Articles | Volume 17, issue 1
https://doi.org/10.5194/gmd-17-301-2024
https://doi.org/10.5194/gmd-17-301-2024
Methods for assessment of models
 | 
15 Jan 2024
Methods for assessment of models |  | 15 Jan 2024

Scalable Feature Extraction and Tracking (SCAFET): a general framework for feature extraction from large climate data sets

Arjun Babu Nellikkattil, Danielle Lemmon, Travis Allen O'Brien, June-Yi Lee, and Jung-Eun Chu

Related authors

Indicators of Global Climate Change 2024: annual update of key indicators of the state of the climate system and human influence
Piers M. Forster, Chris Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Christophe Cassou, Mathias Hauser, Zeke Hausfather, June-Yi Lee, Matthew D. Palmer, Karina von Schuckmann, Aimée B. A. Slangen, Sophie Szopa, Blair Trewin, Jeongeun Yun, Nathan P. Gillett, Stuart Jenkins, H. Damon Matthews, Krishnan Raghavan, Aurélien Ribes, Joeri Rogelj, Debbie Rosen, Xuebin Zhang, Myles Allen, Lara Aleluia Reis, Robbie M. Andrew, Richard A. Betts, Alex Borger, Jiddu A. Broersma, Samantha N. Burgess, Lijing Cheng, Pierre Friedlingstein, Catia M. Domingues, Marco Gambarini, Thomas Gasser, Johannes Gütschow, Masayoshi Ishii, Christopher Kadow, John Kennedy, Rachel E. Killick, Paul B. Krummel, Aurélien Liné, Didier P. Monselesan, Colin Morice, Jens Mühle, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Jan C. Minx, Matthew Rigby, Robert Rohde, Abhishek Savita, Sonia I. Seneviratne, Peter Thorne, Christopher Wells, Luke M. Western, Guido R. van der Werf, Susan E. Wijffels, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-250,https://doi.org/10.5194/essd-2025-250, 2025
Revised manuscript accepted for ESSD
Short summary
A new metrics framework for quantifying and intercomparing atmospheric rivers in observations, reanalyses, and climate models
Bo Dong, Paul Ullrich, Jiwoo Lee, Peter Gleckler, Kristin Chang, and Travis A. O'Brien
Geosci. Model Dev., 18, 961–976, https://doi.org/10.5194/gmd-18-961-2025,https://doi.org/10.5194/gmd-18-961-2025, 2025
Short summary
Moving beyond post hoc explainable artificial intelligence: a perspective paper on lessons learned from dynamical climate modeling
Ryan J. O'Loughlin, Dan Li, Richard Neale, and Travis A. O'Brien
Geosci. Model Dev., 18, 787–802, https://doi.org/10.5194/gmd-18-787-2025,https://doi.org/10.5194/gmd-18-787-2025, 2025
Short summary
Huge Ensembles Part I: Design of Ensemble Weather Forecasts using Spherical Fourier Neural Operators
Ankur Mahesh, William Collins, Boris Bonev, Noah Brenowitz, Yair Cohen, Joshua Elms, Peter Harrington, Karthik Kashinath, Thorsten Kurth, Joshua North, Travis O'Brien, Michael Pritchard, David Pruitt, Mark Risser, Shashank Subramanian, and Jared Willard
EGUsphere, https://doi.org/10.48550/arXiv.2408.03100,https://doi.org/10.48550/arXiv.2408.03100, 2024
Short summary
Huge Ensembles Part II: Properties of a Huge Ensemble of Hindcasts Generated with Spherical Fourier Neural Operators
Ankur Mahesh, William Collins, Boris Bonev, Noah Brenowitz, Yair Cohen, Peter Harrington, Karthik Kashinath, Thorsten Kurth, Joshua North, Travis A. O'Brien, Michael Pritchard, David Pruitt, Mark Risser, Shashank Subramanian, and Jared Willard
EGUsphere, https://doi.org/10.48550/arXiv.2408.01581,https://doi.org/10.48550/arXiv.2408.01581, 2024
Short summary

Related subject area

Numerical methods
Potential-based thermodynamics with consistent conservative cascade transport for implicit large eddy simulation: PTerodaC3TILES version 1.0
John Thuburn
Geosci. Model Dev., 18, 3331–3357, https://doi.org/10.5194/gmd-18-3331-2025,https://doi.org/10.5194/gmd-18-3331-2025, 2025
Short summary
Positive matrix factorization of large real-time atmospheric mass spectrometry datasets using error-weighted randomized hierarchical alternating least squares
Benjamin C. Sapper, Sean Youn, Daven K. Henze, Manjula Canagaratna, Harald Stark, and Jose L. Jimenez
Geosci. Model Dev., 18, 2891–2919, https://doi.org/10.5194/gmd-18-2891-2025,https://doi.org/10.5194/gmd-18-2891-2025, 2025
Short summary
CLAQC v1.0 – Country Level Air Quality Calculator: an empirical modeling approach
Stefania Renna, Francesco Granella, Lara Aleluia Reis, and Paulina Schulz-Antipa
Geosci. Model Dev., 18, 2373–2408, https://doi.org/10.5194/gmd-18-2373-2025,https://doi.org/10.5194/gmd-18-2373-2025, 2025
Short summary
Hydro-geomorphological modelling of leaky wooden dam efficacy from reach to catchment scale with CAESAR-Lisflood 1.9j
Joshua M. Wolstenholme, Christopher J. Skinner, David Milan, Robert E. Thomas, and Daniel R. Parsons
Geosci. Model Dev., 18, 1395–1411, https://doi.org/10.5194/gmd-18-1395-2025,https://doi.org/10.5194/gmd-18-1395-2025, 2025
Short summary
Stabilized two-phase material point method for hydromechanical coupling problems in solid-fluid porous media
Xiong Tang, Wei Liu, Siming He, Lei Zhu, Michel Jaboyedoff, Huanhuan Zhang, Yuqing Sun, and Zenan Huo
EGUsphere, https://doi.org/10.5194/egusphere-2025-707,https://doi.org/10.5194/egusphere-2025-707, 2025
Short summary

Cited articles

Avila, L. A., Stewart, S. R., Berg, R., and Hagen, A. B.: Hurricane Dorian, Tech. rep., National Hurricane Center, https://www.nhc.noaa.gov/data/tcr/AL052019_Dorian.pdf (last access: 20 December 2023), 2020. a
Balaji, V., Taylor, K. E., Juckes, M., Lawrence, B. N., Durack, P. J., Lautenschlager, M., Blanton, C., Cinquini, L., Denvil, S., Elkington, M., Guglielmo, F., Guilyardi, E., Hassell, D., Kharin, S., Kindermann, S., Nikonov, S., Radhakrishnan, A., Stockhause, M., Weigel, T., and Williams, D.: Requirements for a global data infrastructure in support of CMIP6, Geosci. Model Dev., 11, 3659–3680, https://doi.org/10.5194/gmd-11-3659-2018, 2018. a
Bengtsson, L., Kanamitsu, M., Kållberg, P., and Uppala, S.: FGGE Research Activities at ECMWF, B. Am. Meteorol. Soc., 63, 277–303, https://doi.org/10.1175/1520-0477-63.3.277, 1982. a
Bengtsson, L., Botzet, M., and Esch, M.: Hurricane-type vortices in a general circulation model, Tellus A, 47, 175–196, https://doi.org/10.1034/j.1600-0870.1995.t01-1-00003.x, 1995. a
Biard, J. C. and Kunkel, K. E.: Automated detection of weather fronts using a deep learning neural network, Adv. Stat. Clim. Meteorol. Oceanogr., 5, 147–160, https://doi.org/10.5194/ascmo-5-147-2019, 2019. a
Download
Short summary
This study introduces a new computational framework called Scalable Feature Extraction and Tracking (SCAFET), designed to extract and track features in climate data. SCAFET stands out by using innovative shape-based metrics to identify features without relying on preconceived assumptions about the climate model or mean state. This approach allows more accurate comparisons between different models and scenarios. 
Share