Articles | Volume 16, issue 22
https://doi.org/10.5194/gmd-16-6671-2023
https://doi.org/10.5194/gmd-16-6671-2023
Development and technical paper
 | Highlight paper
 | 
16 Nov 2023
Development and technical paper | Highlight paper |  | 16 Nov 2023

Universal differential equations for glacier ice flow modelling

Jordi Bolibar, Facundo Sapienza, Fabien Maussion, Redouane Lguensat, Bert Wouters, and Fernando Pérez

Related authors

Brief Communication: Sensitivity analysis of peak water to ice thickness and temperature: A case study in the Western Kunlun Mountains of the Tibetan plateau
Lucille Gimenes, Romain Millan, Nicolas Champollion, and Jordi Bolibar
EGUsphere, https://doi.org/10.5194/egusphere-2025-3460,https://doi.org/10.5194/egusphere-2025-3460, 2025
Short summary
Machine learning improves seasonal mass balance prediction for unmonitored glaciers
Kamilla Hauknes Sjursen, Jordi Bolibar, Marijn van der Meer, Liss Marie Andreassen, Julian Peter Biesheuvel, Thorben Dunse, Matthias Huss, Fabien Maussion, David R. Rounce, and Brandon Tober
EGUsphere, https://doi.org/10.5194/egusphere-2025-1206,https://doi.org/10.5194/egusphere-2025-1206, 2025
Short summary
A minimal machine-learning glacier mass balance model
Marijn van der Meer, Harry Zekollari, Matthias Huss, Jordi Bolibar, Kamilla Hauknes Sjursen, and Daniel Farinotti
The Cryosphere, 19, 805–826, https://doi.org/10.5194/tc-19-805-2025,https://doi.org/10.5194/tc-19-805-2025, 2025
Short summary

Cited articles

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems, arXiv [preprint], https://doi.org/10.48550/arXiv.1603.04467, 2016. a
Abernathey, R. P., Augspurger, T., Banihirwe, A., Blackmon-Luca, C. C., Crone, T. J., Gentemann, C. L., Hamman, J. J., Henderson, N., Lepore, C., McCaie, T. A., Robinson, N. H., and Signell, R. P.: Cloud-Native Repositories for Big Scientific Data, Comput. Sci. Eng., 23, 26–35, https://doi.org/10.1109/MCSE.2021.3059437, 2021. a
Anilkumar, R., Bharti, R., Chutia, D., and Aggarwal, S. P.: Modelling point mass balance for the glaciers of the Central European Alps using machine learning techniques, The Cryosphere, 17, 2811–2828, https://doi.org/10.5194/tc-17-2811-2023, 2023. a
Arakawa, A. and Lamb, V. R.: Computational design of the basic dynamical processes of the UCLA general circulation model, General circulation models of the atmosphere, 17, 173–265, 1977. a
Arendt, A. A., Hamman, J., Rocklin, M., Tan, A., Fatland, D. R., Joughin, J., Gutmann, E. D., Setiawan, L., and Henderson, S. T.: Pangeo: Community tools for analysis of Earth Science Data in the Cloud, in: AGU Fall Meeting Abstracts, vol. 2018, IN54A–05, 2018. a
Download
Executive editor
The integration of neural networks into PDE solvers to simulate systems for which the PDE models are incomplete is a key advance at the cutting edge of geoscientific modelling. The approach presented here is applicable far beyond the realm of ice modelling, and will be of interest to model developers and users across geoscience and beyond.
Short summary
We developed a new modelling framework combining numerical methods with machine learning. Using this approach, we focused on understanding how ice moves within glaciers, and we successfully learnt a prescribed law describing ice movement for 17 glaciers worldwide as a proof of concept. Our framework has the potential to discover important laws governing glacier processes, aiding our understanding of glacier physics and their contribution to water resources and sea-level rise.
Share