Articles | Volume 17, issue 1
https://doi.org/10.5194/gmd-17-301-2024
https://doi.org/10.5194/gmd-17-301-2024
Methods for assessment of models
 | 
15 Jan 2024
Methods for assessment of models |  | 15 Jan 2024

Scalable Feature Extraction and Tracking (SCAFET): a general framework for feature extraction from large climate data sets

Arjun Babu Nellikkattil, Danielle Lemmon, Travis Allen O'Brien, June-Yi Lee, and Jung-Eun Chu

Related authors

How well can we quantify when 1.5 °C of global warming has been exceeded?
Peter W. Thorne, John M. Nicklas, John J. Kennedy, Bruce Calvert, Baylor Fox-Kemper, Mark T. Richardson, Adrian Simmons, Ed Hawkins, Robert Rhode, Kathryn Cowtan, Nerilie J. Abram, Axel Andersson, Simon Noone, Phillipe Marbaix, Nathan Lenssen, Dirk Olonscheck, Tristram Walsh, Stephen Outten, Ingo Bethke, Bjorn H. Samset, Chris Smith, Anna Pirani, Jan Fuglestvedt, Lavanya Rajamani, Richard A. Betts, Elizabeth C. Kent, Blair Trewin, Colin Morice, Tim Osborn, Samantha N. Burgess, Oliver Geden, Andrew Parnell, Piers M. Forster, Chris Hewitt, Zeke Hausfather, Valerie Masson-Delmotte, Jochem Marotzke, Nathan Gillett, Sonia I. Seneviratne, Gavin A. Schmidt, Duo Chan, Stefan Brönnimann, Andy Reisinger, Matthew Menne, Maisa Rojas Corradi, Christopher Kadow, Peter Huybers, David B. Stephenson, Emily Wallis, Joeri Rogelj, Andrew Schurer, Karen McKinnon, Panmao Zhai, Fatima Driouech, Wilfran Moufouma Okia, Saeed Vazifehkhah, Sophie Szopa, Christopher J. Merchant, Shoji Hirahara, Masayoshi Ishii, Francois A. Engelbrecht, Qingxiang Li, June-Yi Lee, Alex J. Cannon, Christophe Cassou, Karina von Schuckmann, Amir H. Delju, and Ellie Murtagh
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-825,https://doi.org/10.5194/essd-2025-825, 2026
Preprint under review for ESSD
Short summary
Climate extremes limiting the growth of East Asian mangroves for future nature-based solutions
Ran Chen, Jin-Soo Kim, Jung-Eun Chu, Hyo-Jeong Kim, Bora Lee, Sujong Jeong, and Gabriela Schaepman-Strub
EGUsphere, https://doi.org/10.5194/egusphere-2025-5805,https://doi.org/10.5194/egusphere-2025-5805, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Huge ensembles – Part 1: Design of ensemble weather forecasts using spherical Fourier neural operators
Ankur Mahesh, William D. Collins, Boris Bonev, Noah Brenowitz, Yair Cohen, Joshua Elms, Peter Harrington, Karthik Kashinath, Thorsten Kurth, Joshua North, Travis O'Brien, Michael Pritchard, David Pruitt, Mark Risser, Shashank Subramanian, and Jared Willard
Geosci. Model Dev., 18, 5575–5603, https://doi.org/10.5194/gmd-18-5575-2025,https://doi.org/10.5194/gmd-18-5575-2025, 2025
Short summary
Huge ensembles – Part 2: Properties of a huge ensemble of hindcasts generated with spherical Fourier neural operators
Ankur Mahesh, William D. Collins, Boris Bonev, Noah Brenowitz, Yair Cohen, Peter Harrington, Karthik Kashinath, Thorsten Kurth, Joshua North, Travis A. O'Brien, Michael Pritchard, David Pruitt, Mark Risser, Shashank Subramanian, and Jared Willard
Geosci. Model Dev., 18, 5605–5633, https://doi.org/10.5194/gmd-18-5605-2025,https://doi.org/10.5194/gmd-18-5605-2025, 2025
Short summary
Earth's future climate and its variability simulated at 9 km global resolution
Ja-Yeon Moon, Jan Streffing, Sun-Seon Lee, Tido Semmler, Miguel Andrés-Martínez, Jiao Chen, Eun-Byeoul Cho, Jung-Eun Chu, Christian L. E. Franzke, Jan P. Gärtner, Rohit Ghosh, Jan Hegewald, Songyee Hong, Dae-Won Kim, Nikolay Koldunov, June-Yi Lee, Zihao Lin, Chao Liu, Svetlana N. Loza, Wonsun Park, Woncheol Roh, Dmitry V. Sein, Sahil Sharma, Dmitry Sidorenko, Jun-Hyeok Son, Malte F. Stuecker, Qiang Wang, Gyuseok Yi, Martina Zapponini, Thomas Jung, and Axel Timmermann
Earth Syst. Dynam., 16, 1103–1134, https://doi.org/10.5194/esd-16-1103-2025,https://doi.org/10.5194/esd-16-1103-2025, 2025
Short summary

Cited articles

Avila, L. A., Stewart, S. R., Berg, R., and Hagen, A. B.: Hurricane Dorian, Tech. rep., National Hurricane Center, https://www.nhc.noaa.gov/data/tcr/AL052019_Dorian.pdf (last access: 20 December 2023), 2020. a
Balaji, V., Taylor, K. E., Juckes, M., Lawrence, B. N., Durack, P. J., Lautenschlager, M., Blanton, C., Cinquini, L., Denvil, S., Elkington, M., Guglielmo, F., Guilyardi, E., Hassell, D., Kharin, S., Kindermann, S., Nikonov, S., Radhakrishnan, A., Stockhause, M., Weigel, T., and Williams, D.: Requirements for a global data infrastructure in support of CMIP6, Geosci. Model Dev., 11, 3659–3680, https://doi.org/10.5194/gmd-11-3659-2018, 2018. a
Bengtsson, L., Kanamitsu, M., Kållberg, P., and Uppala, S.: FGGE Research Activities at ECMWF, B. Am. Meteorol. Soc., 63, 277–303, https://doi.org/10.1175/1520-0477-63.3.277, 1982. a
Bengtsson, L., Botzet, M., and Esch, M.: Hurricane-type vortices in a general circulation model, Tellus A, 47, 175–196, https://doi.org/10.1034/j.1600-0870.1995.t01-1-00003.x, 1995. a
Biard, J. C. and Kunkel, K. E.: Automated detection of weather fronts using a deep learning neural network, Adv. Stat. Clim. Meteorol. Oceanogr., 5, 147–160, https://doi.org/10.5194/ascmo-5-147-2019, 2019. a
Download
Short summary
This study introduces a new computational framework called Scalable Feature Extraction and Tracking (SCAFET), designed to extract and track features in climate data. SCAFET stands out by using innovative shape-based metrics to identify features without relying on preconceived assumptions about the climate model or mean state. This approach allows more accurate comparisons between different models and scenarios. 
Share