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Abstract. This study describes a generalized computational
mathematical framework, Scalable Feature Extraction and
Tracking (SCAFET), that extracts and tracks features from
large climate data sets. SCAFET utilizes novel shape-based
metrics that can identify and compare features from different
mean states, data sets, and between distinct regions. Features
of interest such as atmospheric rivers, tropical and extratropi-
cal cyclones, and jet streams are extracted by segmenting the
data based on a scale-independent bounded variable called
the shape index (SI). The SI gives a quantitative measure-
ment of the local geometric shape of the field with respect
to its surroundings. Compared to other widely used frame-
works in feature detection, SCAFET does not use a poste-
riori assumptions about the climate model or mean state to
extract features of interest and levelize the comparison be-
tween different models and scenarios. To demonstrate the ca-
pabilities of the method, we illustrate the detection of atmo-
spheric rivers, tropical and extratropical cyclones, sea sur-
face temperature fronts, and jet streams. Cyclones and at-
mospheric rivers are extracted to show how the algorithm
identifies and tracks both the nodes and areas from climate
data sets. The extraction of sea surface temperature fronts ex-
emplifies how SCAFET effectively handles curvilinear grids.
Last, jet streams are extracted to demonstrate how the algo-

rithm can also detect three-dimensional features. As a gen-
eralized framework, SCAFET can be implemented to extract
and track many weather and climate features across scales,
grids, and dimensions.

1 Introduction

The volume of climate data is growing exponentially, ow-
ing to rapid expansions in both observational capabilities
and computational power, which are driven in particular
by the precision and insights offered by higher-resolution
models (Overpeck et al., 2011; Balaji et al., 2018). Fron-
tier research like global cloud-resolving and large-ensemble
simulations leads not only to increased volume but also to
inflated velocity, variety, veracity, and value (5Vs) (Marr,
2015; Guo, 2017; van Genderen et al., 2019) of climate data.
This makes the detection and comparative analysis of impor-
tant atmospheric and oceanic features, such as atmospheric
rivers (ARs), tropical and extratropical cyclones, sea sur-
face temperature fronts (SSTFs), and jet streams, an onerous
task. Although these climate phenomena influence regional
and global weather and climate with immense societal, eco-
nomic, and ecological impacts, the volume of data represent-

Published by Copernicus Publications on behalf of the European Geosciences Union.

S|9POLW JO JUBWISSASSE 10} SPOYISIA



302

ing these events and features is a small percentage of the
whole simulation. Feature extraction considerably reduces
the volume of data that needs to be stored, thus improving
computational efficiency in analyzing these features (Yang
et al., 2016). Moreover, the mean, variability, and character-
istics of features can be compared to observational data sets
as a measure of bias within model simulations, thereby im-
proving our understanding of the causal differences between
observations and models (Sellars et al., 2013). Thus, efficient
and reliable feature extraction is vital to climate data process-
ing, analysis, and model development.

Despite the importance of feature extraction in climate
data analysis and model development, there is little consen-
sus on standard best practices for feature extraction. The sim-
plest method for extracting a feature is to use a physical
threshold or its derivative for some climate variable (SST,
precipitation, wind speed, humidity, etc.), or a combination
thereof, to identify ARs, fronts, jet streams, or tropical and
extratropical cyclones (Bengtsson et al., 1982, 1995; Vitart
et al.,, 1997; Hewson, 1998; Koch et al., 2006; Strong and
Davis, 2007; Rutz et al., 2014; Guan and Waliser, 2015). The
limitations and discrepancies in these methods arise from the
somewhat arbitrary choice of physical thresholds in relation
to the spatiotemporal distributions of the climate variables.
In other words, many studies choose a physical threshold
that is not theoretically defined but rather a function of the
location, time span, and data set used. Validation can then
unfortunately come down to the intelligent but subjective hu-
man eye or, in other words, tuning an absolute or relative
threshold until it appears to have captured all the features of
interest, while leaving out the background noise (Zarzycki
and Ullrich, 2017; Vishnu et al., 2020).

Choosing an absolute threshold from climate variables for
feature extraction that applies to different climate models
and spans multiple mean states and model scenarios is not
straightforward. Thresholds are often applied to climate vari-
ables or derivatives in which the features are most visible,
such as relative vorticity (RV) and sea level pressure anoma-
lies for tropical cyclones (e.g., Vitart et al., 1997), integrated
water vapor transport (IVT) for ARs (e.g., Guan and Waliser,
2015), or the first derivative of sea surface temperature (SST)
for SST fronts (Castelao et al., 2006). Thresholds are of-
ten either empirically derived from observational studies or
calculated from a model-specific distribution; though, even
within the same data set, a particular choice of threshold may
be suitable for one region but not for another, given varying
regional characteristics and topography. In the case where
the feature extraction threshold is an a posteriori assump-
tion of the data set used, one must pre-process large, rep-
resentative data sets just to calculate reasonable thresholds.
While some detection methods have done well to streamline
their algorithms to reduce total runtime, the process of pos-
terior threshold calculation for higher-resolution and large-
ensemble data sets inherently becomes increasingly less ef-
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ficient, highlighting the need to develop feature extraction
methods that do not use posterior assumptions.

Aside from the sensitivity of feature detection to inter-
model and inter-simulation differences, feature detection is
further complicated when trying to detect and compare fea-
tures between present and future climate change scenarios, as
the underlying spatiotemporal climate variable distributions
change under global warming. Feature detection must be re-
considered when applied to variables with significant and/or
non-linear changes in their means and extremes in response
to external forcings such as doubling or quadrupling carbon
dioxide concentrations. It should be emphasized that apply-
ing different arbitrary thresholds can and does lead to con-
tradictory conclusions regarding the response of these fea-
tures to greenhouse gas warming (Horn et al., 2014; Zhao,
2020; O’Brien et al., 2022; Nellikkattil et al., 2023). To
counter these uncertainties, methods based on topology, ma-
chine learning, ridge extraction, edge detection, and various
other image-processing techniques have been proposed over
the years (Dixon and Wiener, 1993; Post et al., 2003; Mol-
nos et al., 2017; Biard and Kunkel, 2019; Xu et al., 2020).
While these methods offer an alternative for the extraction of
features in data sets spanning different mean states, many of
these methods were developed for detecting specific rather
than general features.

The need for a general framework for extracting and track-
ing features from large climate data sets has been raised
in various climate science communities for the last several
decades. In a pioneer study, Hodges (1994) developed a gen-
eral framework for extracting and tracking features from me-
teorological data sets in the following three steps: segmen-
tation, filtering, and tracking. In the segmentation step, the
field is split into distinct regions by applying a threshold and
defining each of the connected regions as an object. Seg-
mented regions are then filtered based on the characteristics
of each object, and feature nodes are defined for the remain-
ing objects. Finally, the feature nodes are tracked over time to
produce the final output for further analysis. This framework
was further developed for cyclones, storm tracks, convective
systems, ocean eddies, monsoon depressions, etc. (Hodges,
1995; Hogg et al., 2005; Hodges et al., 2011; Burston et al.,
2014; Hurley and Boos, 2014; Pinheiro et al., 2016; Priest-
ley et al., 2020; Torres-Alavez et al., 2021; Karmakar et al.,
2021). However, it is limited to the detection of points of lo-
cal maxima in two-dimensional scalar fields, which do not
always fully characterize various features.

In 2012, a team from the Lawrence Berkeley National
Laboratory developed the Toolkit for Extreme Climate Anal-
ysis (TECA), integrating pre-existing, physical threshold-
dependent detection methods and algorithms into a compre-
hensive software package that was parallelized to make the
algorithms more suitable for large data sets (Prabhat et al.,
2012). In a more recent effort, a team led by Paul Ullrich
at the University of California, Davis, created TempestEx-
tremes (Ullrich and Zarzycki, 2017; Ullrich et al., 2021),
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which is another computationally efficient algorithm package
that uses C + + and several core functions to detect a variety
of features. These functions are being actively developed for
extraction, characterization, and uncertainty quantification of
weather extremes. Both TECA and TempestExtremes have
been widely implemented by the climate community and
have been monumental in advancing scientific understanding
of meso- and synoptic-scale processes and their connections
to long-term climate variability.

In this study, we present a novel method called Scal-
able Feature Extraction and Tracking (SCAFET), which
serves as a versatile and general framework for detecting
and tracking features of various shapes and intensities across
scales, grid types, and dimensions. Simply put, SCAFET
uses the curvature measurements of a given scalar field to
identify distinct emergent shapes corresponding to features
of interest. The local shape calculation is finite, bounded,
and scale-independent, and it can be tuned, depending on
the specified feature of interest. Unlike traditional methods
that rely on physical thresholds often derived from data-
specific, posterior conditions, this method relies on shape-
based thresholds. As such, it separates the feature detec-
tion process from inter- and intra-model variation, making
it less sensitive to these differences. Furthermore, this ap-
proach allows for the complete parallelization of feature ex-
traction along the time dimension, since the detection op-
erates independently of time. Time-independent feature ex-
traction offers two key advantages. First, it has the poten-
tial to boost computational efficiency by enabling data pre-
processing such as smoothing to occur in parallel, rather than
requiring a single pre-processing step before feature extrac-
tion. Second, it holds the promise of being developed and
implemented for real-time feature extraction during critical
events like hurricanes and tornadoes. Importantly, the code
for this framework is fully open-source and written in Python
in an easy-to-use package so that even individuals with
beginner-level Python skills can readily implement the algo-
rithm (see https://github.com/nbarjun/SCAFET/blob/master/
scafet_demo.ipynb, last access: 17 October 2023, for a sim-
ple working example).

The novelty of SCAFET compared to pre-existing meth-
ods lies in feature detection that does not use a posteriori
assumptions and is based on the overall “shape” of a climate
variable field, rather than arbitrary thresholding of that field
or derivative. The core methodology for the detection of any
feature is the same and can be tuned using just two vari-
ables: one for the spatial scale and the other for the shape
of the features one is looking for. For example, between
the two variables, one can tune the difference between a
long filament-shaped atmospheric river and a shorter, round-
shaped cyclone. The algorithm applies to both rectilinear and
curvilinear grids and can also be extended to detect three-
dimensional (3D) features. Even in the context of recent ad-
vancements in feature extraction such as TempestExtremes
and TECA, SCAFET is a comprehensive, efficient, and eas-
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ily implementable framework that aims to upgrade the fea-
ture extraction process with a novel shape-based approach
that does not rely on iterative posterior conditions and could
prove to be a robust method for detecting a diverse set of fea-
tures under different mean climate states. Further discussion
on the differences between SCAFET and other detection al-
gorithms can be found in Sect. A.

The paper is organized as follows, Sect. 2 introduces the
fundamentals of SCAFET and how it is implemented in a
two-dimensional (2D) field. Section 3 presents three specific
use cases of SCAFET, demonstrating its capabilities in de-
tecting various climate features across different grid types.
Extraction of 3D features using jet steams as an example will
be discussed in Sect. 4. Though the application of SCAFET is
not limited to the features described here, this study focuses
on atmospheric rivers, cyclones, SST fronts, and jet streams,
as these examples cover a broad range of phenomena, pro-
viding users with insights on how to adapt SCAFET to their
specific use cases and requirements.

2 Description of Scalable Feature Extraction and
Tracking

SCAFET adopts the same three-step approach as outlined by
Hodges (1994): segmentation (yellow boxes in Fig. 1), fil-
tering (orange boxes in Fig. 1), and tracking (green boxes in
Fig. 1). However, before commencing these steps, SCAFET
requires initialization with essential information describing
the data sets and the specific feature to be extracted (as indi-
cated by blue boxes in Fig. 1). The key inputs for this initial-
ization include the following:

— Primary field (¢p). This is a gridded data set in which
the target feature is most easily distinguishable. For
instance, cyclones are readily identified using the RV
field, ARs emerge from IVT, and SSTFs are distin-
guished using the SST gradient. Optionally, one or more
secondary fields can be used to further constrain the de-
tected features.

— Grid properties. Information on the primary field’s
grid, including grid cell area/volume, grid distance, and
coastlines, is required for calculating derivatives of the
basic field and identifying locations of landfall.

— Feature properties. The algorithm requires information
on the properties of the target feature. This includes esti-
mated spatial scale, shape, eccentricity (for 2D features
only), minimum length, minimum area, minimum vol-
ume (for 3D feature only), minimum duration, and max-
imum distance per time step.

In the SCAFET scheme, segmentation, filtering, and tracking

are developed and coded as separate Python libraries. This
design allows users to substitute any of these components
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Figure 1. Overall schematic of SCAFET workflow and components. Inputs to the algorithm are depicted in blue, while the algorithm’s
outputs are shown in pink boxes. Processes related to the segmentation step are highlighted in yellow boxes, whereas the orange boxes
represent the filtering processes. The tracking step is denoted by green boxes. Arrows on the periphery of the boxes illustrate the flow of the

algorithm. Each section is elaborated upon in detail within the text.

with their own methods, while still being able to execute the
algorithm. Once all three steps have been executed, the algo-
rithm yields two outputs: one provides information about the
properties of the detected objects and the other produces a
labeled mask highlighting the feature of interest on the input
grid (pink boxes in Fig. 1).

2.1 Segmentation

The core operation for the feature extraction involves catego-
rizing points within a scalar field into one of five shapes. This
categorization is achieved using curvature measurements ob-
tained from the eigenvalues of the Hessian of the basic field.
These five selected shapes (see Fig. 2) are an abridged ver-
sion of the shapes described in previous studies (Koenderink
and van Doorn, 1992). Depending on the specific feature of
interest, one or more shapes are extracted from the primary
field. The segmentation process starts with scale—space se-
lection of the field to remove smaller scales of variability
that are background noise compared to the feature of inter-
est. Last, the algorithm calculates SI to estimate the local ge-
ometric shape at each point.

2.1.1 Scale-space selection
Scale—space selection is a widely used technique in image
processing, signal processing, and computer vision (Lin-

deberg, 2014). In our current study, scale—space selection
involves applying a Gaussian smoothing kernel to sup-
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press variability smaller than the chosen smoothing scale
(o) (see https://unidata.github.io/MetPy/latest/api/generated/
metpy.calc.smooth_gaussian.html, last access: 20 Decem-
ber 2023, for the implementation of Gaussian smoothing).
Mathematically, scale—space selection is performed by con-
volving the primary field (¢p) with a Gaussian function,
which is expressed as follows:

Bots s 0 ) = Gp(k, Y. - oo RIS
2o

In the context of the meso—synoptic-scale processes exam-
ined in this study, the scale—space selection filters out smaller
microscale features to isolate features like cyclonic vortexes
or atmospheric rivers. Notably, this function can be adjusted
to the spatial scale of interest and could also be used to filter
out synoptic-scale features in isolating micro- and mesoscale
processes. In climate data sets, grid spacing is not always uni-
form. To account for that, we adapt the above equation to be
“grid-aware”. The input for the smoothing scale is provided
in kilometers, and based on this input, we calculate the value
of o, while considering the grid size. Notably, the value of o
remains constant when smoothing is applied along each lon-
gitude, but it varies along each circle of latitude. For future
studies, researchers may explore other, more advanced scale—
space selection methods to further refine their analyses.

https://doi.org/10.5194/gmd-17-301-2024
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2.1.2 Local shape extraction

The local geometric shape of the field, ¢s is calculated as a
function of the eigenvalues (k| and k) of the Hessian of the
magnitude of the field (]¢s|), where the Hessian is given by

32\%5\ 332"55'
HosD = | 25, oo @
dyox ay? -

In the context of simple differential geometry, we can de-
termine whether a point is a local maximum or a local min-
imum based on the eigenvalues ki and k. Specifically, if
ko <kj <0, then the point under consideration is a local
maximum, whereas if k; > ky > 0, then point is a local min-
imum. The criterion is primarily applicable to nodal features
such as tropical cyclones or monsoon depressions. To expand
our ability to identify a range of features, we use the shape
index (SI) (Koenderink and van Doorn, 1992), a quantitative
measure of the local shape of the field defined as

ko + ki
ko—ki |’

where k1 and kj are the two eigenvalues, satisfying k| > k&,
for the Hessian matrix. It is important to clarify that in the
original work by Koenderink and van Doorn (1992), the prin-
cipal curvatures, not the eigenvalues of the field, are utilized
to calculate the SI. However, the disparity between the SI
calculated using principal curvatures and the SI derived from
eigenvalues is exceedingly minimal in climate data analysis.
The SI is used to categorize the primary field into distinct
shapes (see Fig. 2). The choice of SI values is contingent
upon the specific type of feature to be extracted. For example,
we select caps and domes when extracting features such as
atmospheric depressions or cyclones, whereas ridges, caps,
and domes are chosen when targeting features like ARs and
fronts.

SI is designed to be a bounded value (range —1 to 1) in-
dependent of the magnitude of the field (Fig. 3). In simple
terms, SI provides a continuous and quantitative measure-
ment of the geometric shape of the field with respect to its
immediate background field. This concept is similar to how
a climate scientist’s trained eye identifies features based on
differences in color or value contrast, though the SI is ar-
guably a more objective and precise measure of geometric
shape. These characteristics make the SI particularly well-
suited for feature extraction from data sets with varying mean
states, which is in contrast to traditional physical threshold-
based methods. In addition to the two eigenvalues, the shape
extraction provides us with corresponding eigenvectors. The
eigenvector for k; points perpendicular to the local ridge di-
rection, while that of & is parallel to it. This allows us to im-
pose further constraints, such as the coherence of transport
or flow with respect to the local ridge when ¢ is a vector
field. This capability is aptly demonstrated in the context of
AR detection, as discussed in Sect. 3.1.

2. 1
Sk k) = tan [ 3)
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2.2 Filtering

Once the target features are extracted, properties like area,
location, mean, minimum, and maximum values of differ-
ent properties are calculated for each of the objects. A series
of filtering is carried out to remove objects that do not sat-
isfy certain conditions regarding (a) grid properties like area,
length, and region masks, (b) primary field properties like
magnitude and direction, and (c) constraints from the sec-
ondary field(s). The primary aim of the filtering process is to
remove small, weak, or ephemeral objects.

2.3 Tracking

The properties extracted for each object include key posi-
tional details, such as its centroid, and endpoints, as well as
the locations of maximum and minimum intensity of input
field within each object. To follow objects through time, one
of these positional attributes is tracked. In the present study,
we employ a straightforward tracking method. For each ob-
ject at time step n, we identify the closest object to it at time
n + 1. If this identified object is closer than a pre-defined ra-
dius r, we consider it to be the same object in motion. The ra-
dius r is defined in kilometers based on the maximum trans-
lation speed of the object and the temporal frequency of the
input data. At this stage, it is possible to filter out short-lived
features as needed. While this uncomplicated tracking ap-
proach may not be suitable for microscale processes, it can
be adapted to incorporate greater complexity if necessary.

3 Application to 2D features

In this section, we showcase how SCAFET is employed to
detect cyclonic vortices, ARs, and SSTFs from various cli-
mate data sets. These examples serve to illustrate the ver-
satility of SCAFET as applied to different types of features
and grids, though all the examples in this study follow the
same general process shown in Fig. 1. Each subsection has
a table of parameters detailing the properties of the desired
feature. The properties include the feature’s typical spatial
scales, shape index (SI) regime, minimum length, minimum
area, object eccentricity, and minimum duration of its track.
To determine the quantitative values for these properties, we
refer to a consensus among previous studies, which are cited
within each section. A detailed examination of the sensitivity
of these parameters in relation to the detected features, using
AR detection as an example, can be found in Sect. S1 in the
Supplement. In addition to the results discussed in the fol-
lowing sections, videos are also included in the Supplement
for each of the features. The primary objective of this work
is to demonstrate SCAFET’s capability to detect a variety of
features. Consequently, we present results for the long-term
climatology of each of the features, enabling a comparison
with other published detection algorithms.

Geosci. Model Dev., 17, 301-320, 2024
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Figure 2. Selected shapes used in this study and the values of the shape index associated with each of them. The x and y axes are a set of
general axes, while Z(X,Y) = sin(2X) 4 cos(2Y). Regions within Z (X, Y) satistfying conditions for different shapes are isolated to show

the geometry associated with them.
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Figure 3. Sensitivity of the shape index (SI) to eigenvalues k1 and
k. The x and y axes represent values of the two eigenvalues used
for calculating the shape index, while the color indicates the value of
the shape index. Shapes corresponding to the SI regimes are labeled.
Shapes corresponding to SI regimes are labeled.

3.1 Atmospheric rivers

According to the American Meteorology Society’s glossary
of meteorology, ARs are “long, narrow, and transient corri-
dors of strong horizontal water vapor transport that are typi-
cally associated with a low-level jet stream ahead of the cold
front of an extratropical cyclone” (Ralph et al., 2018). A sub-
stantial portion of the precipitation and water vapor transport
in midlatitude regions is concentrated within ARs (Guan and
Waliser, 2015). These atmospheric phenomena play a signifi-
cant role in midlatitude hydrology, contributing to more than
50 % of the extreme precipitation and wind events in the re-
gion (Waliser and Guan, 2017; Nash et al., 2018). The ability
to accurately detect, forecast, and project future ARs is of ut-
most importance for both extreme weather preparedness, as
well as for water resource management in basins worldwide.

Geosci. Model Dev., 17, 301-320, 2024

The ambiguity in AR projections and AR detection tools
(ARDTs) stems from the lack of a clear quantitative defini-
tion of ARs in strength, length, narrowness, and other such
parameters used in detection. In comparison with other cri-
teria, the choice of threshold for AR strength has a signif-
icant effect on the inferences drawn between the detection
schemes (Zhao, 2020; O’Brien et al., 2022; Nellikkattil et al.,
2023). Many ARDTs determine this threshold empirically
from the data set itself, which renders them sensitive to spa-
tiotemporal variations and changes in mean-state conditions
(Shields et al., 2018). SCAFET defines ARs as long (length
> 2000 km), narrow (eccentricity > 0.75) regions of strong
water vapor transport (SI > 0.375) and significant precipita-
tion (minimum AR precipitation > 1 mmd~!) (see Table 1
for complete details). The sensitivity of these parameters in
AR detection to the characteristics of detected ARs is dis-
cussed in Sect. S1. This approach reduces the sensitivity of
AR characteristics to arbitrary strength thresholds, making it
easier to compare ARs across different mean state conditions.

To illustrate how SCAFET identifies ARs, we utilized
daily mean data from the European Centre for Medium-
Range Weather Forecasts (ECMWF) Reanalysis Version 5
(ERAS; Hersbach et al., 2020) for the period 2000 to 2019.
The key fields of interest included the daily mean inte-
grated water vapor transport (IVT) as the primary field and
the daily mean total precipitation as the secondary vari-
able. All the data sets employed share a spatial resolution
of 0.25° x 0.25°. The vector field, IVT, is calculated as

300 hPa
IVTx = —l qudp “4)
8 1000 hPa
300 hPa
IVTy = —l qvdp )
8 1000 hPa

IIVT| = /IVTx2 + IVTy2. (6)

where u, v, and ¢ are the zonal wind speed, meridional wind
speed, and specific humidity, respectively.
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To detect AR-like structures, SCAFET employs a search
for specific shapes, such as ridges, caps, and domes (see
Fig. 2). Following the process outlined in Fig. 1, the SI is
calculated after applying a grid-aware smoothing technique
that suppresses variability smaller than 1000 km (Fig. 4a).
Once the SI is calculated for |IVT]| (Fig. 4b), regions where
the SI > 0.375 are passed on to the next stage for filtering.
To maximally utilize the vector qualities of the primary field,
we ensure that the local transport direction (arrows in Fig. 4a)
and local ridge direction (arrows in Fig. 4b) do not deviate by
more than 45°. The local ridge direction is identified as the
eigenvector corresponding to the smallest eigenvalue (k7).
Filtering based on the grid properties removes candidates that
are too small (length < 2000 km and area < 2 x 10° km?) or
too wide (eccentricity < 0.75). To eliminate AR-like objects
with low strength (precipitation < 1 mmd~!), we constrain
our results with the secondary field, total precipitation, to
within the object’s area. The use of precipitation as a strength
indicator is relevant, given its significant socioeconomic im-
pact. In line with other ARDTSs, we impose a regional mask
to filter out AR-like structures along the equatorial belt. All
these steps can be applied in parallel along the time axis, and
at each time step, AR-like structures similar to those shown
in Fig. 4c are identified. Once all ARs are detected, the track-
ing algorithm is applied to the daily data to filter out ARs that
last shorter than 1 d. Tracking is performed based on the cen-
troid of each identified object. The closest objects within a
distance of 4000 km between two consecutive time steps are
considered to be the same object evolving over time (Fig. 4d).
The annual mean frequency of the detected AR objects and
their seasonality are shown in Fig. 4e, f, and g. SCAFET’s
identification of ARs is consistent with other ARDTS, both in
terms of detecting single events and determining their mean
climatology, as further detailed in the Sect. S2 (see also Lora
et al., 2020).

3.2 Tropical and extratropical cyclones

In the scientific literature, cyclones are generally described
as large weather systems ranging from 500—4000 km in size,
characterized by strong cyclonic circulation, low pressure
at their center, and exceptionally high winds around them
(Emanuel, 2003; Schultz et al., 2019; Encyclopaedia, 2022).
The dynamics and characteristics of cyclones can vary, de-
pending on factors such as their genesis location and transla-
tion speeds. For instance, cyclones generated near the Equa-
tor, commonly referred to as tropical cyclones, are typically
smaller in size compared to those formed in midlatitudes,
known as extratropical cyclones. Regardless of their origin,
cyclones have the potential to unleash intense rainfall and
powerful winds along their path and can lead to flooding,
landslides, and severe damage to coastal infrastructure when
they make landfall (Knutson et al., 2010; Mendelsohn et al.,
2012; Ranson et al., 2014). Moreover, the impact of cyclones
is becoming a subject of heightened public concern, due to
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rising sea levels and the potential for increased cyclone inten-
sity in response to global warming. Thus, the identification
and future projection of cyclones are a subject of growing at-
tention and importance for the climate community (Woodruff
etal., 2013).

Once again, discrepancies among different detection al-
gorithms can be attributed to varying choices of physical
thresholds or constraints related to factors such as size, wind
speeds, vorticity, or surface pressure anomalies. While most
studies generally agree on the present and future characteris-
tics of cyclones, resolving details such as the changes in gen-
esis rate and durations is complicated by the uncertainties in
the detection methods (Ulbrich et al., 2009; Neu et al., 2013;
Horn et al., 2014; Walsh et al., 2015). In this study, SCAFET
identifies cyclones as regions of strong local maxima of cy-
clonic circulation (SI > 0.625) and maximum wind speeds
exceeding 10ms~!. This definition enables the detection of
robust cyclonic vorticities worldwide, including but not lim-
ited to tropical and extratropical cyclones. The primary field
used for cyclone detection is the absolute value of cyclonic
relative vorticity (¢) defined as

{=VxU, @)

where U is the 6h wind speeds at 10 m above the surface
obtained from the ERAS reanalysis data set, with a spatial
resolution of 0.25° x 0.25° (Hersbach et al., 2020). The mag-
nitude of the wind speed at 10 m is utilized as the secondary
field to constrain detection. Additional cyclone-related vari-
ables such as surface pressure anomaly and potential temper-
ature can also serve as secondary fields for the identification
and classification of cyclones.

In contrast with ARs, the detection of cyclones relies on a
scalar field, specifically in this case the cyclonic relative vor-
ticity |¢|. First, the data are pre-processed with grid-aware
Gaussian smoothing to suppress spatial variability smaller
than 750km (Fig. 5a). The chosen smoothing scale allows
us to identify both tropical and extratropical cyclones. Caps
and dome shapes (SI > 0.625) are then identified within the
smoothed |¢| field as potential cyclones (Fig. 5b). Subse-
quently, objects with an area smaller than 10° km? and a di-
ameter shorter than 20 km are filtered out. Once these spa-
tial criteria are met, we can further refine our selection by
excluding weak cyclonic vorticities || < 107%s~! and slow
maximum wind speed < 10ms~!, resulting in the identifica-
tion of robust cyclonic systems for a given time step (Fig. 5¢).
Similar to the AR example, all the described steps can be par-
allelized along the time dimension. Once potential cyclones
are identified, they are tracked using a methodology simi-
lar to the AR tracking algorithm. However, in this case, the
radius for search is limited to 1000 km, since we are using
6 h data, and the translation speeds of cyclones are notably
slower than 150kmh~!. A minimum duration of 48 h and a
minimum total displacement of 500 km is applied to distin-
guish moving cyclonic circulations from stationary ones. An
example of a tracked cyclone, commonly known as “Dorian”
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Table 1. The table presents the values for various parameters used in the detection of ARs using SCAFET. The rows for each step, including
segmentation, filtering, and tracking are grouped together and labeled.

No. Property Value Unit

1 Smoothing scale 2000 km
Segmentation 2 Angle coherence 45 degrees

3 Selected shape (0.375,1.0] -

1 Minimum length 2000 km

2 Minimum area 2 x 100 km?
Filtering 3 Eccentricity [0.75,1.0] -

4 Minimum precipitation 1 mmd~!

5 Latitude mask (=20, 20) degrees
Trackin 1 Minimum duration 24 hours

J 2 Maximum distance per time step 4000 km

Table 2. Same as in Table 1 but for parameters and values relevant to detecting tropical and extratropical cyclones.

No.  Property Value Unit

Seementation 1 Smoothing scale 1500 km
£ 2 Selected shape 0.625,1.0] -

1 Minimum length 20 km

2 Minimum area 100 km?
Filtering 3 Eccentricity [0.0,1.0] -

4 Minimum vorticity 1076 s1

5 Minimum maximum wind speed 10 ms!

1 Minimum duration 48 hours
Tracking 2 Maximum distance per time step 500 km

3 Net minimum displacement 1000 km

(Avila et al., 2020) is compared with the observed track from
IBTrACS (Knapp et al., 2010, 2018) data set (Fig. 5d). In
comparison to the observed track, SCAFET’s track is much
longer, due to the more relaxed conditions applied to cy-
clonic vorticity and wind speed. Additionally, SCAFET does
not differentiate between tropical and extratropical cyclones,
which can result in tracking the object throughout its tran-
sition from a tropical cyclone to a midlatitude storm. De-
spite this difference, the long-term averages for cyclone fre-
quency and its seasonal variability calculated using SCAFET
are comparable with other studies (e.g., Ullrich and Zarzy-
cki, 2017). What sets SCAFET apart from other conventional
cyclone detection algorithms is its approach to identifying
cyclones not as point objects but as encompassing surfaces
around the point of maximum |¢|. This enables a more com-
prehensive analysis of cyclone properties, including maxi-
mum and minimum values of wind speed and precipitation
within the entire cyclone structure.

3.3 Sea surface temperature fronts

SST fronts are regions where different water masses come to-
gether. They are typically characterized by strong horizontal
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gradients in temperature, salinity, density, and other proper-
ties (Bowman, 1978; Legeckis, 1978; Fedorov, 1986; Yoder
et al., 1994). Unlike the larger meso- to synoptic-scale fea-
tures discussed in this study, frontal structures are often ob-
served in much smaller spatiotemporal scales. Accurate iden-
tification of SSTFs is essential because these features are fre-
quently associated with strong upwelling and high levels of
biogeochemical productivity (Clayton et al., 2014, 2021; Na-
gai and Clayton, 2017). Additionally, the detection of SSTFs
serves as an example of how SCAFET can be applied to iden-
tify features in curvilinear grids.

Many prior SSTF detection algorithms rely on edge de-
tection techniques and the gradient of sea surface tempera-
ture and/or height to identify these structures (Canny, 1986;
Castelao et al., 2006). In our approach, we utilize the mag-
nitude of the daily mean SST horizontal gradient as the pri-
mary field for detecting SST fronts. The SST data are ob-
tained from a fully coupled, ultrahigh-resolution (= 10 km)
Community Earth System Model (CESM) v1.2.2 simulation
of present-day mean climate (Small et al., 2014; Chu et al.,
2020; Nellikkattil et al., 2023). The data are processed by
SCAFET in the tripolar (POP) grid. To illustrate the detec-
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Figure 4. Major steps in the detection and tracking of atmospheric rivers. (a) Smoothed primary field of vertically integrated water vapor
transport (IVT). Smoothing removes variability smaller than 1000 km from the IVT. The arrows in panel (a) represent the direction of
unsmoothed IVT. (b) Magnitude (shading) of the shape index (SI) and direction of the local ridge (arrows) direction calculated from smoothed
IVT. (c) Labeled AR objects after filtering out weak, small, and ephemeral candidates. (d) Example of tracked AR centroids and marked
time; the inlay shows the object’s area mean IVT over time. (e) AR annual mean frequency for the period 2000 to 2019. (f, g) AR frequency
anomaly relative to the annual mean for (f) November to March and (g) May to September.

tion process, the analysis focuses on the Kuroshio frontal and
extension region for the last 10 years of the simulation.

The extraction of frontal structures using the selected
shapes of ridges, caps, and domes is similar to the method for
the detection of ARs. Prior to extraction, a spatial smooth-
ing of approximately 30 km is applied. From the extracted
SSTF candidates, objects with a mean SST gradient lower
than 10~ Km™! are removed. Circular (eccentricity < 0.5)
and small (area < 1000 km?) objects are also filtered out. It is
worth noting that, in contrast to AR detection, frontal struc-
tures are not tracked. The detected frontal frequency exhibits
general patterns and seasonality consistent with findings in
previous studies (Xi et al., 2022).

https://doi.org/10.5194/gmd-17-301-2024

4 Application to 3D features

This section introduces the extension of SCAFET to detect
features within three-dimensional (3D) primary fields. The
process of scale—space selection involves applying Gaussian
smoothing independently along each of the three dimensions.
Notably, a 3D field yields three eigenvalues (k; > ko > k3)
instead of the usual two. In this context, the SI can be calcu-
lated in three different ways by combining these eigenvalues.
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Figure 5. Major steps in the detection and tracking of cyclones. (a) Smoothed primary field of cyclonic relative vorticity (|¢ ). The smoothing
removes variability smaller than 750km from [¢]|. (b) Magnitude of the SI for the primary field. (c) Filtered cyclonic objects, with the
background color representing unsmoothed values of ¢. (d) Track obtained for cyclone “Dorian” from SCAFET compared with the track
from the IBTrACS data set. () Annual mean frequency of cyclone occurrence for the period 2000 to 2020. (f, g Anomalous cyclone
frequencies relative to the annual mean for (f) JJA (June—August) and (g) DJF (December—February).

Table 3. Same as in Table 1 but for parameters and values relevant to detecting sea surface temperature fronts (SSTFs).

No. Property Value Unit
Seementation 1 Smoothing scale 30 km
g 2 Selected shape (0.375,1.0] -
1 Minimum length 500 km
Filtering 2 Minimum area 103 km?
3 Eccentricity (0.5,1.0] -
4 Minimum SST gradient  10~% Km™!

For the extraction of jet streams, the SI calculated using
k1 and ko (the two largest eigenvalues) is used, as it pro-
vides a more conservative estimate for the jet-like structure
(see Appendix A3 and Fig. S7). The decision to exclude the
smallest eigenvalue, denoted as k3, is based on empirical
observations. Empirical evidence suggests that when deal-
ing with regions exhibiting positive maxima (convex curva-
ture), both SI(ky, k) and S1(ky, k3) effectively capture the
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shape. Meanwhile, SI(kz, k3) has a trivial application (refer
to Fig. A4). Conversely, for concave shapes, both SI(ky, k3)
and SI(ky, k3) represent the shape, while the conditions for
SI(ky, k2) become redundant, given that they are satisfied by
SI(ky, k3) and SI(k», k3).
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Figure 6. Major steps in the detection of sea surface temperature fronts (SSTFs). (a) Magnitude of the SI as calculated from the smoothed
primary field of the horizontal gradient of sea surface temperature (VSST). Smoothing removes variability smaller than 15 km from VSST.
(b) Filtered SSTF objects, in units of Kelvins per kilometer (K km_l), where the background color represents unsmoothed values of VSST.
(¢) Annual mean frequency of SSTF occurrence across a 10-year period in the present climate simulation. (d, €) Anomalous frontal frequen-

cies relative to the annual mean for (d) JJA and (e) DJF.

4.1 Jet streams

Jet streams, regardless of the underlying dynamics, are nar-
row, high-wind-speed regions in the upper atmosphere, with
faster wind speeds compared to their surroundings (Koch
et al., 2006). These jet streams have a significant impact on
aviation and strongly influence surface weather conditions.
For example, a persistent jet stream in boreal summer can
result in extreme heat and flooding events, while a mean-
dering jet stream in winter leads to severe cold spells in the
midlatitudes (Petoukhov et al., 2013; Coumou et al., 2014;
Kretschmer et al., 2016). Additionally, the northward move-
ment of jet streams due to greenhouse warming contributes
to the poleward propagation of tropical cyclones (Studholme
et al., 2021). Thus, accurately detecting and characterizing
jet streams is crucial for predicting and projecting both cli-
matology and extreme weather systems.

Much like the detection of other weather phenomena dis-
cussed in this study, previous research typically employs a
physical threshold to identify jet streams. Furthermore, with
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the exceptions of Limbach et al. (2012) and Kern et al.
(2018), most studies identify jet streams as either one- or
two-dimensional features. However, it is important to em-
phasize that this section’s focus is primarily on illustrating
the method for detecting jet streams rather than validation
of any analysis with published work. There is currently lim-
ited analysis available for comparing with a 3D perspective
of jet streams, highlighting the need for such an approach.
As a result, we present examples of jet stream detection in
three selected time steps. A more comprehensive analysis
and discussion regarding of the long-term characteristics of
jet streams will be a topic for future research. For those inter-
ested, a video showcasing the results over an extended period
can be found in the Supplement.

The primary field used in the extraction of jet streams is
the 6 h, three-dimensional wind speeds obtained from ERAS
reanalysis data set, with a spatial resolution of 1° with 37 ver-
tical levels (Hersbach et al., 2020). The magnitude of wind
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Table 4. Same as in Table 1 but for parameters and values relevant for detecting jet streams.

No. Property Value Unit
Seementation 1 Smoothing scale 6000 km
& 2 Selected shape 0375,1.0] -
1 Minimum length 5000 km
e 2 Minimum height 5 km
Filtering .. 6 3
3 Minimum volume 10 km
4 Minimum maximum wind speed 50 ms™~!

speed is calculated as

W =+vu?+2, ®)

where u and v are the zonal and meridional wind velocities.

The detection process for jet streams begins similarly to
the detection of 2D features. Gaussian smoothing is used
to remove variability shorter than 3000 km in the horizon-
tal dimensions. No smoothing is applied along the vertical
dimension. Next, the SI is calculated using the two largest
eigenvalues, k1 and k. The vertical dimension for the three-
dimensional wind speed is given in pressure coordinates. To
calculate the gradient as change in wind speeds per kilome-
ter, a rudimentary conversion from pressure to height coor-
dinates is used (refer to Wallace and Hobbs, 1977, p. 60—
61, and https://unidata.github.io/MetPy/latest/api/generated/
metpy.calc.pressure_to_height_std.html, last access: 20 De-
cember 2023, for further details).

Similar to the detection of ARs, regions characterized by
the selected shapes of ridges, caps, and domes (SI > 0.375)
are isolated for filtering. Filtering is then applied to remove
objects with a volume less than 10® km?, a horizontal length
less than 5000 km, and a maximum wind speed within each
object less than 50 m s~ ! In the current version of SCAFET,
the tracking algorithm is not applied to jet detection (see
Fig. 7). The detailed list of parameters used in the detection
of jet streams is given in Table 4.

5 Conclusions

In this study, we introduced a novel computational mathe-
matical framework and an open-source Python package for
extracting and tracking features from large climate data sets,
called Scalable Feature Extraction and Tracking (SCAFET).
The purpose of SCAFET is to tackle the challenges posed by
the increasing volume and diversity of climate data by pro-
viding an alternative to traditional physical threshold-based
feature detection methods. It enables the comparison of fea-
tures between observational and model data with different
mean states by attempting to remove the need for poste-
rior data-specific assumptions. Furthermore, SCAFET intro-
duces a novel shape-based approach to feature extraction,
which helps uncover discrepancies in climate projections due
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to differences in detection methods and aims to help the
community in building scientific consensus. To demonstrate
SCAFET’s capabilities and its potential in advancing these
goals, we showcased its ability to detect various features, in-
cluding two-dimensional features such as atmospheric rivers
(ARs), tropical and extratropical cyclones, sea surface tem-
perature fronts, and the detection of three-dimensional jet
streams. Each application serves as an illustrative example
from which users can customize SCAFET for their specific
research needs.

SCAFET offers several significant advantages, including a
more comprehensive framework and parallel computing im-
plementation for efficiency. However, its most noteworthy
contribution lies in offering a novel perspective on how we
can relatively define various features within climate data sets
that span extensive periods marked by significant changes
in mean climate. Rather than relying on empirically de-
rived, data-specific physical thresholds for feature extrac-
tion, SCAFET identifies features using shape-based abso-
lute thresholds and the locally estimated shape within the
field. This methodology offers a unique viewpoint, enabling
us to observe the continuous changes in feature properties
while accounting for shifts in the mean climate state. This ap-
proach is particularly valuable, as meso—synoptic-scale stud-
ies are highly sensitive to thresholds in a dynamically chang-
ing mean climate state. Consequently, the conclusions drawn
from such studies can vary significantly, as demonstrated
in research examining the response of ARs to greenhouse
warming (Zhao, 2020; O’Brien et al., 2022; Nellikkattil et al.,
2023). Thus, algorithms like SCAFET which are not influ-
enced by data-specific conditions of various climate models
play a crucial role in advancing scientific understanding and
facilitating climate model development.

In conclusion, delving deeper into the principles of dif-
ferential geometry to elucidate the physical interpretation of
the relationship between the SI and local geometric shape
has the potential to revolutionize our approach to feature ex-
traction from large data sets. This avenue of research has
the promise of significantly enhancing the algorithm’s ro-
bustness and reliability. It is worth noting that, at present,
SCAFET may not surpass the computational efficiency of
other well-established feature extraction methods discussed
above (see Sect. S2.2). However, ongoing efforts to optimize
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Figure 7. The 3D jet streams extracted using SCAFET. Magnitude of 3D wind speed for (a) 28 August 2022 at 12:00 UTC, (c) 28 Au-
gust 2022 at 18:00, and (e) 29 August 2022 at 00:00 UTC. Extracted 3D jet streams for corresponding periods are shown in panels (b), (d),
and (f), respectively. The reader is encouraged to view the full video of these snapshots in the Supplement.

and streamline the algorithm for improved computational ef-
ficiency continue. One notable strength of SCAFET’s design
is its independence from data-set-specific posterior informa-
tion when identifying features. Moreover, the shape-based
thresholds used for detecting specific features remain con-
sistent across various grids, data sets, and climatologies. Be-
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tween these strengths and the full parallelization of the fea-
ture detection method, there are exciting possibilities for fur-
ther development. This may eventually enable the algorithm
to be used in operational feature identification and early-
warning systems for extreme weather events.
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Appendix A: Shape-based feature extraction on simple
data sets

This section demonstrates how shape-based feature extrac-
tion can be performed on scalar fields represented by simple,
idealized mathematical functions. It is intended to provide
readers with more insights into the basic principles behind
shape-based feature extraction and how it differs from other
conventional methods. We have also tried to showcase some
properties of shape-based feature extraction methods like its
insensitivity to linear mean state trends.

Al Application to 1D data sets

In this section, we draw an analogy between the use of
SCAFET on a two-dimensional (2D) data set and shape-
based feature extraction from a one-dimensional (1D) data
set. Our intention is not to promote the use of shape-based
extraction of features from 1D data sets but rather to provide
readers with a fundamental understanding of this approach,
along with its strengths and limitations.

For any differentiable curve C, the curvature is measured
as the instantaneous rate of change in direction along the
curve. Simply put, the curvature is measured as the rate of
change in the unit tangent to the curve at any given point. An
osculating circle can be used to intuitively represent the cur-
vature of a surface or a curve (see Fig. Al). At any point P,
the curvature, k is the reciprocal of the radius (R) of the cir-
cle. The sign of k determines if the curve has a concave or a
convex curvature. More information and mathematical proof
for these concepts can be found in any standard differential
geometry textbook.

Following the derivation of the shape index (SI) for 2D
data sets, we calculate the local shape of a function f using
the shape parameter, defined as

2 —1 /"
K = Ztan” ' (f"). (A1)
T

Values of K closer to 1 are identified as regions of local min-
ima, while K values closer to —1 are regions of local maxima
(black curve in Fig. A2). Depending on the magnitude of the
function, one could adjust the value of K to obtain regions of
local maxima (red caps in Fig. A2) and local minima (green
caps in Fig. A2). The curvature of the function is insensitive
to linear trends and mean state changes. This is evident, as the
application of identical shape thresholds identifies the same
regions of the curves as local maxima and minima, whether
on the base curve (blue curve in Fig. A2) or on the same
curve with an added linear trend (orange curve in Fig. A2).
The values of K for both curves are represented by the black
line in Fig. A2. Thus, the shape parameter can be used to
identify the local minima and maxima from a 1D data set,
despite background state changes.
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Figure A1. Schematic representation of curvature measurement of a
curve C at point P. At P, the curvature is the reciprocal of the radius
R of the osculating circle. In differential geometry, an osculating
circle is defined as the circle passing through the point P and a pair
of additional points infinitesimally close to P.

A2 Application of SCAFET to simple geostrophic
motion

In this section, we apply SCAFET to a basic geostrophic ro-
tational motion. The goal of this discussion is to illustrate
how the shape-based extraction of 2D features differs from
conventional methods. The calculation of the SI involves the
computation of the two eigenvalues, k1 and k3, of the Hessian
matrix for any gridded data set. As discussed in the previ-
ous section, the curvature measurement provided by k; and
ko can be visualized as the reciprocal of the radius of two
osculating circles that intersect orthogonally at a point on
the surface. Large negative eigenvalues signify surfaces with
strong convex curvature, while positive values correspond to
troughs or cups.

To demonstrate the characteristics and advantages of fea-
ture detection based on the SI, let us consider a simple rota-
tional wind field (see Fig. A3a vectors) given by

ug = —Qy (A2)
vy = Qx, (A3)

where €2 is a constant (2 = 10° rad s_l), and x, y represents
the grid. The geopotential height (/) of the field (see Fig. A3a
shading) is used as our primary field in calculating the SI,
which is computed as

Qf

h=—-L
2g

x +y), (Ad)

where f and g are the Coriolis parameter and the accelera-
tion due to gravity, respectively. The SI is calculated from the
eigenvalues of the Hessian of £, using the formula

ko +ky
ky—ki |’

2
SI(ky, ky) = ;tan_l [ (A5)

where the eigenvalues k| and k, are given by

2 2

0vg 0 dug 0

kp= ey (L) (L) edus g dve o
2g 2g g/ ox dy  dx dy
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Figure A2. Comparison of shape extraction between a simple one-dimensional curve, given by f =sin2x 4+ 3cos5x (blue curve) and
f+0.5x =sin2x +3cos5x 4+ 0.5x (orange; the blue curve with a linear trend). The left y axis shows the magnitude of both functions,
and the right y axis indicates the values of the shape parameter (K). Note that value of K is the same for both functions. The green and
red highlighting on the curves shows regions where K > 0.99 and K < —0.99, corresponding to regions of local maxima and minima,

respectively.
where ¢, is the geostrophic vorticity. This then gives SI as

Se
2
I¢ dvg Ou
2 (%) - e+
A detailed derivation of the above equation can be found in

Sect. B. By plugging in the values for the rotational motion,
we get

. (A7)

2
SI(k;, ky) = —tan™!

T dug dvg
Ty

te=V’h=2Qf/g (A8)

) )

Oy — & =0 (A9)

dax ay

dv, 0

Vg OMg _ 52 (A10)

dx dy

Therefore,

SI = 2tan*1 Q =—1 (A11)
- T _ /92 _ QZ - ’

Thus, SCAFET classifies the whole domain with counter-
clockwise rotational motion as a trough with the SI = —1,
regardless of the absolute value of the field or 2. In contrast,
traditional methods that rely on thresholding the geopotential
height would identify regions based on the chosen threshold
of i, which would need to be adjusted depending on the mean
(time) and background (space) state. Another common ap-
proach is to establish a threshold on the smallest eigenvalue,
thus aiming to identify extreme features based on the cur-
vature strength rather than the field’s actual value. Tempes-
tExtremes (Ullrich and Zarzycki, 2017), a feature extraction
framework discussed in the main text, follows this method
to detect atmospheric rivers from gridded data sets. In the
current example, this approach would correspond to setting a

https://doi.org/10.5194/gmd-17-301-2024

threshold on f2/g. In other words, TempestExtremes would
only identify a trough if the value of 2 exceeds the pre-
determined threshold. SCAFET, on the other hand, identifies
the trough region as a trough regardless of the specific value
of the field or 2. This illustrates how feature extraction, us-
ing SI and other published methods, can yield different re-
sults, depending on the input data, as they focus on distinct
properties of the field.

A3 Application of SCAFET to 3D fields

This section aims to demonstrate the detection of a cylin-
drical volume within a three-dimensional scalar field. To il-
lustrate the effectiveness of the SI in identifying 3D struc-
tures embedded within scalar fields, we offer a straightfor-
ward example of how the SI can be used to isolate a cylin-
der embedded in a scalar field defined by f =sin(3X) +
cos(4Y)cos(Z). It is worth mentioning that this specific
problem bears significant similarities to the task of identi-
fying 3D jet cores.

As explained in Sect. 4, a three-dimensional field pro-
vides us with three eigenvalues, thus satisfying the condi-
tion k1 > kp > k3. The SI can be computed using SI(k, k7),
SI(ky, k3), or SI(k>, k3). Setting a threshold of the SI > 0.375
effectively isolates the cylinder when using either SI(k1, k)
or SI(k1, k3) (see Fig. Adb—d). Between these two options,
SI(ky, kz), which utilizes the two largest eigenvalues, im-
poses a more conservative criterion for identifying the em-
bedded cylinder. The percentage of data identified as the
cylinder is provided in the title of each plot in Fig. A4. No-
tably, employing SI(k», k3) is not suitable, as it fails to isolate
the desired cylinder shape effectively. The choice of using
SI(ky, k2) is specifically tailored for extracting convex shapes
or local maxima. Interestingly, to identify concave shapes or

Geosci. Model Dev., 17, 301-320, 2024
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Figure A3. Comparison between two feature extraction techniques on an idealized example of rotational wind field. (a) The geopotential
height (k) (shading) of the rotational wind field (arrows). & is defined as Qf(x2 +y2)/2g, where f = 107471, g= 9.805ms~ !, and
Q=10rads~ L. (b) Magnitude of the smallest eigenvalue, derived from the equation as f€2/g = 1.0199, thus illustrating a uniform field as
expected. (¢) Value of the SI where SI = —1 throughout the domain, as expected.
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Figure A4. Various approaches for extraction of a 3D cylinder from a scalar field. (a) A simple scalar field represented by sin(3X)+cos(4Y)x*
cos(Z) is shown. (b—d) The extracted cylinders by applying the conditions in panel (b) SI(k{, k) > 0.375, while in panel (¢) SI(k{,k3) >
0.375 and panel (d) SI(ky, k3) > 0.375 are shown. The values enclosed in parentheses within the figure titles indicate the percentage of data

that satisfies the respective conditions applied in each case.

local minima, one should utilize the SI derived from the two
smallest eigenvalues, namely SI(k2, k3).

While the simple example presented here may not provide
a comprehensive illustration of 3D feature detection, we hope
that it encourages further fundamental research into 3D fea-
ture extraction to expand the capabilities of analysis and in-
crease precision.

Appendix B: Derivation of shape index for geostrophic
motion

The complete derivation of the SI for geostrophic wind fields
is shown in this section. The result from the derivation is used
in Sect. A.

Let & be the geopotential height at a certain level. The Hes-
sian of & is given by

3%h 9%

2

H(h) = ( o5, Oy ) : (BI)
dydx dy?
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The eigenvalues of the symmetric matrix 7 are calculated by
solving the quadratic equation.

°h N\ (%, n )\ _, )
dx2 dy? axdy)

which can be expanded as

2h  h\  9%h h [ 0*h
PR (A W —0 (B3
<8x2 + 8y2> + 9x2 9y? (8x8y> (B3)

s, 0% h [ 9*h ]
AW =AVTh+ —.—— — =0. (B4
dx* 9y 0xdy

Note that the geostrophic vorticity (&) is defined as

te = ?Vzh. (BS)
The geostrophic velocities are defined as
vg = ?2—)’: =¥, (B7)
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where i is the geostrophic stream function. This implies

Ph _ fY _ fdvg

_Joy BS
ax2 g oaxz g dx (B8)
82h 92 9

_zi_wz_iﬂ. (B9)
dy2 g 9y? g dy

Adding the abovementioned relationships to Eq. (3) leads to
the following:

2 M, f20vsBug | 2 Bug vy
g % g2 dx dy

By solving for A, we get

2 2
)\122&:&\/(1) —<£) 8&%4_%% (Bll)

. B10
g2 9x dy (B10)

2g 2g g/ dx dy ax Jy
. i
g | 2 2 dx 0Jy dx dy
Thus, the shape index for & is
2
SI= Ztan = i (B13)
T
Ie vy du dug v,
2)(%) - St

Code and data availability. The latest version of the Scalable
Feature Extraction and Tracking (SCAFET) algorithm can be
downloaded from https://github.com/nbarjun/SCAFET (last access:
20 December 2023). The version of the codes used for feature ex-
traction and creating relevant figures in this work can be down-
loaded from https://doi.org/10.5281/zenodo.7767301 (Nellikkattil,
2023). A sample data set for the curvilinear SST data is also
included in the repository. The directory also includes sample
outputs for various features discussed in the article. The single-
level ERAS reanalysis data such as 10m wind speed are ob-
tained from https://doi.org/10.24381/cds.adbb2d47 (Hersbach et al.,
2023a), while three-dimensional variables can be extracted from
https://doi.org/10.24381/cds.bd0915¢c6 (Hersbach et al., 2023b). To
see the exact codes used for downloading ERAS data, readers could
refer to the ERASData folder in the Zenodo repository. For any fur-
ther details on code and data, feel free to contact the corresponding
author.
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