Articles | Volume 16, issue 15
https://doi.org/10.5194/gmd-16-4521-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-4521-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Automatic snow type classification of snow micropenetrometer profiles with machine learning algorithms
Julia Kaltenborn
CORRESPONDING AUTHOR
WSL Institute for Snow and
Avalanche Research SLF, Flüelastrasse 11, 7260 Davos Dorf, Switzerland
Institute of Cognitive Science, University Osnabrück, Wachsbleiche 27, 49090 Osnabrück, Germany
Mila – Quebec AI Institute, 6666 Rue Saint-Urbain, QC H2S 3H1, Montréal, Canada
School of Computer Science, McGill University, 3480 Rue University, QC H3A 2A7, Montréal, Canada
Amy R. Macfarlane
WSL Institute for Snow and
Avalanche Research SLF, Flüelastrasse 11, 7260 Davos Dorf, Switzerland
Viviane Clay
Institute of Cognitive Science, University Osnabrück, Wachsbleiche 27, 49090 Osnabrück, Germany
Numenta, 889 Winslow Street, Redwood City, CA 94063, USA
WSL Institute for Snow and
Avalanche Research SLF, Flüelastrasse 11, 7260 Davos Dorf, Switzerland
Related authors
No articles found.
Cecile B. Menard, Sirpa Rasmus, Ioanna Merkouriadi, Gianpaolo Balsamo, Annett Bartsch, Chris Derksen, Florent Domine, Marie Dumont, Dorothee Ehrich, Richard Essery, Bruce C. Forbes, Gerhard Krinner, David Lawrence, Glen Liston, Heidrun Matthes, Nick Rutter, Melody Sandells, Martin Schneebeli, and Sari Stark
The Cryosphere, 18, 4671–4686, https://doi.org/10.5194/tc-18-4671-2024, https://doi.org/10.5194/tc-18-4671-2024, 2024
Short summary
Short summary
Computer models, like those used in climate change studies, are written by modellers who have to decide how best to construct the models in order to satisfy the purpose they serve. Using snow modelling as an example, we examine the process behind the decisions to understand what motivates or limits modellers in their decision-making. We find that the context in which research is undertaken is often more crucial than scientific limitations. We argue for more transparency in our research practice.
Jack C. Landy, Claude de Rijke-Thomas, Carmen Nab, Isobel Lawrence, Isolde A. Glissenaar, Robbie D. C. Mallett, Renée M. Fredensborg Hansen, Alek Petty, Michel Tsamados, Amy R. Macfarlane, and Anne Braakmann-Folgmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2904, https://doi.org/10.5194/egusphere-2024-2904, 2024
Short summary
Short summary
In this study we use three satellites to test the planned remote sensing approach of the upcoming mission CRISTAL over sea ice: that its dual radars will accurately measure the heights of the top and base of snow sitting atop floating sea ice floes. Our results suggest that CRISTAL's dual radars won’t necessarily measure the snow top and base under all conditions. We find that accurate height measurements depend much more on surface roughness than on snow properties, as is commonly assumed.
Moein Mellat, Amy R. Macfarlane, Camilla F. Brunello, Martin Werner, Martin Schneebeli, Ruzica Dadic, Stefanie Arndt, Kaisa-Riikka Mustonen, Jeffrey M. Welker, and Hanno Meyer
EGUsphere, https://doi.org/10.5194/egusphere-2024-719, https://doi.org/10.5194/egusphere-2024-719, 2024
Preprint archived
Short summary
Short summary
Our research, utilizing data from the Arctic MOSAiC expedition, reveals how snow on Arctic sea ice changes due to weather conditions. By analyzing snow samples collected over a year, we found differences in snow layers that tell us about their origins and how they've been affected by the environment. We discovered variations in snow and vapour that reflect the influence of weather patterns and surface processes like wind and sublimation.
Amy R. Macfarlane, Henning Löwe, Lucille Gimenes, David N. Wagner, Ruzica Dadic, Rafael Ottersberg, Stefan Hämmerle, and Martin Schneebeli
The Cryosphere, 17, 5417–5434, https://doi.org/10.5194/tc-17-5417-2023, https://doi.org/10.5194/tc-17-5417-2023, 2023
Short summary
Short summary
Snow acts as an insulating blanket on Arctic sea ice, keeping the underlying ice "warm", relative to the atmosphere. Knowing the snow's thermal conductivity is essential for understanding winter ice growth. During the MOSAiC expedition, we measured the thermal conductivity of snow. We found spatial and vertical variability to overpower any temporal variability or dependency on underlying ice type and the thermal resistance to be directly influenced by snow height.
Baptiste Vandecrux, Jason E. Box, Andreas P. Ahlstrøm, Signe B. Andersen, Nicolas Bayou, William T. Colgan, Nicolas J. Cullen, Robert S. Fausto, Dominik Haas-Artho, Achim Heilig, Derek A. Houtz, Penelope How, Ionut Iosifescu Enescu, Nanna B. Karlsson, Rebecca Kurup Buchholz, Kenneth D. Mankoff, Daniel McGrath, Noah P. Molotch, Bianca Perren, Maiken K. Revheim, Anja Rutishauser, Kevin Sampson, Martin Schneebeli, Sandy Starkweather, Simon Steffen, Jeff Weber, Patrick J. Wright, Henry Jay Zwally, and Konrad Steffen
Earth Syst. Sci. Data, 15, 5467–5489, https://doi.org/10.5194/essd-15-5467-2023, https://doi.org/10.5194/essd-15-5467-2023, 2023
Short summary
Short summary
The Greenland Climate Network (GC-Net) comprises stations that have been monitoring the weather on the Greenland Ice Sheet for over 30 years. These stations are being replaced by newer ones maintained by the Geological Survey of Denmark and Greenland (GEUS). The historical data were reprocessed to improve their quality, and key information about the weather stations has been compiled. This augmented dataset is available at https://doi.org/10.22008/FK2/VVXGUT (Steffen et al., 2022).
Marie Dumont, Simon Gascoin, Marion Réveillet, Didier Voisin, François Tuzet, Laurent Arnaud, Mylène Bonnefoy, Montse Bacardit Peñarroya, Carlo Carmagnola, Alexandre Deguine, Aurélie Diacre, Lukas Dürr, Olivier Evrard, Firmin Fontaine, Amaury Frankl, Mathieu Fructus, Laure Gandois, Isabelle Gouttevin, Abdelfateh Gherab, Pascal Hagenmuller, Sophia Hansson, Hervé Herbin, Béatrice Josse, Bruno Jourdain, Irene Lefevre, Gaël Le Roux, Quentin Libois, Lucie Liger, Samuel Morin, Denis Petitprez, Alvaro Robledano, Martin Schneebeli, Pascal Salze, Delphine Six, Emmanuel Thibert, Jürg Trachsel, Matthieu Vernay, Léo Viallon-Galinier, and Céline Voiron
Earth Syst. Sci. Data, 15, 3075–3094, https://doi.org/10.5194/essd-15-3075-2023, https://doi.org/10.5194/essd-15-3075-2023, 2023
Short summary
Short summary
Saharan dust outbreaks have profound effects on ecosystems, climate, health, and the cryosphere, but the spatial deposition pattern of Saharan dust is poorly known. Following the extreme dust deposition event of February 2021 across Europe, a citizen science campaign was launched to sample dust on snow over the Pyrenees and the European Alps. This campaign triggered wide interest and over 100 samples. The samples revealed the high variability of the dust properties within a single event.
Vishnu Nandan, Rosemary Willatt, Robbie Mallett, Julienne Stroeve, Torsten Geldsetzer, Randall Scharien, Rasmus Tonboe, John Yackel, Jack Landy, David Clemens-Sewall, Arttu Jutila, David N. Wagner, Daniela Krampe, Marcus Huntemann, Mallik Mahmud, David Jensen, Thomas Newman, Stefan Hendricks, Gunnar Spreen, Amy Macfarlane, Martin Schneebeli, James Mead, Robert Ricker, Michael Gallagher, Claude Duguay, Ian Raphael, Chris Polashenski, Michel Tsamados, Ilkka Matero, and Mario Hoppmann
The Cryosphere, 17, 2211–2229, https://doi.org/10.5194/tc-17-2211-2023, https://doi.org/10.5194/tc-17-2211-2023, 2023
Short summary
Short summary
We show that wind redistributes snow on Arctic sea ice, and Ka- and Ku-band radar measurements detect both newly deposited snow and buried snow layers that can affect the accuracy of snow depth estimates on sea ice. Radar, laser, meteorological, and snow data were collected during the MOSAiC expedition. With frequent occurrence of storms in the Arctic, our results show that
wind-redistributed snow needs to be accounted for to improve snow depth estimates on sea ice from satellite radars.
Julia Martin and Martin Schneebeli
The Cryosphere, 17, 1723–1734, https://doi.org/10.5194/tc-17-1723-2023, https://doi.org/10.5194/tc-17-1723-2023, 2023
Short summary
Short summary
The grain size of snow determines how light is reflected and other physical properties. The IceCube measures snow grain size at the specific near-infrared wavelength of 1320 nm. In our study, the preparation of snow samples for the IceCube creates a thin layer of small particles. Comparisons of the grain size with computed tomography, particle counting and numerical simulation confirm the aforementioned observation. We conclude that measurements at this wavelength underestimate the grain size.
Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Ruzica Dadic, Philip Rostosky, Michael Gallagher, Robbie Mallett, Andrew Barrett, Stefan Hendricks, Rasmus Tonboe, Michelle McCrystall, Mark Serreze, Linda Thielke, Gunnar Spreen, Thomas Newman, John Yackel, Robert Ricker, Michel Tsamados, Amy Macfarlane, Henna-Reetta Hannula, and Martin Schneebeli
The Cryosphere, 16, 4223–4250, https://doi.org/10.5194/tc-16-4223-2022, https://doi.org/10.5194/tc-16-4223-2022, 2022
Short summary
Short summary
Impacts of rain on snow (ROS) on satellite-retrieved sea ice variables remain to be fully understood. This study evaluates the impacts of ROS over sea ice on active and passive microwave data collected during the 2019–20 MOSAiC expedition. Rainfall and subsequent refreezing of the snowpack significantly altered emitted and backscattered radar energy, laying important groundwork for understanding their impacts on operational satellite retrievals of various sea ice geophysical variables.
Océane Hames, Mahdi Jafari, David Nicholas Wagner, Ian Raphael, David Clemens-Sewall, Chris Polashenski, Matthew D. Shupe, Martin Schneebeli, and Michael Lehning
Geosci. Model Dev., 15, 6429–6449, https://doi.org/10.5194/gmd-15-6429-2022, https://doi.org/10.5194/gmd-15-6429-2022, 2022
Short summary
Short summary
This paper presents an Eulerian–Lagrangian snow transport model implemented in the fluid dynamics software OpenFOAM, which we call snowBedFoam 1.0. We apply this model to reproduce snow deposition on a piece of ridged Arctic sea ice, which was produced during the MOSAiC expedition through scan measurements. The model appears to successfully reproduce the enhanced snow accumulation and deposition patterns, although some quantitative uncertainties were shown.
David N. Wagner, Matthew D. Shupe, Christopher Cox, Ola G. Persson, Taneil Uttal, Markus M. Frey, Amélie Kirchgaessner, Martin Schneebeli, Matthias Jaggi, Amy R. Macfarlane, Polona Itkin, Stefanie Arndt, Stefan Hendricks, Daniela Krampe, Marcel Nicolaus, Robert Ricker, Julia Regnery, Nikolai Kolabutin, Egor Shimanshuck, Marc Oggier, Ian Raphael, Julienne Stroeve, and Michael Lehning
The Cryosphere, 16, 2373–2402, https://doi.org/10.5194/tc-16-2373-2022, https://doi.org/10.5194/tc-16-2373-2022, 2022
Short summary
Short summary
Based on measurements of the snow cover over sea ice and atmospheric measurements, we estimate snowfall and snow accumulation for the MOSAiC ice floe, between November 2019 and May 2020. For this period, we estimate 98–114 mm of precipitation. We suggest that about 34 mm of snow water equivalent accumulated until the end of April 2020 and that at least about 50 % of the precipitated snow was eroded or sublimated. Further, we suggest explanations for potential snowfall overestimation.
Sönke Maus, Martin Schneebeli, and Andreas Wiegmann
The Cryosphere, 15, 4047–4072, https://doi.org/10.5194/tc-15-4047-2021, https://doi.org/10.5194/tc-15-4047-2021, 2021
Short summary
Short summary
As the hydraulic permeability of sea ice is difficult to measure, observations are sparse. The present work presents numerical simulations of the permeability of young sea ice based on a large set of 3D X-ray tomographic images. It extends the relationship between permeability and porosity available so far down to brine porosities near the percolation threshold of a few per cent. Evaluation of pore scales and 3D connectivity provides novel insight into the percolation behaviour of sea ice.
Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Rasmus Tonboe, Stefan Hendricks, Robert Ricker, James Mead, Robbie Mallett, Marcus Huntemann, Polona Itkin, Martin Schneebeli, Daniela Krampe, Gunnar Spreen, Jeremy Wilkinson, Ilkka Matero, Mario Hoppmann, and Michel Tsamados
The Cryosphere, 14, 4405–4426, https://doi.org/10.5194/tc-14-4405-2020, https://doi.org/10.5194/tc-14-4405-2020, 2020
Short summary
Short summary
This study provides a first look at the data collected by a new dual-frequency Ka- and Ku-band in situ radar over winter sea ice in the Arctic Ocean. The instrument shows potential for using both bands to retrieve snow depth over sea ice, as well as sensitivity of the measurements to changing snow and atmospheric conditions.
Jacinta Edebeli, Jürg C. Trachsel, Sven E. Avak, Markus Ammann, Martin Schneebeli, Anja Eichler, and Thorsten Bartels-Rausch
Atmos. Chem. Phys., 20, 13443–13454, https://doi.org/10.5194/acp-20-13443-2020, https://doi.org/10.5194/acp-20-13443-2020, 2020
Short summary
Short summary
Earth’s snow cover is very dynamic and can change its physical properties within hours, as is well known by skiers. Snow is also a well-known host of chemical reactions – the products of which impact air composition and quality. Here, we present laboratory experiments that show how the dynamics of snow make snow essentially inert with respect to gas-phase ozone with time despite its content of reactive chemicals. Impacts on polar atmospheric chemistry are discussed.
Neige Calonne, Bettina Richter, Henning Löwe, Cecilia Cetti, Judith ter Schure, Alec Van Herwijnen, Charles Fierz, Matthias Jaggi, and Martin Schneebeli
The Cryosphere, 14, 1829–1848, https://doi.org/10.5194/tc-14-1829-2020, https://doi.org/10.5194/tc-14-1829-2020, 2020
Short summary
Short summary
During winter 2015–2016, the standard program to monitor the structure and stability of the snowpack at Weissflujoch, Swiss Alps, was complemented by additional measurements to compare between various traditional and newly developed techniques. Snow micro-penetrometer measurements allowed monitoring of the evolution of the snowpack's internal structure at a daily resolution throughout the winter. We show the potential of such high-resolution data for detailed evaluations of snowpack models.
Pirmin Philipp Ebner, Aaron Coulin, Joël Borner, Fabian Wolfsperger, Michael Hohl, and Martin Schneebeli
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-56, https://doi.org/10.5194/tc-2020-56, 2020
Revised manuscript not accepted
Short summary
Short summary
These laboratory measurements allow to analyse wet snow and to find the narrow range of the starting point of water percolation in coarse-grained snow. Based on the electrical monitoring a promising perspective for retrieving water content and water distribution in the snowpack is given. The water distribution is analysed using micro-computer tomography to find preferential spots of the accumulated water. These findings are pertinent to the interpretation of the snow melt run-off of spring snow.
Achim Heilig, Olaf Eisen, Martin Schneebeli, Michael MacFerrin, C. Max Stevens, Baptiste Vandecrux, and Konrad Steffen
The Cryosphere, 14, 385–402, https://doi.org/10.5194/tc-14-385-2020, https://doi.org/10.5194/tc-14-385-2020, 2020
Short summary
Short summary
We investigate the spatial representativeness of point observations of snow accumulation in SW Greenland. Such analyses have rarely been conducted but are necessary to link regional-scale observations from, e.g., remote-sensing data to firn cores and snow pits. The presented data reveal a low regional variability in density but snow depth can vary significantly. It is necessary to combine pits with spatial snow depth data to increase the regional representativeness of accumulation observations.
Kévin Fourteau, Patricia Martinerie, Xavier Faïn, Christoph F. Schaller, Rebecca J. Tuckwell, Henning Löwe, Laurent Arnaud, Olivier Magand, Elizabeth R. Thomas, Johannes Freitag, Robert Mulvaney, Martin Schneebeli, and Vladimir Ya. Lipenkov
The Cryosphere, 13, 3383–3403, https://doi.org/10.5194/tc-13-3383-2019, https://doi.org/10.5194/tc-13-3383-2019, 2019
Short summary
Short summary
Understanding gas trapping in polar ice is essential to study the relationship between greenhouse gases and past climates. New data of bubble closure, used in a simple gas-trapping model, show inconsistency with the final air content in ice. This suggests gas trapping is not fully understood. We also use a combination of high-resolution measurements to investigate the effect of polar snow stratification on gas trapping and find that all strata have similar pores, but that some close in advance.
Isabelle Gouttevin, Moritz Langer, Henning Löwe, Julia Boike, Martin Proksch, and Martin Schneebeli
The Cryosphere, 12, 3693–3717, https://doi.org/10.5194/tc-12-3693-2018, https://doi.org/10.5194/tc-12-3693-2018, 2018
Short summary
Short summary
Snow insulates the ground from the cold air in the Arctic winter, majorly affecting permafrost. This insulation depends on snow characteristics and is poorly quantified. Here, we characterize it at a carbon-rich permafrost site, using a recent technique that retrieves the 3-D structure of snow and its thermal properties. We adapt a snowpack model enabling the simulation of this insulation over a whole winter. We estimate that local snow variations induce up to a 6 °C spread in soil temperatures.
Pirmin Philipp Ebner, Hans Christian Steen-Larsen, Barbara Stenni, Martin Schneebeli, and Aldo Steinfeld
The Cryosphere, 11, 1733–1743, https://doi.org/10.5194/tc-11-1733-2017, https://doi.org/10.5194/tc-11-1733-2017, 2017
Short summary
Short summary
Stable water isotopes (δ18O) obtained from snow and ice samples from polar regions are used to reconstruct past climate variability. We present an experimental study on the effect on the snow isotopic composition by airflow through a snowpack in controlled laboratory conditions. The disequilibrium between snow and vapor isotopes changed the isotopic content of the snow. These measurements suggest that metamorphism and its history affect the snow isotopic composition.
Sascha Bellaire, Martin Proksch, Martin Schneebeli, Masashi Niwano, and Konrad Steffen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-55, https://doi.org/10.5194/tc-2017-55, 2017
Preprint withdrawn
Juha Lemmetyinen, Anna Kontu, Jouni Pulliainen, Juho Vehviläinen, Kimmo Rautiainen, Andreas Wiesmann, Christian Mätzler, Charles Werner, Helmut Rott, Thomas Nagler, Martin Schneebeli, Martin Proksch, Dirk Schüttemeyer, Michael Kern, and Malcolm W. J. Davidson
Geosci. Instrum. Method. Data Syst., 5, 403–415, https://doi.org/10.5194/gi-5-403-2016, https://doi.org/10.5194/gi-5-403-2016, 2016
Pascal Hagenmuller, Margret Matzl, Guillaume Chambon, and Martin Schneebeli
The Cryosphere, 10, 1039–1054, https://doi.org/10.5194/tc-10-1039-2016, https://doi.org/10.5194/tc-10-1039-2016, 2016
Short summary
Short summary
The paper focuses on the characterization of snow microstructure with X-ray microtomography, a technique that is progressively becoming the standard for snow characterization. In particular, it rigorously investigates how the image processing algorithms affect the subsequent microstructure characterization in terms of density and specific surface area. From this analysis, practical recommendations concerning the processing X-ray tomographic images of snow are provided.
William Maslanka, Leena Leppänen, Anna Kontu, Mel Sandells, Juha Lemmetyinen, Martin Schneebeli, Martin Proksch, Margret Matzl, Henna-Reetta Hannula, and Robert Gurney
Geosci. Instrum. Method. Data Syst., 5, 85–94, https://doi.org/10.5194/gi-5-85-2016, https://doi.org/10.5194/gi-5-85-2016, 2016
Short summary
Short summary
The paper presents the initial findings of the Arctic Snow Microstructure Experiment in Sodankylä, Finland. The experiment observed the microwave emission of extracted snow slabs on absorbing and reflecting bases. Snow parameters were recorded to simulate the emission upon those bases using two different emission models. The smallest simulation errors were associated with the absorbing base at vertical polarization. The observations will be used for the development of snow emission modelling.
Pirmin Philipp Ebner, Martin Schneebeli, and Aldo Steinfeld
The Cryosphere, 10, 791–797, https://doi.org/10.5194/tc-10-791-2016, https://doi.org/10.5194/tc-10-791-2016, 2016
Short summary
Short summary
Changes of the porous ice structure were observed in a snow sample. Sublimation occurred due to the slight undersaturation of the incoming air into the warmer ice matrix. Diffusion of water vapor opposite to the direction of the temperature gradient counteracted the mass transport of advection. Therefore, the total net ice change was negligible, leading to a constant porosity profile. However, the strong recrystallization of water molecules in snow may impact its isotopic or chemical content.
Martin Proksch, Nick Rutter, Charles Fierz, and Martin Schneebeli
The Cryosphere, 10, 371–384, https://doi.org/10.5194/tc-10-371-2016, https://doi.org/10.5194/tc-10-371-2016, 2016
Short summary
Short summary
Density is a fundamental property of porous media such as snow. During the MicroSnow Davos 2014 workshop, different approaches (box-, wedge- and cylinder-type density cutters, micro-computed tomography) to measure snow density were applied in a controlled laboratory environment and in the field. In general, results suggest that snow densities measured by different methods agree within 9 %. However, the density profiles resolved by the measurement methods differed considerably.
M. Proksch, C. Mätzler, A. Wiesmann, J. Lemmetyinen, M. Schwank, H. Löwe, and M. Schneebeli
Geosci. Model Dev., 8, 2611–2626, https://doi.org/10.5194/gmd-8-2611-2015, https://doi.org/10.5194/gmd-8-2611-2015, 2015
Short summary
Short summary
The measurement of snow properties on global scale relies on microwave remote sensing data. The interpretation of the data is however challenging. Here we introduce MEMLS3&a, an extension of the snow emission model MEMLS, to include a backscatter model for active microwave remote sensing. In MEMLS3&a, snow input parameters can be derived by objective measurement methods, which avoids fitting the scattering efficiency of snow. The model is validated with combined active and passive measurements.
P. P. Ebner, M. Schneebeli, and A. Steinfeld
The Cryosphere, 9, 1363–1371, https://doi.org/10.5194/tc-9-1363-2015, https://doi.org/10.5194/tc-9-1363-2015, 2015
Short summary
Short summary
Time-lapse X-ray microtomography was used to investigate the structural dynamics of isothermal snow metamorphism exposed to an advective airflow and possible effects on natural snowpacks were discussed. The results showed that isothermal advection with saturated air have no influence on the coarsening rate that is typical for isothermal snow metamorphism. It is driven by sublimation-deposition caused by Kelvin effect and is the limiting factor independently of the transport regime in the pores.
J. Schwaab, M. Bavay, E. Davin, F. Hagedorn, F. Hüsler, M. Lehning, M. Schneebeli, E. Thürig, and P. Bebi
Biogeosciences, 12, 467–487, https://doi.org/10.5194/bg-12-467-2015, https://doi.org/10.5194/bg-12-467-2015, 2015
S. Schleef, H. Löwe, and M. Schneebeli
The Cryosphere, 8, 1825–1838, https://doi.org/10.5194/tc-8-1825-2014, https://doi.org/10.5194/tc-8-1825-2014, 2014
P. P. Ebner, S. A. Grimm, M. Schneebeli, and A. Steinfeld
Geosci. Instrum. Method. Data Syst., 3, 179–185, https://doi.org/10.5194/gi-3-179-2014, https://doi.org/10.5194/gi-3-179-2014, 2014
H. Löwe, F. Riche, and M. Schneebeli
The Cryosphere, 7, 1473–1480, https://doi.org/10.5194/tc-7-1473-2013, https://doi.org/10.5194/tc-7-1473-2013, 2013
T. Bartels-Rausch, S. N. Wren, S. Schreiber, F. Riche, M. Schneebeli, and M. Ammann
Atmos. Chem. Phys., 13, 6727–6739, https://doi.org/10.5194/acp-13-6727-2013, https://doi.org/10.5194/acp-13-6727-2013, 2013
Related subject area
Cryosphere
Improvements in the land surface configuration to better simulate seasonal snow cover in the European Alps with the CNRM-AROME (cycle 46) convection-permitting regional climate model
A three-stage model pipeline predicting regional avalanche danger in Switzerland (RAvaFcast v1.0.0): a decision-support tool for operational avalanche forecasting
A global–land snow scheme (GLASS) v1.0 for the GFDL Earth System Model: formulation and evaluation at instrumented sites
Design and performance of ELSA v2.0: an isochronal model for ice-sheet layer tracing
Southern Ocean Ice Prediction System version 1.0 (SOIPS v1.0): description of the system and evaluation of synoptic-scale sea ice forecasts
Lagrangian tracking of sea ice in Community Ice CodE (CICE; version 5)
openAMUNDSEN v1.0: an open-source snow-hydrological model for mountain regions
OpenFOAM-avalanche 2312: depth-integrated models beyond dense-flow avalanches
Refactoring the elastic–viscous–plastic solver from the sea ice model CICE v6.5.1 for improved performance
A new 3D full-Stokes calving algorithm within Elmer/Ice (v9.0)
Simulation of snow albedo and solar irradiance profile with the two-stream radiative transfer in snow (TARTES) v2.0 model
Evaluation of MITgcm-based ocean reanalysis for the Southern Ocean
A novel numerical implementation for the surface energy budget of melting snowpacks and glaciers
SnowPappus v1.0, a blowing-snow model for large-scale applications of the Crocus snow scheme
A stochastic parameterization of ice sheet surface mass balance for the Stochastic Ice-Sheet and Sea-Level System Model (StISSM v1.0)
Graphics-processing-unit-accelerated ice flow solver for unstructured meshes using the Shallow-Shelf Approximation (FastIceFlo v1.0.1)
A finite-element framework to explore the numerical solution of the coupled problem of heat conduction, water vapor diffusion, and settlement in dry snow (IvoriFEM v0.1.0)
AvaFrame com1DFA (v1.3): a thickness-integrated computational avalanche module – theory, numerics, and testing
Universal differential equations for glacier ice flow modelling
A new model for supraglacial hydrology evolution and drainage for the Greenland Ice Sheet (SHED v1.0)
Modeling sensitivities of thermally and hydraulically driven ice stream surge cycling
A parallel implementation of the confined–unconfined aquifer system model for subglacial hydrology: design, verification, and performance analysis (CUAS-MPI v0.1.0)
An empirical model to calculate snow depth from daily snow water equivalent: SWE2HS 1.0
A wind-driven snow redistribution module for Alpine3D v3.3.0: adaptations designed for downscaling ice sheet surface mass balance
SnowQM 1.0: A fast R Package for bias-correcting spatial fields of snow water equivalent using quantile mapping
The CryoGrid community model (version 1.0) – a multi-physics toolbox for climate-driven simulations in the terrestrial cryosphere
Glacier Energy and Mass Balance (GEMB): a model of firn processes for cryosphere research
Sensitivity of NEMO4.0-SI3 model parameters on sea ice budgets in the Southern Ocean
Introducing CRYOWRF v1.0: multiscale atmospheric flow simulations with advanced snow cover modelling
SUHMO: an adaptive mesh refinement SUbglacial Hydrology MOdel v1.0
Improving snow albedo modeling in the E3SM land model (version 2.0) and assessing its impacts on snow and surface fluxes over the Tibetan Plateau
The Multiple Snow Data Assimilation System (MuSA v1.0)
The Stochastic Ice-Sheet and Sea-Level System Model v1.0 (StISSM v1.0)
Improved representation of the contemporary Greenland ice sheet firn layer by IMAU-FDM v1.2G
Modeling the small-scale deposition of snow onto structured Arctic sea ice during a MOSAiC storm using snowBedFoam 1.0.
Benchmarking the vertically integrated ice-sheet model IMAU-ICE (version 2.0)
SnowClim v1.0: high-resolution snow model and data for the western United States
Snow Multidata Mapping and Modeling (S3M) 5.1: a distributed cryospheric model with dry and wet snow, data assimilation, glacier mass balance, and debris-driven melt
MPAS-Seaice (v1.0.0): sea-ice dynamics on unstructured Voronoi meshes
Explicitly modelling microtopography in permafrost landscapes in a land surface model (JULES vn5.4_microtopography)
Geometric remapping of particle distributions in the Discrete Element Model for Sea Ice (DEMSI v0.0)
Mapping high-resolution basal topography of West Antarctica from radar data using non-stationary multiple-point geostatistics (MPS-BedMappingV1)
NEMO-Bohai 1.0: a high-resolution ocean and sea ice modelling system for the Bohai Sea, China
An improved regional coupled modeling system for Arctic sea ice simulation and prediction: a case study for 2018
WIFF1.0: a hybrid machine-learning-based parameterization of wave-induced sea ice floe fracture
The Whole Antarctic Ocean Model (WAOM v1.0): development and evaluation
SNICAR-ADv3: a community tool for modeling spectral snow albedo
STEMMUS-UEB v1.0.0: integrated modeling of snowpack and soil water and energy transfer with three complexity levels of soil physical processes
A versatile method for computing optimized snow albedo from spectrally fixed radiative variables: VALHALLA v1.0
Ice Algae Model Intercomparison Project phase 2 (IAMIP2)
Diego Monteiro, Cécile Caillaud, Matthieu Lafaysse, Adrien Napoly, Mathieu Fructus, Antoinette Alias, and Samuel Morin
Geosci. Model Dev., 17, 7645–7677, https://doi.org/10.5194/gmd-17-7645-2024, https://doi.org/10.5194/gmd-17-7645-2024, 2024
Short summary
Short summary
Modeling snow cover in climate and weather forecasting models is a challenge even for high-resolution models. Recent simulations with CNRM-AROME have shown difficulties when representing snow in the European Alps. Using remote sensing data and in situ observations, we evaluate modifications of the land surface configuration in order to improve it. We propose a new surface configuration, enabling a more realistic simulation of snow cover, relevant for climate and weather forecasting applications.
Alessandro Maissen, Frank Techel, and Michele Volpi
Geosci. Model Dev., 17, 7569–7593, https://doi.org/10.5194/gmd-17-7569-2024, https://doi.org/10.5194/gmd-17-7569-2024, 2024
Short summary
Short summary
By harnessing AI models, this work enables processing large amounts of data, including weather conditions, snowpack characteristics, and historical avalanche data, to predict human-like avalanche forecasts in Switzerland. Our proposed model can significantly assist avalanche forecasters in their decision-making process, thereby facilitating more efficient and accurate predictions crucial for ensuring safety in Switzerland's avalanche-prone regions.
Enrico Zorzetto, Sergey Malyshev, Paul Ginoux, and Elena Shevliakova
Geosci. Model Dev., 17, 7219–7244, https://doi.org/10.5194/gmd-17-7219-2024, https://doi.org/10.5194/gmd-17-7219-2024, 2024
Short summary
Short summary
We describe a new snow scheme developed for use in global climate models, which simulates the interactions of snowpack with vegetation, atmosphere, and soil. We test the new snow model over a set of sites where in situ observations are available. We find that when compared to a simpler snow model, this model improves predictions of seasonal snow and of soil temperature under the snowpack, important variables for simulating both the hydrological cycle and the global climate system.
Therese Rieckh, Andreas Born, Alexander Robinson, Robert Law, and Gerrit Gülle
Geosci. Model Dev., 17, 6987–7000, https://doi.org/10.5194/gmd-17-6987-2024, https://doi.org/10.5194/gmd-17-6987-2024, 2024
Short summary
Short summary
We present the open-source model ELSA, which simulates the internal age structure of large ice sheets. It creates layers of snow accumulation at fixed times during the simulation, which are used to model the internal stratification of the ice sheet. Together with reconstructed isochrones from radiostratigraphy data, ELSA can be used to assess ice sheet models and to improve their parameterization. ELSA can be used coupled to an ice sheet model or forced with its output.
Fu Zhao, Xi Liang, Zhongxiang Tian, Ming Li, Na Liu, and Chengyan Liu
Geosci. Model Dev., 17, 6867–6886, https://doi.org/10.5194/gmd-17-6867-2024, https://doi.org/10.5194/gmd-17-6867-2024, 2024
Short summary
Short summary
In this work, we introduce a newly developed Antarctic sea ice forecasting system, namely the Southern Ocean Ice Prediction System (SOIPS). The system is based on a regional sea ice‒ocean‒ice shelf coupled model and can assimilate sea ice concentration observations. By assessing the system's performance in sea ice forecasts, we find that the system can provide reliable Antarctic sea ice forecasts for the next 7 d and has the potential to guide ship navigation in the Antarctic sea ice zone.
Chenhui Ning, Shiming Xu, Yan Zhang, Xuantong Wang, Zhihao Fan, and Jiping Liu
Geosci. Model Dev., 17, 6847–6866, https://doi.org/10.5194/gmd-17-6847-2024, https://doi.org/10.5194/gmd-17-6847-2024, 2024
Short summary
Short summary
Sea ice models are mainly based on non-moving structured grids, which is different from buoy measurements that follow the ice drift. To facilitate Lagrangian analysis, we introduce online tracking of sea ice in Community Ice CodE (CICE). We validate the sea ice tracking with buoys and evaluate the sea ice deformation in high-resolution simulations, which show multi-fractal characteristics. The source code is openly available and can be used in various scientific and operational applications.
Ulrich Strasser, Michael Warscher, Erwin Rottler, and Florian Hanzer
Geosci. Model Dev., 17, 6775–6797, https://doi.org/10.5194/gmd-17-6775-2024, https://doi.org/10.5194/gmd-17-6775-2024, 2024
Short summary
Short summary
openAMUNDSEN is a fully distributed open-source snow-hydrological model for mountain catchments. It includes process representations of an empirical, semi-empirical, and physical nature. It uses temperature, precipitation, humidity, radiation, and wind speed as forcing data and is computationally efficient, of a modular nature, and easily extendible. The Python code is available on GitHub (https://github.com/openamundsen/openamundsen), including documentation (https://doc.openamundsen.org).
Matthias Rauter and Julia Kowalski
Geosci. Model Dev., 17, 6545–6569, https://doi.org/10.5194/gmd-17-6545-2024, https://doi.org/10.5194/gmd-17-6545-2024, 2024
Short summary
Short summary
Snow avalanches can form large powder clouds that substantially exceed the velocity and reach of the dense core. Only a few complex models exist to simulate this phenomenon, and the respective hazard is hard to predict. This work provides a novel flow model that focuses on simple relations while still encapsulating the significant behaviour. The model is applied to reconstruct two catastrophic powder snow avalanche events in Austria.
Till Andreas Soya Rasmussen, Jacob Poulsen, Mads Hvid Ribergaard, Ruchira Sasanka, Anthony P. Craig, Elizabeth C. Hunke, and Stefan Rethmeier
Geosci. Model Dev., 17, 6529–6544, https://doi.org/10.5194/gmd-17-6529-2024, https://doi.org/10.5194/gmd-17-6529-2024, 2024
Short summary
Short summary
Earth system models (ESMs) today strive for better quality based on improved resolutions and improved physics. A limiting factor is the supercomputers at hand and how best to utilize them. This study focuses on the refactorization of one part of a sea ice model (CICE), namely the dynamics. It shows that the performance can be significantly improved, which means that one can either run the same simulations much cheaper or advance the system according to what is needed.
Iain Wheel, Douglas I. Benn, Anna J. Crawford, Joe Todd, and Thomas Zwinger
Geosci. Model Dev., 17, 5759–5777, https://doi.org/10.5194/gmd-17-5759-2024, https://doi.org/10.5194/gmd-17-5759-2024, 2024
Short summary
Short summary
Calving, the detachment of large icebergs from glaciers, is one of the largest uncertainties in future sea level rise projections. This process is poorly understood, and there is an absence of detailed models capable of simulating calving. A new 3D calving model has been developed to better understand calving at glaciers where detailed modelling was previously limited. Importantly, the new model is very flexible. By allowing for unrestricted calving geometries, it can be applied at any location.
Ghislain Picard and Quentin Libois
EGUsphere, https://doi.org/10.5194/egusphere-2024-1176, https://doi.org/10.5194/egusphere-2024-1176, 2024
Short summary
Short summary
TARTES is a radiative transfer model to compute the reflectivity in the solar domain (albedo), and the profiles of solar light and energy absorption in a multi-layered snowpack whose physical properties are prescribed by the user. It uniquely considers snow grain shape in a flexible way, allowing us to apply the most recent advances showing that snow does not behave as a collection of ice spheres, but instead as a random medium. TARTES is also simple but compares well with other complex models.
Yoshihiro Nakayama, Alena Malyarenko, Hong Zhang, Ou Wang, Matthis Auger, Ian Fenty, Matthew Mazloff, Köhl Armin, and Dimitris Menemenlis
EGUsphere, https://doi.org/10.5194/egusphere-2024-727, https://doi.org/10.5194/egusphere-2024-727, 2024
Short summary
Short summary
Global and basin-scale ocean reanalyses are becoming easily accessible. Yet, such ocean reanalyses are optimized for their entire model domains and their ability to simulate the Southern Ocean requires evaluations. We conduct intercomparison analyses of Massachusetts Institute of Technology general circulation model (MITgcm)-based ocean reanalyses. They generally perform well for the open ocean, but open ocean temporal variability and Antarctic continental shelves require improvements.
Kévin Fourteau, Julien Brondex, Fanny Brun, and Marie Dumont
Geosci. Model Dev., 17, 1903–1929, https://doi.org/10.5194/gmd-17-1903-2024, https://doi.org/10.5194/gmd-17-1903-2024, 2024
Short summary
Short summary
In this paper, we provide a novel numerical implementation for solving the energy exchanges at the surface of snow and ice. By combining the strong points of previous models, our solution leads to more accurate and robust simulations of the energy exchanges, surface temperature, and melt while preserving a reasonable computation time.
Matthieu Baron, Ange Haddjeri, Matthieu Lafaysse, Louis Le Toumelin, Vincent Vionnet, and Mathieu Fructus
Geosci. Model Dev., 17, 1297–1326, https://doi.org/10.5194/gmd-17-1297-2024, https://doi.org/10.5194/gmd-17-1297-2024, 2024
Short summary
Short summary
Increasing the spatial resolution of numerical systems simulating snowpack evolution in mountain areas requires representing small-scale processes such as wind-induced snow transport. We present SnowPappus, a simple scheme coupled with the Crocus snow model to compute blowing-snow fluxes and redistribute snow among grid points at 250 m resolution. In terms of numerical cost, it is suitable for large-scale applications. We present point-scale evaluations of fluxes and snow transport occurrence.
Lizz Ultee, Alexander A. Robel, and Stefano Castruccio
Geosci. Model Dev., 17, 1041–1057, https://doi.org/10.5194/gmd-17-1041-2024, https://doi.org/10.5194/gmd-17-1041-2024, 2024
Short summary
Short summary
The surface mass balance (SMB) of an ice sheet describes the net gain or loss of mass from ice sheets (such as those in Greenland and Antarctica) through interaction with the atmosphere. We developed a statistical method to generate a wide range of SMB fields that reflect the best understanding of SMB processes. Efficiently sampling the variability of SMB will help us understand sources of uncertainty in ice sheet model projections.
Anjali Sandip, Ludovic Räss, and Mathieu Morlighem
Geosci. Model Dev., 17, 899–909, https://doi.org/10.5194/gmd-17-899-2024, https://doi.org/10.5194/gmd-17-899-2024, 2024
Short summary
Short summary
We solve momentum balance for unstructured meshes to predict ice flow for real glaciers using a pseudo-transient method on graphics processing units (GPUs) and compare it to a standard central processing unit (CPU) implementation. We justify the GPU implementation by applying the price-to-performance metric for up to million-grid-point spatial resolutions. This study represents a first step toward leveraging GPU processing power, enabling more accurate polar ice discharge predictions.
Julien Brondex, Kévin Fourteau, Marie Dumont, Pascal Hagenmuller, Neige Calonne, François Tuzet, and Henning Löwe
Geosci. Model Dev., 16, 7075–7106, https://doi.org/10.5194/gmd-16-7075-2023, https://doi.org/10.5194/gmd-16-7075-2023, 2023
Short summary
Short summary
Vapor diffusion is one of the main processes governing snowpack evolution, and it must be accounted for in models. Recent attempts to represent vapor diffusion in numerical models have faced several difficulties regarding computational cost and mass and energy conservation. Here, we develop our own finite-element software to explore numerical approaches and enable us to overcome these difficulties. We illustrate the capability of these approaches on established numerical benchmarks.
Matthias Tonnel, Anna Wirbel, Felix Oesterle, and Jan-Thomas Fischer
Geosci. Model Dev., 16, 7013–7035, https://doi.org/10.5194/gmd-16-7013-2023, https://doi.org/10.5194/gmd-16-7013-2023, 2023
Short summary
Short summary
Avaframe - the open avalanche framework - provides open-source tools to simulate and investigate snow avalanches. It is utilized for multiple purposes, the two main applications being hazard mapping and scientific research of snow processes. We present the theory, conversion to a computer model, and testing for one of the core modules used for simulations of a particular type of avalanche, the so-called dense-flow avalanches. Tests check and confirm the applicability of the utilized method.
Jordi Bolibar, Facundo Sapienza, Fabien Maussion, Redouane Lguensat, Bert Wouters, and Fernando Pérez
Geosci. Model Dev., 16, 6671–6687, https://doi.org/10.5194/gmd-16-6671-2023, https://doi.org/10.5194/gmd-16-6671-2023, 2023
Short summary
Short summary
We developed a new modelling framework combining numerical methods with machine learning. Using this approach, we focused on understanding how ice moves within glaciers, and we successfully learnt a prescribed law describing ice movement for 17 glaciers worldwide as a proof of concept. Our framework has the potential to discover important laws governing glacier processes, aiding our understanding of glacier physics and their contribution to water resources and sea-level rise.
Prateek Gantayat, Alison F. Banwell, Amber A. Leeson, James M. Lea, Dorthe Petersen, Noel Gourmelen, and Xavier Fettweis
Geosci. Model Dev., 16, 5803–5823, https://doi.org/10.5194/gmd-16-5803-2023, https://doi.org/10.5194/gmd-16-5803-2023, 2023
Short summary
Short summary
We developed a new supraglacial hydrology model for the Greenland Ice Sheet. This model simulates surface meltwater routing, meltwater drainage, supraglacial lake (SGL) overflow, and formation of lake ice. The model was able to reproduce 80 % of observed lake locations and provides a good match between the observed and modelled temporal evolution of SGLs.
Kevin Hank, Lev Tarasov, and Elisa Mantelli
Geosci. Model Dev., 16, 5627–5652, https://doi.org/10.5194/gmd-16-5627-2023, https://doi.org/10.5194/gmd-16-5627-2023, 2023
Short summary
Short summary
Physically meaningful modeling of geophysical system instabilities is numerically challenging, given the potential effects of purely numerical artifacts. Here we explore the sensitivity of ice stream surge activation to numerical and physical model aspects. We find that surge characteristics exhibit a resolution dependency but converge at higher horizontal grid resolutions and are significantly affected by the incorporation of bed thermal and sub-glacial hydrology models.
Yannic Fischler, Thomas Kleiner, Christian Bischof, Jeremie Schmiedel, Roiy Sayag, Raban Emunds, Lennart Frederik Oestreich, and Angelika Humbert
Geosci. Model Dev., 16, 5305–5322, https://doi.org/10.5194/gmd-16-5305-2023, https://doi.org/10.5194/gmd-16-5305-2023, 2023
Short summary
Short summary
Water underneath ice sheets affects the motion of glaciers. This study presents a newly developed code, CUAS-MPI, that simulates subglacial hydrology. It is designed for supercomputers and is hence a parallelized code. We measure the performance of this code for simulations of the entire Greenland Ice Sheet and find that the code works efficiently. Moreover, we validated the code to ensure the correctness of the solution. CUAS-MPI opens new possibilities for simulations of ice sheet hydrology.
Johannes Aschauer, Adrien Michel, Tobias Jonas, and Christoph Marty
Geosci. Model Dev., 16, 4063–4081, https://doi.org/10.5194/gmd-16-4063-2023, https://doi.org/10.5194/gmd-16-4063-2023, 2023
Short summary
Short summary
Snow water equivalent is the mass of water stored in a snowpack. Based on exponential settling functions, the empirical snow density model SWE2HS is presented to convert time series of daily snow water equivalent into snow depth. The model has been calibrated with data from Switzerland and validated with independent data from the European Alps. A reference implementation of SWE2HS is available as a Python package.
Eric Keenan, Nander Wever, Jan T. M. Lenaerts, and Brooke Medley
Geosci. Model Dev., 16, 3203–3219, https://doi.org/10.5194/gmd-16-3203-2023, https://doi.org/10.5194/gmd-16-3203-2023, 2023
Short summary
Short summary
Ice sheets gain mass via snowfall. However, snowfall is redistributed by the wind, resulting in accumulation differences of up to a factor of 5 over distances as short as 5 km. These differences complicate estimates of ice sheet contribution to sea level rise. For this reason, we have developed a new model for estimating wind-driven snow redistribution on ice sheets. We show that, over Pine Island Glacier in West Antarctica, the model improves estimates of snow accumulation variability.
Adrien Michel, Johannes Aschauer, Tobias Jonas, Stefanie Gubler, Sven Kotlarski, and Christoph Marty
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-298, https://doi.org/10.5194/gmd-2022-298, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
We present a method to correct snow cover maps (represented in terms of snow water equivalent) to match better quality maps. The correction can then be extended backwards and forwards in time for periods when better quality maps are not available. The method is fast and gives good results. It is then applied to obtain a climatology of the snow cover in Switzerland over the last 60 years at a resolution of one day and one kilometre. This is the first time that such a dataset has been produced.
Sebastian Westermann, Thomas Ingeman-Nielsen, Johanna Scheer, Kristoffer Aalstad, Juditha Aga, Nitin Chaudhary, Bernd Etzelmüller, Simon Filhol, Andreas Kääb, Cas Renette, Louise Steffensen Schmidt, Thomas Vikhamar Schuler, Robin B. Zweigel, Léo Martin, Sarah Morard, Matan Ben-Asher, Michael Angelopoulos, Julia Boike, Brian Groenke, Frederieke Miesner, Jan Nitzbon, Paul Overduin, Simone M. Stuenzi, and Moritz Langer
Geosci. Model Dev., 16, 2607–2647, https://doi.org/10.5194/gmd-16-2607-2023, https://doi.org/10.5194/gmd-16-2607-2023, 2023
Short summary
Short summary
The CryoGrid community model is a new tool for simulating ground temperatures and the water and ice balance in cold regions. It is a modular design, which makes it possible to test different schemes to simulate, for example, permafrost ground in an efficient way. The model contains tools to simulate frozen and unfrozen ground, snow, glaciers, and other massive ice bodies, as well as water bodies.
Alex S. Gardner, Nicole-Jeanne Schlegel, and Eric Larour
Geosci. Model Dev., 16, 2277–2302, https://doi.org/10.5194/gmd-16-2277-2023, https://doi.org/10.5194/gmd-16-2277-2023, 2023
Short summary
Short summary
This is the first description of the open-source Glacier Energy and Mass Balance (GEMB) model. GEMB models the ice sheet and glacier surface–atmospheric energy and mass exchange, as well as the firn state. The model is evaluated against the current state of the art and in situ observations and is shown to perform well.
Yafei Nie, Chengkun Li, Martin Vancoppenolle, Bin Cheng, Fabio Boeira Dias, Xianqing Lv, and Petteri Uotila
Geosci. Model Dev., 16, 1395–1425, https://doi.org/10.5194/gmd-16-1395-2023, https://doi.org/10.5194/gmd-16-1395-2023, 2023
Short summary
Short summary
State-of-the-art Earth system models simulate the observed sea ice extent relatively well, but this is often due to errors in the dynamic and other processes in the simulated sea ice changes cancelling each other out. We assessed the sensitivity of these processes simulated by the coupled ocean–sea ice model NEMO4.0-SI3 to 18 parameters. The performance of the model in simulating sea ice change processes was ultimately improved by adjusting the three identified key parameters.
Varun Sharma, Franziska Gerber, and Michael Lehning
Geosci. Model Dev., 16, 719–749, https://doi.org/10.5194/gmd-16-719-2023, https://doi.org/10.5194/gmd-16-719-2023, 2023
Short summary
Short summary
Most current generation climate and weather models have a relatively simplistic description of snow and snow–atmosphere interaction. One reason for this is the belief that including an advanced snow model would make the simulations too computationally demanding. In this study, we bring together two state-of-the-art models for atmosphere (WRF) and snow cover (SNOWPACK) and highlight both the feasibility and necessity of such coupled models to explore underexplored phenomena in the cryosphere.
Anne M. Felden, Daniel F. Martin, and Esmond G. Ng
Geosci. Model Dev., 16, 407–425, https://doi.org/10.5194/gmd-16-407-2023, https://doi.org/10.5194/gmd-16-407-2023, 2023
Short summary
Short summary
We present and validate a novel subglacial hydrology model, SUHMO, based on an adaptive mesh refinement framework. We propose the addition of a pseudo-diffusion to recover the wall melting in channels. Computational performance analysis demonstrates the efficiency of adaptive mesh refinement on large-scale hydrologic problems. The adaptive mesh refinement approach will eventually enable better ice bed boundary conditions for ice sheet simulations at a reasonable computational cost.
Dalei Hao, Gautam Bisht, Karl Rittger, Edward Bair, Cenlin He, Huilin Huang, Cheng Dang, Timbo Stillinger, Yu Gu, Hailong Wang, Yun Qian, and L. Ruby Leung
Geosci. Model Dev., 16, 75–94, https://doi.org/10.5194/gmd-16-75-2023, https://doi.org/10.5194/gmd-16-75-2023, 2023
Short summary
Short summary
Snow with the highest albedo of land surface plays a vital role in Earth’s surface energy budget and water cycle. This study accounts for the impacts of snow grain shape and mixing state of light-absorbing particles with snow on snow albedo in the E3SM land model. The findings advance our understanding of the role of snow grain shape and mixing state of LAP–snow in land surface processes and offer guidance for improving snow simulations and radiative forcing estimates in Earth system models.
Esteban Alonso-González, Kristoffer Aalstad, Mohamed Wassim Baba, Jesús Revuelto, Juan Ignacio López-Moreno, Joel Fiddes, Richard Essery, and Simon Gascoin
Geosci. Model Dev., 15, 9127–9155, https://doi.org/10.5194/gmd-15-9127-2022, https://doi.org/10.5194/gmd-15-9127-2022, 2022
Short summary
Short summary
Snow cover plays an important role in many processes, but its monitoring is a challenging task. The alternative is usually to simulate the snowpack, and to improve these simulations one of the most promising options is to fuse simulations with available observations (data assimilation). In this paper we present MuSA, a data assimilation tool which facilitates the implementation of snow monitoring initiatives, allowing the assimilation of a wide variety of remotely sensed snow cover information.
Vincent Verjans, Alexander A. Robel, Helene Seroussi, Lizz Ultee, and Andrew F. Thompson
Geosci. Model Dev., 15, 8269–8293, https://doi.org/10.5194/gmd-15-8269-2022, https://doi.org/10.5194/gmd-15-8269-2022, 2022
Short summary
Short summary
We describe the development of the first large-scale ice sheet model that accounts for stochasticity in a range of processes. Stochasticity allows the impacts of inherently uncertain processes on ice sheets to be represented. This includes climatic uncertainty, as the climate is inherently chaotic. Furthermore, stochastic capabilities also encompass poorly constrained glaciological processes that display strong variability at fine spatiotemporal scales. We present the model and test experiments.
Max Brils, Peter Kuipers Munneke, Willem Jan van de Berg, and Michiel van den Broeke
Geosci. Model Dev., 15, 7121–7138, https://doi.org/10.5194/gmd-15-7121-2022, https://doi.org/10.5194/gmd-15-7121-2022, 2022
Short summary
Short summary
Firn covers the Greenland ice sheet (GrIS) and can temporarily prevent mass loss. Here, we present the latest version of our firn model, IMAU-FDM, with an application to the GrIS. We improved the density of fallen snow, the firn densification rate and the firn's thermal conductivity. This leads to a higher air content and 10 m temperatures. Furthermore we investigate three case studies and find that the updated model shows greater variability and an increased sensitivity in surface elevation.
Océane Hames, Mahdi Jafari, David Nicholas Wagner, Ian Raphael, David Clemens-Sewall, Chris Polashenski, Matthew D. Shupe, Martin Schneebeli, and Michael Lehning
Geosci. Model Dev., 15, 6429–6449, https://doi.org/10.5194/gmd-15-6429-2022, https://doi.org/10.5194/gmd-15-6429-2022, 2022
Short summary
Short summary
This paper presents an Eulerian–Lagrangian snow transport model implemented in the fluid dynamics software OpenFOAM, which we call snowBedFoam 1.0. We apply this model to reproduce snow deposition on a piece of ridged Arctic sea ice, which was produced during the MOSAiC expedition through scan measurements. The model appears to successfully reproduce the enhanced snow accumulation and deposition patterns, although some quantitative uncertainties were shown.
Constantijn J. Berends, Heiko Goelzer, Thomas J. Reerink, Lennert B. Stap, and Roderik S. W. van de Wal
Geosci. Model Dev., 15, 5667–5688, https://doi.org/10.5194/gmd-15-5667-2022, https://doi.org/10.5194/gmd-15-5667-2022, 2022
Short summary
Short summary
The rate at which marine ice sheets such as the West Antarctic ice sheet will retreat in a warming climate and ocean is still uncertain. Numerical ice-sheet models, which solve the physical equations that describe the way glaciers and ice sheets deform and flow, have been substantially improved in recent years. Here we present the results of several years of work on IMAU-ICE, an ice-sheet model of intermediate complexity, which can be used to study ice sheets of both the past and the future.
Abby C. Lute, John Abatzoglou, and Timothy Link
Geosci. Model Dev., 15, 5045–5071, https://doi.org/10.5194/gmd-15-5045-2022, https://doi.org/10.5194/gmd-15-5045-2022, 2022
Short summary
Short summary
We developed a snow model that can be used to quantify snowpack over large areas with a high degree of spatial detail. We ran the model over the western United States, creating a snow and climate dataset for three time periods. Compared to observations of snowpack, the model captured the key aspects of snow across time and space. The model and dataset will be useful in understanding historical and future changes in snowpack, with relevance to water resources, agriculture, and ecosystems.
Francesco Avanzi, Simone Gabellani, Fabio Delogu, Francesco Silvestro, Edoardo Cremonese, Umberto Morra di Cella, Sara Ratto, and Hervé Stevenin
Geosci. Model Dev., 15, 4853–4879, https://doi.org/10.5194/gmd-15-4853-2022, https://doi.org/10.5194/gmd-15-4853-2022, 2022
Short summary
Short summary
Knowing in real time how much snow and glacier ice has accumulated across the landscape has significant implications for water-resource management and flood control. This paper presents a computer model – S3M – allowing scientists and decision makers to predict snow and ice accumulation during winter and the subsequent melt during spring and summer. S3M has been employed for real-world flood forecasting since the early 2000s but is here being made open source for the first time.
Adrian K. Turner, William H. Lipscomb, Elizabeth C. Hunke, Douglas W. Jacobsen, Nicole Jeffery, Darren Engwirda, Todd D. Ringler, and Jonathan D. Wolfe
Geosci. Model Dev., 15, 3721–3751, https://doi.org/10.5194/gmd-15-3721-2022, https://doi.org/10.5194/gmd-15-3721-2022, 2022
Short summary
Short summary
We present the dynamical core of the MPAS-Seaice model, which uses a mesh consisting of a Voronoi tessellation with polygonal cells. Such a mesh allows variable mesh resolution in different parts of the domain and the focusing of computational resources in regions of interest. We describe the velocity solver and tracer transport schemes used and examine errors generated by the model in both idealized and realistic test cases and examine the computational efficiency of the model.
Noah D. Smith, Eleanor J. Burke, Kjetil Schanke Aas, Inge H. J. Althuizen, Julia Boike, Casper Tai Christiansen, Bernd Etzelmüller, Thomas Friborg, Hanna Lee, Heather Rumbold, Rachael H. Turton, Sebastian Westermann, and Sarah E. Chadburn
Geosci. Model Dev., 15, 3603–3639, https://doi.org/10.5194/gmd-15-3603-2022, https://doi.org/10.5194/gmd-15-3603-2022, 2022
Short summary
Short summary
The Arctic has large areas of small mounds that are caused by ice lifting up the soil. Snow blown by wind gathers in hollows next to these mounds, insulating them in winter. The hollows tend to be wetter, and thus the soil absorbs more heat in summer. The warm wet soil in the hollows decomposes, releasing methane. We have made a model of this, and we have tested how it behaves and whether it looks like sites in Scandinavia and Siberia. Sometimes we get more methane than a model without mounds.
Adrian K. Turner, Kara J. Peterson, and Dan Bolintineanu
Geosci. Model Dev., 15, 1953–1970, https://doi.org/10.5194/gmd-15-1953-2022, https://doi.org/10.5194/gmd-15-1953-2022, 2022
Short summary
Short summary
We developed a technique to remap sea ice tracer quantities between circular discrete element distributions. This is needed for a global discrete element method sea ice model being developed jointly by Los Alamos National Laboratory and Sandia National Laboratories that has the potential to better utilize newer supercomputers with graphics processing units and better represent sea ice dynamics. This new remapping technique ameliorates the effect of element distortion created by sea ice ridging.
Zhen Yin, Chen Zuo, Emma J. MacKie, and Jef Caers
Geosci. Model Dev., 15, 1477–1497, https://doi.org/10.5194/gmd-15-1477-2022, https://doi.org/10.5194/gmd-15-1477-2022, 2022
Short summary
Short summary
We provide a multiple-point geostatistics approach to probabilistically learn from training images to fill large-scale irregular geophysical data gaps. With a repository of global topographic training images, our approach models high-resolution basal topography and quantifies the geospatial uncertainty. It generated high-resolution topographic realizations to investigate the impact of basal topographic uncertainty on critical subglacial hydrological flow patterns associated with ice velocity.
Yu Yan, Wei Gu, Andrea M. U. Gierisch, Yingjun Xu, and Petteri Uotila
Geosci. Model Dev., 15, 1269–1288, https://doi.org/10.5194/gmd-15-1269-2022, https://doi.org/10.5194/gmd-15-1269-2022, 2022
Short summary
Short summary
In this study, we developed NEMO-Bohai, an ocean–ice model for the Bohai Sea, China. This study presented the scientific design and technical choices of the parameterizations for the NEMO-Bohai model. The model was calibrated and evaluated with in situ and satellite observations of ocean and sea ice. NEMO-Bohai is intended to be a valuable tool for long-term ocean and ice simulations and climate change studies.
Chao-Yuan Yang, Jiping Liu, and Dake Chen
Geosci. Model Dev., 15, 1155–1176, https://doi.org/10.5194/gmd-15-1155-2022, https://doi.org/10.5194/gmd-15-1155-2022, 2022
Short summary
Short summary
We present an improved coupled modeling system for Arctic sea ice prediction. We perform Arctic sea ice prediction experiments with improved/updated physical parameterizations, which show better skill in predicting sea ice state as well as atmospheric and oceanic state in the Arctic compared with its predecessor. The improved model also shows extended predictive skill of Arctic sea ice after the summer season. This provides an added value of this prediction system for decision-making.
Christopher Horvat and Lettie A. Roach
Geosci. Model Dev., 15, 803–814, https://doi.org/10.5194/gmd-15-803-2022, https://doi.org/10.5194/gmd-15-803-2022, 2022
Short summary
Short summary
Sea ice is a composite of individual pieces, called floes, ranging in horizontal size from meters to kilometers. Variations in sea ice geometry are often forced by ocean waves, a process that is an important target of global climate models as it affects the rate of sea ice melting. Yet directly simulating these interactions is computationally expensive. We present a neural-network-based model of wave–ice fracture that allows models to incorporate their effect without added computational cost.
Ole Richter, David E. Gwyther, Benjamin K. Galton-Fenzi, and Kaitlin A. Naughten
Geosci. Model Dev., 15, 617–647, https://doi.org/10.5194/gmd-15-617-2022, https://doi.org/10.5194/gmd-15-617-2022, 2022
Short summary
Short summary
Here we present an improved model of the Antarctic continental shelf ocean and demonstrate that it is capable of reproducing present-day conditions. The improvements are fundamental and regard the inclusion of tides and ocean eddies. We conclude that the model is well suited to gain new insights into processes that are important for Antarctic ice sheet retreat and global ocean changes. Hence, the model will ultimately help to improve projections of sea level rise and climate change.
Mark G. Flanner, Julian B. Arnheim, Joseph M. Cook, Cheng Dang, Cenlin He, Xianglei Huang, Deepak Singh, S. McKenzie Skiles, Chloe A. Whicker, and Charles S. Zender
Geosci. Model Dev., 14, 7673–7704, https://doi.org/10.5194/gmd-14-7673-2021, https://doi.org/10.5194/gmd-14-7673-2021, 2021
Short summary
Short summary
We present the technical formulation and evaluation of a publicly available code and web-based model to simulate the spectral albedo of snow. Our model accounts for numerous features of the snow state and ambient conditions, including the the presence of light-absorbing matter like black and brown carbon, mineral dust, volcanic ash, and snow algae. Carbon dioxide snow, found on Mars, is also represented. The model accurately reproduces spectral measurements of clean and contaminated snow.
Lianyu Yu, Yijian Zeng, and Zhongbo Su
Geosci. Model Dev., 14, 7345–7376, https://doi.org/10.5194/gmd-14-7345-2021, https://doi.org/10.5194/gmd-14-7345-2021, 2021
Short summary
Short summary
We developed an integrated soil–snow–atmosphere model (STEMMUS-UEB) dedicated to the physical description of snow and soil processes with various complexities. With STEMMUS-UEB, we demonstrated that the snowpack affects not only the soil surface moisture conditions (in the liquid and ice phase) and energy-related states (albedo, LE) but also the subsurface soil water and vapor transfer, which contributes to a better understanding of the hydrothermal implications of the snowpack in cold regions.
Florent Veillon, Marie Dumont, Charles Amory, and Mathieu Fructus
Geosci. Model Dev., 14, 7329–7343, https://doi.org/10.5194/gmd-14-7329-2021, https://doi.org/10.5194/gmd-14-7329-2021, 2021
Short summary
Short summary
In climate models, the snow albedo scheme generally calculates only a narrowband or broadband albedo. Therefore, we have developed the VALHALLA method to optimize snow spectral albedo calculations through the determination of spectrally fixed radiative variables. The development of VALHALLA v1.0 with the use of the snow albedo model TARTES and the spectral irradiance model SBDART indicates a considerable reduction in calculation time while maintaining an adequate accuracy of albedo values.
Hakase Hayashida, Meibing Jin, Nadja S. Steiner, Neil C. Swart, Eiji Watanabe, Russell Fiedler, Andrew McC. Hogg, Andrew E. Kiss, Richard J. Matear, and Peter G. Strutton
Geosci. Model Dev., 14, 6847–6861, https://doi.org/10.5194/gmd-14-6847-2021, https://doi.org/10.5194/gmd-14-6847-2021, 2021
Short summary
Short summary
Ice algae are tiny plants like phytoplankton but they grow within sea ice. In polar regions, both phytoplankton and ice algae are the foundation of marine ecosystems and play an important role in taking up carbon dioxide in the atmosphere. However, state-of-the-art climate models typically do not include ice algae, and therefore their role in the climate system remains unclear. This project aims to address this knowledge gap by coordinating a set of experiments using sea-ice–ocean models.
Cited articles
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp,
A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M.,
Levenberg, J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C.,
Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P.,
Vanhoucke, V., Vasudevan, V., Viegas, F., Vinyals, O., Warden, P.,
Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X.: TensorFlow:
Large-Scale Machine Learning on Heterogeneous Distributed
Systems, arXiv [preprint], https://doi.org/10.48550/arXiv.1603.04467, 2016. a
Bahdanau, D., Cho, K., and Bengio, Y.: Neural Machine Translation by Jointly
Learning to Align and Translate, arXiv [preprint], https://doi.org/10.48550/ARXIV.1409.0473, 2014. a
Breiman, L.: Random forests, Mach. Learn., 45, 5–32,
https://doi.org/10.1023/A:1010933404324, 2001. a
Calonne, N., Richter, B., Löwe, H., Cetti, C., ter Schure, J., Van Herwijnen, A., Fierz, C., Jaggi, M., and Schneebeli, M.: The RHOSSA campaign: multi-resolution monitoring of the seasonal evolution of the structure and mechanical stability of an alpine snowpack, The Cryosphere, 14, 1829–1848, https://doi.org/10.5194/tc-14-1829-2020, 2020. a
Chao, C., Liaw, A., and Breiman, L.: Using random forest to learn imbalanced
data, Tech. Reports 666, University of California, Dep. Statistics,
Berkeley, https://statistics.berkeley.edu/tech-reports/666 (last access: 3 August 2023),
2004. a
Chollet, F. et al.: Keras, GitHub, https://github.com/fchollet/keras (last access: 3 August 2023), 2015. a
Colbeck, S.: A review of the metamorphism and classification of seasonal snow
cover crystals, IAHS Publication, 162, 3–24,
https://iahs.info/uploads/dms/6807.3-34-162-Colbeck.pdf,
1987. a
Coléou, C., Lesaffre, B., Brzoska, J.-B., Ludwig, W., and Boller, E.:
Three-dimensional snow images by X-ray microtomography, Ann.
Glaciol., 32, 75–81, https://doi.org/10.3189/172756401781819418, 2001. a
Cortes, C. and Vapnik, V.: Support-vector networks, Mach. Learn., 20,
273–297, https://doi.org/10.1007/BF00994018, 1995. a
Cover, T. and Hart, P.: Nearest neighbor pattern classification, IEEE
Transactions on Information Theory, 13, 21–27,
https://doi.org/10.1109/TIT.1967.1053964, 1967. a
CyberZHG: Keras Self-Attention, GitHub,
https://github.com/CyberZHG/keras-self-attention (last access: 3 August 2023), 2020. a
Domine, F., Picard, G., Morin, S., Barrere, M., Madore, J.-B., and Langlois,
A.: Major Issues in Simulating Some Arctic Snowpack Properties
Using Current Detailed Snow Physics Models: Consequences for
the Thermal Regime and Water Budget of Permafrost, J.
Adv. Model. Earth Syst., 11, 34–44, https://doi.org/10.1029/2018MS001445,
2019. a
Douville, H., Royer, J. F., and Mahfouf, J. F.: A new snow parameterization for
the Météo-France climate model, Clim. Dynam., 12, 21–35,
https://doi.org/10.1007/BF00208760, 1995. a
Fierz, C., Armstrong, R., Durand, Y., Etchevers, P., Greene, E., Mcclung,
D. M., Nishimura, K., Satyawali, P., and Sokratov, S.: The international
classification for seasonal snow on the ground, Tech. rep., UNESCO-IHP,
Paris, Paris, publication Title: IHP-VII Technical Documents in Hydrology
No. 83, IACS Contribution No. 1, 2009. a, b, c, d, e, f, g, h, i, j, k
Fix, E. and Hodges, J. L.: Discriminatory Analysis - Nonparametric
Discrimination: Small Sample Performance, Tech. rep., California
University Berkeley,
https://apps.dtic.mil/sti/citations/ADA800391 (last access: 3 August 2023), section:
Technical Reports, 1952. a
Forgy, E. W.: Cluster analysis of multivariate data: efficiency versus
interpretability of classifications, Biometrics, 21, 768–769, 1965. a
Ghahramani, Z.: Unsupervised Learning, pp. 72–112, Springer Berlin Heidelberg,
Berlin, Heidelberg, https://doi.org/10.1007/978-3-540-28650-9_5, 2004. a
Han, J., Kamber, M., and Pei, J.: 9 – Classification: Advanced Methods, in:
Data Mining (Third Edition), edited by: Han, J., Kamber, M., and Pei, J., The
Morgan Kaufmann Series in Data Management Systems, pp. 393–442, Morgan
Kaufmann, Boston, third edition edn.,
https://doi.org/10.1016/B978-0-12-381479-1.00009-5, 2012. a
Havens, S., Marshall, H.-P., Steiner, N., and Tedesco, M.: Snow micro
penetrometer and near infrared photography for grain type classification, in:
2010 International Snow Science Workshop, pp. 465–469,
https://arc.lib.montana.edu/snow-science/objects/ISSW_P-029.pdf (last access: 3 August 2023),
2010. a, b
Herla, F., Horton, S., Mair, P., and Haegeli, P.: Snow profile alignment and similarity assessment for aggregating, clustering, and evaluating snowpack model output for avalanche forecasting, Geosci. Model Dev., 14, 239–258, https://doi.org/10.5194/gmd-14-239-2021, 2021. a
Ho, T. K.: Random decision forests, in: Proceedings of 3rd international
conference on document analysis and recognition, vol. 1, pp. 278–282, IEEE,
1995. a
Hochreiter, S. and Schmidhuber, J.: Long short-term memory,
Neural Computat.,
9, 1735–1780, 1997. a
Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L., and Muller, P.-A.:
Deep learning for time series classification: a review, Data Min. Knowl. Disc., 33, 917–963, https://doi.org/10.1007/s10618-019-00619-1, 2019. a
Johnson, J. B. and Schneebeli, M.: Snow strength penetrometer,
https://patents.google.com/patent/US5831161/en (last access: 3 August 2023), 1998. a
Kaltenborn, J. and vclay: liellnima/snowdragon: Snowdragon Release 1.0.0 (v1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.7335813, 2022. a
Kaltenborn, J., Clay, V., Macfarlane, A. R., and Schneebeli, M.: Machine
Learning for Snow Stratigraphy Classification, in: NeurIPS 2021 Workshop on
Tackling Climate Change with Machine Learning,
https://www.climatechange.ai/papers/neurips2021/48 (last access: 3 August 2023), 2021. a
Kaltenborn, J., Macfarlane, A. R., Clay, V., and Schneebeli, M.: Pre-trained
Models for SMP Classification and Segmentation, Zenodo [code], https://doi.org/10.5281/zenodo.7063521,
2022. a
King, J., Kelly, R., Kasurak, A., Duguay, C., Gunn, G., Rutter, N., Watts, T.,
and Derksen, C.: Spatio-temporal influence of tundra snow properties on
Ku-band (17.2 GHz) backscatter, J. Glaciol., 61, 267–279,
https://doi.org/10.3189/2015JoG14J020, 2015. a, b
King, J., Howell, S., Brady, M., Toose, P., Derksen, C., Haas, C., and Beckers, J.: Local-scale variability of snow density on Arctic sea ice, The Cryosphere, 14, 4323–4339, https://doi.org/10.5194/tc-14-4323-2020, 2020a. a, b, c, d
King, J., Howell, S., Brady, M., Toose, P., Derksen, C., Haas, C., and Beckers,
J.: SnowMicroPen Measurements on Sea Ice 2016–2017, Zenodo,
https://doi.org/10.5281/zenodo.4068349, 2020b. a
Knust, R.: Polar Research and Supply Vessel POLARSTERN Operated by
the Alfred-Wegener-Institute, Journal of Large-Scale Research
Facilities, 3, A119–A119, https://doi.org/10.17815/jlsrf-3-163, 2017. a
Lemaître, G., Nogueira, F., and Aridas, C. K.: Imbalanced-learn: A python
toolbox to tackle the curse of imbalanced datasets in machine learning,
J. Mach. Learn. Res., 18, 559–563,
https://www.jmlr.org/papers/volume18/16-365/16-365.pdf (last access: 3 August 2023), 2017. a
Li, D., Hasanaj, E., and Li, S.: 3 – Baselines,
https://blog.ml.cmu.edu/2020/08/31/3-baselines/ (last access:
4 March 2021), 2020. a
Light, B., Perovich, D. K., Webster, M. A., Polashenski, C., and Dadic, R.:
Optical properties of melting first-year Arctic sea ice, J.
Geophys. Res.-Oceans, 120, 7657–7675, https://doi.org/10.1002/2015JC011163,
2015. a
Liu, X.-Y., Wu, J., and Zhou, Z.-H.: Exploratory undersampling for
class-imbalance learning, IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics), 39, 539–550, https://doi.org/10.1109/TSMCB.2008.2007853, 2008. a
Lloyd, S.: Least squares quantization in PCM, IEEE Transactions on Information
Theory, 28, 129–137, https://doi.org/10.1109/TIT.1982.1056489, 1982. a
Löwe, H. and Van Herwijnen, A.: A Poisson shot noise model for
micro-penetration of snow, Cold Reg. Sci. Technol., 70, 62–70,
https://doi.org/10.1016/j.coldregions.2011.09.001, 2012. a
Lutz, E., Birkeland, K. W., Kronholm, K., Hansen, K., and Aspinall, R.: Surface
hoar characteristics derived from a snow micropenetrometer using moving
window statistical operations, Cold Reg. Sci. Technol., 47,
118–133, https://doi.org/10.1016/j.coldregions.2006.08.021, 2007. a
Macfarlane, A., Schneebeli, M., Dadic, R., Tavri, A., Immerz, A., Polashenski,
C., Krampe, D., Clemens-Sewall, D., Wagner, D., Perovich, D., Henna-Reetta,
H., Raphael, I., Matero, I., Regnery, J., Smith, M., Nicolaus, M., Jaggi, M.,
Oggier, M., Webster, M., Lehning, M., Kolabutin, N., Itkin, P., Naderpour,
R., Pirazzini, R., Hammerle, S., Arndt, S., and Fons, S.: A Database of Snow
on Sea Ice in the Central Arctic Collected during the MOSAiC expedition,
Scientific Data, 10, 398, https://doi.org/10.1038/s41597-023-02273-1, 2023. a
Macfarlane, A. R., Schneebeli, M., Dadic, R., Wagner, D. N., Arndt,
S., Clemens-Sewall, D., Hämmerle, S., Hannula, H.-R., Jaggi, M.,
Kolabutin, N., Krampe, D., Lehning, M., Matero, I., Nicolaus, M.,
Oggier, M., Pirazzini, R., Polashenski, C., Raphael, I., Regnery,
J., Shimanchuck, E., Smith, M. M., and Tavri, A.: Snowpit SnowMicroPen
(SMP) force profiles collected during the MOSAiC expedition, PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.935554, 2021. a, b, c
Matzl, M. and Schneebeli, M.: Measuring specific surface area of snow by
near-infrared photography, J. Glaciol., 52, 558–564,
https://doi.org/10.3189/172756506781828412, 2006. a
Ménard, C. B., Essery, R., Barr, A., Bartlett, P., Derry, J., Dumont, M., Fierz, C., Kim, H., Kontu, A., Lejeune, Y., Marks, D., Niwano, M., Raleigh, M., Wang, L., and Wever, N.: Meteorological and evaluation datasets for snow modelling at 10 reference sites: description of in situ and bias-corrected reanalysis data, Earth Syst. Sci. Data, 11, 865–880, https://doi.org/10.5194/essd-11-865-2019, 2019. a
Merkouriadi, I., Gallet, J.-C., Graham, R. M., Liston, G. E., Polashenski, C.,
Rösel, A., and Gerland, S.: Winter snow conditions on Arctic sea ice
north of Svalbard during the Norwegian young sea ICE (N-ICE2015) expedition,
J. Geophys. Res.-Atmos., 122, 10–837,
https://doi.org/10.1002/2016JD026035, 2017. a
Nguyen, N. and Guo, Y.: Comparisons of sequence labeling algorithms and
extensions, in: Proceedings of the 24th International Conference on Machine
Learning, pp. 681–688, https://doi.org/10.1145/1273496.1273582, 2007. a
Nicolaus, M., Perovich, D. K., Spreen, G., Granskog, M. A., von Albedyll, L.,
Angelopoulos, M., Anhaus, P., Arndt, S., Belter, H. J., Bessonov, V.,
Birnbaum, G., Brauchle, J., Calmer, R., Cardellach, E., Cheng, B.,
Clemens-Sewall, D., Dadic, R., Damm, E., de Boer, G., Demir, O., Dethloff,
K., Divine, D. V., Fong, A. A., Fons, S., Frey, M. M., Fuchs, N., Gabarró,
C., Gerland, S., Goessling, H. F., Gradinger, R., Haapala, J., Haas, C.,
Hamilton, J., Hannula, H.-R., Hendricks, S., Herber, A., Heuzé, C.,
Hoppmann, M., Høyland, K. V., Huntemann, M., Hutchings, J. K., Hwang, B.,
Itkin, P., Jacobi, H.-W., Jaggi, M., Jutila, A., Kaleschke, L., Katlein, C.,
Kolabutin, N., Krampe, D., Kristensen, S. S., Krumpen, T., Kurtz, N.,
Lampert, A., Lange, B. A., Lei, R., Light, B., Linhardt, F., Liston, G. E.,
Loose, B., Macfarlane, A. R., Mahmud, M., Matero, I. O., Maus, S.,
Morgenstern, A., Naderpour, R., Nandan, V., Niubom, A., Oggier, M., Oppelt,
N., Pätzold, F., Perron, C., Petrovsky, T., Pirazzini, R., Polashenski, C.,
Rabe, B., Raphael, I. A., Regnery, J., Rex, M., Ricker, R., Riemann-Campe,
K., Rinke, A., Rohde, J., Salganik, E., Scharien, R. K., Schiller, M.,
Schneebeli, M., Semmling, M., Shimanchuk, E., Shupe, M. D., Smith, M. M.,
Smolyanitsky, V., Sokolov, V., Stanton, T., Stroeve, J., Thielke, L.,
Timofeeva, A., Tonboe, R. T., Tavri, A., Tsamados, M., Wagner, D. N.,
Watkins, D., Webster, M., and Wendisch, M.: Overview of the MOSAiC
expedition: Snow and sea ice, Elementa: Science of the Anthropocene, 10,
https://doi.org/10.1525/elementa.2021.000046, 2022. a
Nixdorf, U., Dethloff, K., Rex, M., Shupe, M., Sommerfeld, A., Perovich, D. K.,
Nicolaus, M., Heuzé, C., Rabe, B., Loose, B., Damm, E., Gradinger, R., Fong,
A., Maslowski, W., Rinke, A., Kwok, R., Spreen, G., Wendisch, M., Herber, A.,
Hirsekorn, M., Mohaupt, V., Frickenhaus, S., Immerz, A., Weiss-Tuider, K.,
König, B., Mengedoht, D., Regnery, J., Gerchow, P., Ransby, D., Krumpen, T.,
Morgenstern, A., Haas, C., Kanzow, T., Rack, F. R., Saitzev, V., Sokolov, V.,
Makarov, A., Schwarze, S., Wunderlich, T., Wurr, K., and Boetius, A.: MOSAiC
Extended Acknowledgement, Zenodo, https://doi.org/10.5281/zenodo.5541624, 2021. a
IPCC: The Ocean and Cryosphere in a Changing
Climate: Special Report of the Intergovernmental Panel on Climate
Change, Cambridge University Press, Cambridge, https://doi.org/10.1017/9781009157964,
2022. a
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Édouard
Duchesnay: Scikit-learn: Machine Learning in Python, J. Mach.
Learn. Res., 12, 2825–2830,
http://jmlr.org/papers/v12/pedregosa11a.html (last access: 3 August 2023), 2011. a, b, c
Pfeffer, W. T. and Mrugala, R.: Temperature gradient and initial snow density
as controlling factors in the formation and structure of hard depth hoar,
J. Glaciol., 48, 485–494, https://doi.org/10.3189/172756502781831098, 2002. a
Proksch, M., Löwe, H., and Schneebeli, M.: Density, specific surface area,
and correlation length of snow measured by high-resolution penetrometry,
J. Geophys. Res.-Ea. Surf., 120, 346–362,
https://doi.org/10.1002/2014JF003266, 2015. a
Rinke, A., Cassano, J. J., Cassano, E. N., Jaiser, R., and Handorf, D.:
Meteorological conditions during the MOSAiC expedition: Normal or
anomalous?, Elementa: Science of the Anthropocene, 9, 00023,
https://doi.org/10.1525/elementa.2021.00023, 2021. a
Russell, S. J. and Norvig, P.: Artificial intelligence: a modern approach,
Pearson series in artificial intelligence, Pearson, Hoboken, fourth edition
edn., 1136 pp., ISBN 978-0-13-461099-3, 2021. a
Sandells, M., Rutter, N., Wivell, K., Essery, R., Fox, S., Harlow, C., Picard, G., Roy, A., Royer, A., and Toose, P.: Simulation of Arctic snow microwave emission in surface-sensitive atmosphere channels, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-696, 2023. a
Schneebeli, M., Pielmeier, C., and Johnson, J. B.: Measuring snow
microstructure and hardness using a high resolution penetrometer, Cold
Reg. Sci. Technol., 30, 101–114,
https://doi.org/10.1016/S0165-232X(99)00030-0, 1999. a
Schölkopf, B. and Smola, A. J.: Learning with kernels:
support vector machines, regularization, optimization, and beyond, MIT press, 626 pp.,
ISBN 0-262-19475-9,
2002. a
Schuster, M. and Paliwal, K. K.: Bidirectional recurrent neural networks, IEEE
transactions on Signal Processing, 45, 2673–2681, https://doi.org/10.1109/78.650093,
1997. a
Soni, R. and Mathai, K. J.: Improved Twitter Sentiment Prediction through
Cluster-then-Predict Model, arXiv [preprint],
https://doi.org/10.48550/arXiv.1509.02437, 2015. a
Steger, C., Kotlarski, S., Jonas, T., and Schär, C.: Alpine snow cover in a
changing climate: a regional climate model perspective, Clim. Dynam., 41,
735–754, https://doi.org/10.1007/s00382-012-1545-3, 2013. a
Stone, M.: Cross-validatory choice and assessment of statistical predictions,
J. R. Stat. Soc. B, 36,
111–133, https://doi.org/10.1111/j.2517-6161.1974.tb00994.x, 1974. a
Sturm, M. and Liston, G. E.: Revisiting the Global Seasonal Snow
Classification: An Updated Dataset for Earth System
Applications, J. Hydrometeorol., 22, 2917–2938,
https://doi.org/10.1175/JHM-D-21-0070.1, 2021. a
Sturm, M. and Massom, R. A.: Snow in the sea ice system: friend or foe?, in:
Sea Ice, John Wiley & Sons, Ltd, pp. 65–109, section: 3,
https://doi.org/10.1002/9781118778371.ch3, 2017. a
Theodorou, T., Mporas, I., and Fakotakis, N.: An Overview of Automatic Audio
Segmentation, International Journal of Information Technology and Computer
Science, 6, 1–9, https://doi.org/10.5815/ijitcs.2014.11.01, 2014. a
Trivedi, S., Pardos, Z. A., and Heffernan, N. T.: The Utility of Clustering
in Prediction Tasks, arXiv [preprint], https://doi.org/10.48550/arXiv.1509.06163, 2015. a
Vionnet, V., Brun, E., Morin, S., Boone, A., Faroux, S., Le Moigne, P., Martin, E., and Willemet, J.-M.: The detailed snowpack scheme Crocus and its implementation in SURFEX v7.2, Geosci. Model Dev., 5, 773–791, https://doi.org/10.5194/gmd-5-773-2012, 2012. a
Wever, N., Keenan, E., Kausch, T., and Lehning, M.: SnowMicroPen measurements
and manual snowpits from Dronning Maud Land, East Antarctica, EnviDat,
https://doi.org/10.16904/envidat.331, 2022. a
Wu, X., Kumar, V., Ross Quinlan, J., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G. J., Ng, A., Liu, B., Yu, P. S., Zhou, Z.-H., Steinbach, M., Hand, D. J., and Steinberg, D.: Top 10 algorithms in data
mining, Knowl. Inf. Syst., 14, 1–37,
https://doi.org/10.1007/s10115-007-0114-2, 2008.
a
Yarowsky, D.: Unsupervised word sense disambiguation rivaling supervised
methods, in: 33rd annual meeting of the association for computational
linguistics, pp. 189–196, https://doi.org/10.3115/981658.981684, 1995. a
Yoshua, B., Olivier, D., and Nicolas Le, R.: 192193Label Propagation and
Quadratic Criterion, in: Semi-Supervised Learning, The MIT Press,
https://doi.org/10.7551/mitpress/9780262033589.003.0011, 2006. a
Zhou, D., Bousquet, O., Lal, T., Weston, J., and Schölkopf, B.: Learning with
Local and Global Consistency, in: Advances in Neural Information
Processing Systems, edited by: Thrun, S., Saul, L., and Schölkopf, B.,
vol. 16, pp. 321–328, MIT Press,
https://proceedings.neurips.cc/paper_files/paper/2003/file/87682805257e619d49b8e0dfdc14affa-Paper.pdf (last access: 3 August 2023),
2003. a
Zhu, X. and Ghahramani, Z.: Learning from labeled and unlabeled data with label
propagation, Tech. rep., Carnegie Mellon University,
https://mlg.eng.cam.ac.uk/zoubin/papers/CMU-CALD-02-107.pdf (last access: 3 August 2023),
2002. a
Short summary
Snow layer segmentation and snow grain classification are essential diagnostic tasks for cryospheric applications. A SnowMicroPen (SMP) can be used to that end; however, the manual classification of its profiles becomes infeasible for large datasets. Here, we evaluate how well machine learning models automate this task. Of the 14 models trained on the MOSAiC SMP dataset, the long short-term memory model performed the best. The findings presented here facilitate and accelerate SMP data analysis.
Snow layer segmentation and snow grain classification are essential diagnostic tasks for...