking of polar-cap plasma patches at solar minimum, Ann. Geophys., 32, 197–206, https://doi.org/10.5194/angeo-32-197-2014, 2014. a
Canny, J.: A Computational Approach to Edge Detection, IEEE T. Pattern Anal. Mach. Int., PAMI-8, 679–698, https://doi.org/10.1109/tpami.1986.4767851, 1986. a
Castelao, R. M., Mavor, T. P., Barth, J. A., and Breaker, L. C.: Sea surface temperature fronts in the California Current System from geostationary satellite observations, J. Geophys. Res., 111, https://doi.org/10.1029/2006jc003541, 2006. a, b
Chu, J.-E., Lee, S.-S., Timmermann, A., Wengel, C., Stuecker, M. F., and Yamaguchi, R.: Reduced tropical cyclone densities and ocean effects due to anthropogenic greenhouse warming, Sci. Adv., 6, eabd5109, https://doi.org/10.1126/sciadv.abd5109, 2020. a
Clayton, S., Nagai, T., and Follows, M. J.: Fine scale phytoplankton community structure across the Kuroshio Front, J. Plankton Res., 36, 1017–1030, https://doi.org/10.1093/plankt/fbu020, 2014. a
Clayton, S., Palevsky, H. I., Thompson, L., and Quay, P. D.: Synoptic Mesoscale to Basin Scale Variability in Biological Productivity and Chlorophyll in the Kuroshio Extension Region, J. Geophys. Res.-Oceans, 126, e2021JC017782, https://doi.org/10.1029/2021jc017782, 2021. a
Coumou, D., Petoukhov, V., Rahmstorf, S., Petri, S., and Schellnhuber, H. J.: Quasi-resonant circulation regimes and hemispheric synchronization of extreme weather in boreal summer, P. Natl. Acad. Sci. USA, 111, 12331–12336, https://doi.org/10.1073/pnas.1412797111, 2014. a
Dixon, M. and Wiener, G.: TITAN: Thunderstorm Identification, Tracking, Analysis, and Nowcasting – A Radar-based Methodology, J. Atmos. Ocean. Tech., 10, 785–797, https://doi.org/10.1175/1520-0426(1993)010<0785:ttitaa>2.0.co;2, 1993. a
Emanuel, K.: Tropical Cyclones, Annu. Rev. Earth Planet. Sci., 31, 75–104, https://doi.org/10.1146/annurev.earth.31.100901.141259, 2003. a
Encyclopaedia, B.: Cyclone, https://www.britannica.com/science/cyclone-meteorology (last access: 20 December 2023), 2022. a
Fedorov, K. N.: The physical nature and structure of oceanic fronts, Coastal and Estuarine Studies, Springer, New York, NY, 1986. a
Guan, B. and Waliser, D. E.: Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies, J. Geophys. Res.-Atmos., 120, 12514–12535, https://doi.org/10.1002/2015jd024257, 2015. a, b, c
Guo, H.: Big Earth data: A new frontier in Earth and information sciences, Big Earth Data, 1, 4–20, https://doi.org/10.1080/20964471.2017.1403062, 2017. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a, b, c
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47 (last access: 10 January 2023), 2023a. a
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on pressure levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS), https://doi.org/10.24381/cds.bd0915c6, 2023b. a
Hewson, T. D.: Objective fronts, Meteorol. Appl., 5, 37–65, https://doi.org/10.1017/s1350482798000553, 1998. a
Hodges, K. I.: A General Method for Tracking Analysis and Its Application to Meteorological Data, Mon. Weather Rev., 122, 2573–2586, https://doi.org/10.1175/1520-0493(1994)122<2573:agmfta>2.0.co;2, 1994. a, b
Hodges, K. I.: Feature Tracking on the Unit Sphere, Mon. Weather Rev., 123, 3458–3465, https://doi.org/10.1175/1520-0493(1995)123<3458:ftotus>2.0.co;2, 1995. a
Hodges, K. I., Lee, R. W., and Bengtsson, L.: A Comparison of Extratropical Cyclones in Recent Reanalyses ERA-Interim, NASA MERRA, NCEP CFSR, and JRA-25, J. Climate, 24, 4888–4906, https://doi.org/10.1175/2011jcli4097.1, 2011. a
Hogg, A. M. C., Killworth, P. D., Blundell, J. R., and Dewar, W. K.: Mechanisms of Decadal Variability of the Wind-Driven Ocean Circulation, J. Phys. Oceanogr., 35, 512–531, https://doi.org/10.1175/jpo2687.1, 2005. a
Horn, M., Walsh, K., Zhao, M., Camargo, S. J., Scoccimarro, E., Murakami, H., Wang, H., Ballinger, A., Kumar, A., Shaevitz, D. A., Jonas, J. A., and Oouchi, K.: Tracking Scheme Dependence of Simulated Tropical Cyclone Response to Idealized Climate Simulations, J. Climate, 27, 9197–9213, https://doi.org/10.1175/jcli-d-14-00200.1, 2014. a, b
Hurley, J. V. and Boos, W. R.: A global climatology of monsoon low-pressure systems, Q. J. Roy. Meteor. Soc., 141, 1049–1064, https://doi.org/10.1002/qj.2447, 2014. a
Karmakar, N., Boos, W. R., and Misra, V.: Influence of Intraseasonal Variability on the Development of Monsoon Depressions, Geophys. Res. Lett., 48, e2020GL090425, https://doi.org/10.1029/2020gl090425, 2021. a
Kern, M., Hewson, T., Sadlo, F., Westermann, R., and Rautenhaus, M.: Robust Detection and Visualization of Jet-Stream Core Lines in Atmospheric Flow, IEEE T. Vis. Comput. Gr., 24, 893–902, https://doi.org/10.1109/tvcg.2017.2743989, 2018. a
Knapp, K. R., Kruk, M. C., Levinson, D. H., Diamond, H. J., and Neumann, C. J.: The International Best Track Archive for Climate Stewardship (IBTrACS), B. Am. Meteorol. Soc., 91, 363–376, https://doi.org/10.1175/2009bams2755.1, 2010. a
Knapp, K. R., Diamond, H. J., Kossin, J. P., Kruk, M. C., and Schreck, C. J.: International Best Track Archive for Climate Stewardship (IBTrACS) Project, Version 4, https://doi.org/10.25921/82TY-9E16, 2018. a
Knutson, T. R., McBride, J. L., Chan, J., Emanuel, K., Holland, G., Landsea, C., Held, I., Kossin, J. P., Srivastava, A. K., and Sugi, M.: Tropical cyclones and climate change, Nat. Geosci., 3, 157–163, https://doi.org/10.1038/ngeo779, 2010. a
Koch, P., Wernli, H., and Davies, H. C.: An event-based jet-stream climatology and typology, Int. J. Climatol., 26, 283–301, https://doi.org/10.1002/joc.1255, 2006. a, b
Koenderink, J. J. and van Doorn, A. J.: Surface shape and curvature scales, Image Vision Comput., 10, 557–564, https://doi.org/10.1016/0262-8856(92)90076-f, 1992. a, b, c
Kretschmer, M., Coumou, D., Donges, J. F., and Runge, J.: Using Causal Effect Networks to Analyze Different Arctic Drivers of Midlatitude Winter Circulation, J. Climate, 29, 4069–4081, https://doi.org/10.1175/jcli-d-15-0654.1, 2016. a
Legeckis, R.: A survey of worldwide sea surface temperature fronts detected by environmental satellites, J. Geophys. Res., 83, 4501, https://doi.org/10.1029/jc083ic09p04501, 1978. a
Limbach, S., Schömer, E., and Wernli, H.: Detection, tracking and event localization of jet stream features in 4-D atmospheric data, Geosci. Model Dev., 5, 457–470, https://doi.org/10.5194/gmd-5-457-2012, 2012. a
Lindeberg, T.: Scale Selection, in: Computer Vision, 701–713, Springer US, https://doi.org/10.1007/978-0-387-31439-6_242, 2014. a
Lora, J. M., Shields, C. A., and Rutz, J. J.: Consensus and Disagreement in Atmospheric River Detection: ARTMIP Global Catalogues, Geophys. Res. Lett., 47, e2020GL089302, https://doi.org/10.1029/2020gl089302, 2020. a
Marr, B.: Big data: Using SMART Big Data, Analytics and Metrics To Make Better Decisions and Improve Performance, JohnWiley & Sons, Nashville, TN, 256 pp., ISBN 978-1-118-96583-2, 2015. a
Mendelsohn, R., Emanuel, K., Chonabayashi, S., and Bakkensen, L.: The impact of climate change on global tropical cyclone damage, Nat. Clim. Change, 2, 205–209, https://doi.org/10.1038/nclimate1357, 2012. a
Molnos, S., Mamdouh, T., Petri, S., Nocke, T., Weinkauf, T., and Coumou, D.: A network-based detection scheme for the jet stream core, Earth Syst. Dynam., 8, 75–89, https://doi.org/10.5194/esd-8-75-2017, 2017. a
Nagai, T. and Clayton, S.: Nutrient interleaving below the mixed layer of the Kuroshio Extension Front, Ocean Dynam., 67, 1027–1046, https://doi.org/10.1007/s10236-017-1070-3, 2017. a
Nash, D., Waliser, D., Guan, B., Ye, H., and Ralph, F. M.: The Role of Atmospheric Rivers in Extratropical and Polar Hydroclimate, J. Geophys. Res.-Atmos., 123, 6804–6821, https://doi.org/10.1029/2017jd028130, 2018. a
Nellikkattil, A. B.: Scalable Feature Extraction and Tracking (SCAFET): A general framework for feature extraction from large climate datasets, Zenodo [code and data set], https://doi.org/10.5281/zenodo.7767301, 2023. a
Nellikkattil, A. B., Lee, J.-Y., Guan, B., Timmermann, A., Lee, S.-S., Chu, J.-E., and Lemmon, D.: Increased amplitude of atmospheric rivers and associated extreme precipitation in ultra-high-resolution greenhouse warming simulations, Commun. Earth Environ., 4, 1–11, https://doi.org/10.1038/s43247-023-00963-7, 2023. a, b, c, d
Neu, U., Akperov, M. G., Bellenbaum, N., Benestad, R., Blender, R., Caballero, R., Cocozza, A., Dacre, H. F., Feng, Y., Fraedrich, K., Grieger, J., Gulev, S., Hanley, J., Hewson, T., Inatsu, M., Keay, K., Kew, S. F., Kindem, I., Leckebusch, G. C., Liberato, M. L. R., Lionello, P., Mokhov, I. I., Pinto, J. G., Raible, C. C., Reale, M., Rudeva, I., Schuster, M., Simmonds, I., Sinclair, M., Sprenger, M., Tilinina, N. D., Trigo, I. F., Ulbrich, S., Ulbrich, U., Wang, X. L., and Wernli, H.: IMILAST: A Community Effort to Intercompare Extratropical Cyclone Detection and Tracking Algorithms, B. Am. Meteorol. Soc., 94, 529–547, https://doi.org/10.1175/bams-d-11-00154.1, 2013. a
O'Brien, T. A., Wehner, M. F., Payne, A. E., Shields, C. A., Rutz, J. J., Leung, L.-R., Ralph, F. M., Collow, A., Gorodetskaya, I., Guan, B., Lora, J. M., McClenny, E., Nardi, K. M., Ramos, A. M., Tomé, R., Sarangi, C., Shearer, E. J., Ullrich, P. A., Zarzycki, C., Loring, B., Huang, H., Inda-Díaz, H. A., Rhoades, A. M., and Zhou, Y.: Increases in Future AR Count and Size: Overview of the ARTMIP Tier 2 CMIP5/6 Experiment, J. Geophys. Res.-Atmos., 127, e2021JD036013, https://doi.org/10.1029/2021jd036013, 2022. a, b, c
Overpeck, J. T., Meehl, G. A., Bony, S., and Easterling, D. R.: Climate Data Challenges in the 21st Century, Science, 331, 700–702, https://doi.org/10.1126/science.1197869, 2011. a
Petoukhov, V., Rahmstorf, S., Petri, S., and Schellnhuber, H. J.: Quasiresonant amplification of planetary waves and recent Northern Hemisphere weather extremes, P. Natl. Acad. Sci. USA, 110, 5336–5341, https://doi.org/10.1073/pnas.1222000110, 2013. a
Pinheiro, H. R., Hodges, K. I., Gan, M. A., and Ferreira, N. J.: A new perspective of the climatological features of upper-level cut-off lows in the Southern Hemisphere, Clim. Dynam., 48, 541–559, https://doi.org/10.1007/s00382-016-3093-8, 2016. a
Post, F. H., Vrolijk, B., Hauser, H., Laramee, R. S., and Doleisch, H.: The State of the Art in Flow Visualisation: Feature Extraction and Tracking, Computer Graphics Forum, 22, 775–792, https://doi.org/10.1111/j.1467-8659.2003.00723.x, 2003. a
Prabhat, Rübel, O., Byna, S., Wu, K., Li, F., Wehner, M., and Bethel, W.: TECA: A Parallel Toolkit for Extreme Climate Analysis, Proced. Comput. Sci., 9, 866–876, https://doi.org/10.1016/j.procs.2012.04.093, 2012. a
Priestley, M. D. K., Ackerley, D., Catto, J. L., Hodges, K. I., McDonald, R. E., and Lee, R. W.: An Overview of the Extratropical Storm Tracks in CMIP6 Historical Simulations, J. Climate, 33, 6315–6343, https://doi.org/10.1175/jcli-d-19-0928.1, 2020. a
Ralph, F. M., Dettinger, M. D., Cairns, M. M., Galarneau, T. J., and Eylander, J.: Defining “Atmospheric River”: How the Glossary of Meteorology Helped Resolve a Debate, B. Am. Meteorol. Soc., 99, 837–839, https://doi.org/10.1175/bams-d-17-0157.1, 2018. a
Ranson, M., Kousky, C., Ruth, M., Jantarasami, L., Crimmins, A., and Tarquinio, L.: Tropical and extratropical cyclone damages under climate change, Clim. Change, 127, 227–241, https://doi.org/10.1007/s10584-014-1255-4, 2014. a
Rutz, J. J., Steenburgh, W. J., and Ralph, F. M.: Climatological Characteristics of Atmospheric Rivers and Their Inland Penetration over the Western United States, Mon. Weather Rev., 142, 905–921, https://doi.org/10.1175/mwr-d-13-00168.1, 2014. a
Schultz, D. M., Bosart, L. F., Colle, B. A., Davies, H. C., Dearden, C., Keyser, D., Martius, O., Roebber, P. J., Steenburgh, W. J., Volkert, H., and Winters, A. C.: Extratropical Cyclones: A Century of Research on Meteorology's Centerpiece, Meteorol. Monogr., 59, 16.1–16.56, https://doi.org/10.1175/amsmonographs-d-18-0015.1, 2019. a
Sellars, S., Nguyen, P., Chu, W., Gao, X., lin Hsu, K., and Sorooshian, S.: Computational Earth Science: Big Data Transformed Into Insight, Eos, Transactions American Geophysical Union, 94, 277–278, https://doi.org/10.1002/2013eo320001, 2013. a
Shields, C. A., Rutz, J. J., Leung, L.-Y., Ralph, F. M., Wehner, M., Kawzenuk, B., Lora, J. M., McClenny, E., Osborne, T., Payne, A. E., Ullrich, P., Gershunov, A., Goldenson, N., Guan, B., Qian, Y., Ramos, A. M., Sarangi, C., Sellars, S., Gorodetskaya, I., Kashinath, K., Kurlin, V., Mahoney, K., Muszynski, G., Pierce, R., Subramanian, A. C., Tome, R., Waliser, D., Walton, D., Wick, G., Wilson, A., Lavers, D., Prabhat, Collow, A., Krishnan, H., Magnusdottir, G., and Nguyen, P.: Atmospheric River Tracking Method Intercomparison Project (ARTMIP): project goals and experimental design, Geosci. Model Dev., 11, 2455–2474, https://doi.org/10.5194/gmd-11-2455-2018, 2018. a
Small, R. J., Bacmeister, J., Bailey, D., Baker, A., Bishop, S., Bryan, F., Caron, J., Dennis, J., Gent, P., ming Hsu, H., Jochum, M., Lawrence, D., Muñoz, E., diNezio, P., Scheitlin, T., Tomas, R., Tribbia, J., heng Tseng, Y., and Vertenstein, M.: A new synoptic scale resolving global climate simulation using the Community Earth System Model, J. Adv. Model. Earth Sy., 6, 1065–1094, https://doi.org/10.1002/2014ms000363, 2014. a
Strong, C. and Davis, R. E.: Winter jet stream trends over the Northern Hemisphere, Q. J. Roy. Meteor. Soc., 133, 2109–2115, https://doi.org/10.1002/qj.171, 2007. a
Studholme, J., Fedorov, A. V., Gulev, S. K., Emanuel, K., and Hodges, K.: Poleward expansion of tropical cyclone latitudes in warming climates, Nat. Geosci., 15, 14–28, https://doi.org/10.1038/s41561-021-00859-1, 2021. a
Torres-Alavez, J. A., Glazer, R., Giorgi, F., Coppola, E., Gao, X., Hodges, K. I., Das, S., Ashfaq, M., Reale, M., and Sines, T.: Future projections in tropical cyclone activity over multiple CORDEX domains from RegCM4 CORDEX-CORE simulations, Clim. Dynam., 57, 1507–1531, https://doi.org/10.1007/s00382-021-05728-6, 2021. a
Ulbrich, U., Leckebusch, G. C., and Pinto, J. G.: Extra-tropical cyclones in the present and future climate: a review, Theor. Appl. Climatol., 96, 117–131, https://doi.org/10.1007/s00704-008-0083-8, 2009. a
Ullrich, P. A. and Zarzycki, C. M.: TempestExtremes: a framework for scale-insensitive pointwise feature tracking on unstructured grids, Geosci. Model Dev., 10, 1069–1090, https://doi.org/10.5194/gmd-10-1069-2017, 2017. a, b, c
Ullrich, P. A., Zarzycki, C. M., McClenny, E. E., Pinheiro, M. C., Stansfield, A. M., and Reed, K. A.: TempestExtremes v2.1: a community framework for feature detection, tracking, and analysis in large datasets, Geosci. Model Dev., 14, 5023–5048, https://doi.org/10.5194/gmd-14-5023-2021, 2021. a
van Genderen, J., Goodchild, M. F., Guo, H., Yang, C., Nativi, S., Wang, L., and Wang, C.: Digital Earth Challenges and Future Trends, in: Manual of Digital Earth, 811–827, Springer Singapore, https://doi.org/10.1007/978-981-32-9915-3_26, 2019. a
Vishnu, S., Boos, W. R., Ullrich, P. A., and O'Brien, T. A.: Assessing Historical Variability of South Asian Monsoon Lows and Depressions With an Optimized Tracking Algorithm, J. Geophys. Res.-Atmos., 125, e2020JD032977, https://doi.org/10.1029/2020jd032977, 2020. a
Vitart, F., Anderson, J. L., and Stern, W. F.: Simulation of Interannual Variability of Tropical Storm Frequency in an Ensemble of GCM Integrations, J. Climate, 10, 745–760, https://doi.org/10.1175/1520-0442(1997)010<0745:soivot>2.0.co;2, 1997. a, b
Waliser, D. and Guan, B.: Extreme winds and precipitation during landfall of atmospheric rivers, Nat. Geosci., 10, 179–183, https://doi.org/10.1038/ngeo2894, 2017. a
Wallace, J. M. and Hobbs, P. V.: Atmospheric science: An Introductory Survey, Academic Press, San Diego, CA, 500 pp.,ISBN 978-0127329505, 1977. a
Walsh, K. J., McBride, J. L., Klotzbach, P. J., Balachandran, S., Camargo, S. J., Holland, G., Knutson, T. R., Kossin, J. P., cheung Lee, T., Sobel, A., and Sugi, M.: Tropical cyclones and climate change, WIREs Clim. Change, 7, 65–89, https://doi.org/10.1002/wcc.371, 2015. a
Woodruff, J. D., Irish, J. L., and Camargo, S. J.: Coastal flooding by tropical cyclones and sea-level rise, Nature, 504, 44–52, https://doi.org/10.1038/nature12855, 2013. a
Xi, J., Wang, Y., Feng, Z., Liu, Y., and Guo, X.: Variability and Intensity of the Sea Surface Temperature Front Associated With the Kuroshio Extension, Front. Marine Sci., 9, 836469, https://doi.org/10.3389/fmars.2022.836469, 2022. a
Xu, G., Ma, X., Chang, P., and Wang, L.: Image-processing-based atmospheric river tracking method version 1 (IPART-1), Geosci. Model Dev., 13, 4639–4662, https://doi.org/10.5194/gmd-13-4639-2020, 2020. a
Yang, C., Huang, Q., Li, Z., Liu, K., and Hu, F.: Big Data and cloud computing: innovation opportunities and challenges, Int. J. Dig. Earth, 10, 13–53, https://doi.org/10.1080/17538947.2016.1239771, 2016. a
Yoder, J. A., Ackleson, S. G., Barber, R. T., Flament, P., and Balch, W. M.: A line in the sea, Nature, 371, 689–692, https://doi.org/10.1038/371689a0, 1994. a
Zarzycki, C. M. and Ullrich, P. A.: Assessing sensitivities in algorithmic detection of tropical cyclones in climate data, Geophys. Res. Lett., 44, 1141–1149, https://doi.org/10.1002/2016gl071606, 2017. a
Zhao, M.: Simulations of Atmospheric Rivers, Their Variability, and Response to Global Warming Using GFDL's New High-Resolution General Circulation Model, J. Climate, 33, 10287–10303, https://doi.org/10.1175/jcli-d-20-0241.1, 2020. a, b, c
Short summary
This study introduces a new computational framework called Scalable Feature Extraction and Tracking (SCAFET), designed to extract and track features in climate data. SCAFET stands out by using innovative shape-based metrics to identify features without relying on preconceived assumptions about the climate model or mean state. This approach allows more accurate comparisons between different models and scenarios.
This study introduces a new computational framework called Scalable Feature Extraction and...