Articles | Volume 16, issue 1
https://doi.org/10.5194/gmd-16-383-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-383-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The tidal effects in the Finite-volumE Sea ice–Ocean Model (FESOM2.1): a comparison between parameterised tidal mixing and explicit tidal forcing
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), Bremerhaven, Germany
Dmitry Sidorenko
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), Bremerhaven, Germany
Patrick Scholz
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), Bremerhaven, Germany
Maik Thomas
Helmholtz Centre Potsdam – GFZ German Research Centre for Geosciences, Potsdam, Germany
Institute of Meteorology, Freie Universität Berlin, Berlin, Germany
Gerrit Lohmann
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), Bremerhaven, Germany
MARUM – Centre for Marine Environmental Sciences, University of Bremen, Bremen, Germany
Related authors
Hao Huang, Pengyang Song, Shi Qiu, Jiaqi Guo, and Xueen Chen
Geosci. Model Dev., 16, 109–133, https://doi.org/10.5194/gmd-16-109-2023, https://doi.org/10.5194/gmd-16-109-2023, 2023
Short summary
Short summary
The Oceanic Regional Circulation and Tide Model (ORCTM) is developed to reproduce internal solitary wave dynamics. The three-dimensional nonlinear momentum equations are involved with the nonhydrostatic pressure obtained via solving the Poisson equation. The validation experimental results agree with the internal wave theories and observations, demonstrating that the ORCTM can successfully describe the life cycle of nonlinear internal solitary waves under different oceanic environments.
Lars Ackermann, Thomas Rackow, Kai Himstedt, Paul Gierz, Gregor Knorr, and Gerrit Lohmann
EGUsphere, https://doi.org/10.5194/egusphere-2023-2061, https://doi.org/10.5194/egusphere-2023-2061, 2023
Short summary
Short summary
We present long-term simulations with interactive icebergs in the Southern Ocean. By melting, icebergs reduce the temperature and salinity of the surrounding ocean. In our simulations, we find that this cooling effect of iceberg melting is not limited to the surface ocean but also reaches the deep ocean and propagates northward into all ocean basins. Additionally, the formation of deep water masses in the Southern Ocean is enhanced.
Xiaoxu Shi, Alexandre Cauquoin, Gerrit Lohmann, Lukas Jonkers, Qiang Wang, Hu Yang, Yuchen Sun, and Martin Werner
Geosci. Model Dev., 16, 5153–5178, https://doi.org/10.5194/gmd-16-5153-2023, https://doi.org/10.5194/gmd-16-5153-2023, 2023
Short summary
Short summary
We developed a new climate model with isotopic capabilities and simulated the pre-industrial and mid-Holocene periods. Despite certain regional model biases, the modeled isotope composition is in good agreement with observations and reconstructions. Based on our analyses, the observed isotope–temperature relationship in polar regions may have a summertime bias. Using daily model outputs, we developed a novel isotope-based approach to determine the onset date of the West African summer monsoon.
Özgür Gürses, Laurent Oziel, Onur Karakuş, Dmitry Sidorenko, Christoph Völker, Ying Ye, Moritz Zeising, Martin Butzin, and Judith Hauck
Geosci. Model Dev., 16, 4883–4936, https://doi.org/10.5194/gmd-16-4883-2023, https://doi.org/10.5194/gmd-16-4883-2023, 2023
Short summary
Short summary
This paper assesses the biogeochemical model REcoM3 coupled to the ocean–sea ice model FESOM2.1. The model can be used to simulate the carbon uptake or release of the ocean on timescales of several hundred years. A detailed analysis of the nutrients, ocean productivity, and ecosystem is followed by the carbon cycle. The main conclusion is that the model performs well when simulating the observed mean biogeochemical state and variability and is comparable to other ocean–biogeochemical models.
Di Cai, Gerrit Lohmann, Xianyao Chen, and Monica Ionita
EGUsphere, https://doi.org/10.5194/egusphere-2023-1646, https://doi.org/10.5194/egusphere-2023-1646, 2023
Short summary
Short summary
Our study reveals how a decline in autumn sea ice in the Barents-Kara Seas leads to severe winters in Europe. Using observational data, we illustrate that Arctic sea ice loss isn't just a local issue – it impacts harsh winter conditions globally. Current climate models struggle to reflect these effects accurately, indicating a need for more research. Gaining a more nuanced understanding of this relationship will enhance our climate predictions and preparation for future extremes.
Anne Marie Treguier, Clement de Boyer Montégut, Alexandra Bozec, Eric P. Chassignet, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Julien Le Sommer, Yiwen Li, Pengfei Lin, Camille Lique, Hailong Liu, Guillaume Serazin, Dmitry Sidorenko, Qiang Wang, Xiaobio Xu, and Steve Yeager
Geosci. Model Dev., 16, 3849–3872, https://doi.org/10.5194/gmd-16-3849-2023, https://doi.org/10.5194/gmd-16-3849-2023, 2023
Short summary
Short summary
The ocean mixed layer is the interface between the ocean interior and the atmosphere and plays a key role in climate variability. We evaluate the performance of the new generation of ocean models for climate studies, designed to resolve
ocean eddies, which are the largest source of ocean variability and modulate the mixed-layer properties. We find that the mixed-layer depth is better represented in eddy-rich models but, unfortunately, not uniformly across the globe and not in all models.
Xiaoxu Shi, Martin Werner, Hu Yang, Roberta D'Agostino, Jiping Liu, Chaoyuan Yang, and Gerrit Lohmann
Clim. Past Discuss., https://doi.org/10.5194/cp-2023-51, https://doi.org/10.5194/cp-2023-51, 2023
Revised manuscript accepted for CP
Short summary
Short summary
The Last Glacial Maximum (LGM) marks the most recent extremely cold and dry time period of our planet. Using AWI-ESM, we quantify the relative importance of Earth’s orbit, greenhouse gases (GHG) and ice sheets (IS) in determining the LGM climate. Our results suggest that both GHG and IS play important roles in shaping the LGM temperature. Continental ice sheets exert a major control on precipitation, atmospheric dynamics, and the intensity of El Niño-Southern Oscillation.
Qiang Wang, Qi Shu, Alexandra Bozec, Eric P. Chassignet, Pier Giuseppe Fogli, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Nikolay Koldunov, Julien Le Sommer, Yiwen Li, Pengfei Lin, Hailong Liu, Igor Polyakov, Patrick Scholz, Dmitry Sidorenko, Shizhu Wang, and Xiaobiao Xu
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-123, https://doi.org/10.5194/gmd-2023-123, 2023
Preprint under review for GMD
Short summary
Short summary
High resolution improves model skills in simulating the Arctic Ocean, but other factors such as parameterizations and numerics are at least the same important for obtaining faithful simulations.
Viorica Nagavciuc, Simon L. L. Michel, Daniel F. Balting, Gerhard Helle, Mandy Freund, Gerhard H. Schleser, David N. Steger, Gerrit Lohmann, and Monica Ionita
Clim. Past Discuss., https://doi.org/10.5194/cp-2023-35, https://doi.org/10.5194/cp-2023-35, 2023
Preprint under review for CP
Short summary
Short summary
The main aim of this paper is to present the summer VPD reconstruction dataset for the last 400 years over Europe based on 26 European tree-ring oxygen isotope records by using a Random Forest approach. We provide both a spatial as well as a temporal long-term perspective on the past summer VPD. This is the first gridded reconstruction of the European summer VPD over the past 400 years, a dataset which was produced to cover a large knowledge gap about past European VPD variability.
Sergey Danilov, Carolin Mehlmann, Dmitry Sidorenko, and Qiang Wang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-37, https://doi.org/10.5194/gmd-2023-37, 2023
Preprint under review for GMD
Short summary
Short summary
Sea ice models are a necessary component of climate models. At very high resolution they are capable of simulating linear kinematic features, such as leads, which are important for better prediction of heat exchanges between the ocean and atmosphere. Two new discretizations are described which improve the sea-ice component of the Finite volumE Sea ice – Ocean Model (FESOM version 2) by allowing simulations of finer scales.
Uta Krebs-Kanzow, Christian B. Rodehacke, and Gerrit Lohmann
EGUsphere, https://doi.org/10.5194/egusphere-2023-525, https://doi.org/10.5194/egusphere-2023-525, 2023
Short summary
Short summary
We compare components of the surface energy balance from two data sets, ERA5 and ERA-Interim, which can be used to estimate surface mass balance (SMB) on the Greenland Ice Sheet (GrIS). ERA5 differs significantly from ERA-Interim, especially in the melt regions with lower temperatures and stronger shortwave radiation. Consequently, methods that previously estimated the GrIS SMB from the ERA-Interim need to be carefully re-calibrated before converting to ERA5 forcing.
Julia E. Weiffenbach, Michiel L. J. Baatsen, Henk A. Dijkstra, Anna S. von der Heydt, Ayako Abe-Ouchi, Esther C. Brady, Wing-Le Chan, Deepak Chandan, Mark A. Chandler, Camille Contoux, Ran Feng, Chuncheng Guo, Zixuan Han, Alan M. Haywood, Qiang Li, Xiangyu Li, Gerrit Lohmann, Daniel J. Lunt, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, W. Richard Peltier, Gilles Ramstein, Linda E. Sohl, Christian Stepanek, Ning Tan, Julia C. Tindall, Charles J. R. Williams, Qiong Zhang, and Zhongshi Zhang
Clim. Past, 19, 61–85, https://doi.org/10.5194/cp-19-61-2023, https://doi.org/10.5194/cp-19-61-2023, 2023
Short summary
Short summary
We study the behavior of the Atlantic Meridional Overturning Circulation (AMOC) in the mid-Pliocene. The mid-Pliocene was about 3 million years ago and had a similar CO2 concentration to today. We show that the stronger AMOC during this period relates to changes in geography and that this has a significant influence on ocean temperatures and heat transported northwards by the Atlantic Ocean. Understanding the behavior of the mid-Pliocene AMOC can help us to learn more about our future climate.
Hao Huang, Pengyang Song, Shi Qiu, Jiaqi Guo, and Xueen Chen
Geosci. Model Dev., 16, 109–133, https://doi.org/10.5194/gmd-16-109-2023, https://doi.org/10.5194/gmd-16-109-2023, 2023
Short summary
Short summary
The Oceanic Regional Circulation and Tide Model (ORCTM) is developed to reproduce internal solitary wave dynamics. The three-dimensional nonlinear momentum equations are involved with the nonhydrostatic pressure obtained via solving the Poisson equation. The validation experimental results agree with the internal wave theories and observations, demonstrating that the ORCTM can successfully describe the life cycle of nonlinear internal solitary waves under different oceanic environments.
Xin Ren, Daniel J. Lunt, Erica Hendy, Anna von der Heydt, Ayako Abe-Ouchi, Bette L. Otto-Bliesner, Charles J. R. Williams, Christian Stepanek, Chuncheng Guo, Deepak Chandan, Gerrit Lohmann, Julia C. Tindall, Linda E. Sohl, Mark A. Chandler, Masa Kageyama, Michiel L. J. Baatsen, Ning Tan, Qiong Zhang, Ran Feng, Wing-Le Chan, W. Richard Peltier, Xiangyu Li, Youichi Kamae, Zhongshi Zhang, and Alan M. Haywood
EGUsphere, https://doi.org/10.5194/egusphere-2022-1281, https://doi.org/10.5194/egusphere-2022-1281, 2022
Short summary
Short summary
We investigate the climate of the MC in the mid-Pliocene and find it is warmer and wetter and the sea surface salinity is lower compared with preindustrial. Besides, the fresh and warm water transfer through the MC was stronger in the mid-Pliocene relative to the preindustrial. In order to reduce amplification of model biases in the multimodel results, we introduce a new metric—the multi-cluster mean (MCM), which could reveal spatial signals that are not captured by the multimodel mean (MMM).
Jan Streffing, Dmitry Sidorenko, Tido Semmler, Lorenzo Zampieri, Patrick Scholz, Miguel Andrés-Martínez, Nikolay Koldunov, Thomas Rackow, Joakim Kjellsson, Helge Goessling, Marylou Athanase, Qiang Wang, Jan Hegewald, Dmitry V. Sein, Longjiang Mu, Uwe Fladrich, Dirk Barbi, Paul Gierz, Sergey Danilov, Stephan Juricke, Gerrit Lohmann, and Thomas Jung
Geosci. Model Dev., 15, 6399–6427, https://doi.org/10.5194/gmd-15-6399-2022, https://doi.org/10.5194/gmd-15-6399-2022, 2022
Short summary
Short summary
We developed a new atmosphere–ocean coupled climate model, AWI-CM3. Our model is significantly more computationally efficient than its predecessors AWI-CM1 and AWI-CM2. We show that the model, although cheaper to run, provides results of similar quality when modeling the historic period from 1850 to 2014. We identify the remaining weaknesses to outline future work. Finally we preview an improved simulation where the reduction in computational cost has to be invested in higher model resolution.
Xiaoxu Shi, Martin Werner, Carolin Krug, Chris M. Brierley, Anni Zhao, Endurance Igbinosa, Pascale Braconnot, Esther Brady, Jian Cao, Roberta D'Agostino, Johann Jungclaus, Xingxing Liu, Bette Otto-Bliesner, Dmitry Sidorenko, Robert Tomas, Evgeny M. Volodin, Hu Yang, Qiong Zhang, Weipeng Zheng, and Gerrit Lohmann
Clim. Past, 18, 1047–1070, https://doi.org/10.5194/cp-18-1047-2022, https://doi.org/10.5194/cp-18-1047-2022, 2022
Short summary
Short summary
Since the orbital parameters of the past are different from today, applying the modern calendar to the past climate can lead to an artificial bias in seasonal cycles. With the use of multiple model outputs, we found that such a bias is non-ignorable and should be corrected to ensure an accurate comparison between modeled results and observational records, as well as between simulated past and modern climates, especially for the Last Interglacial.
Ryan A. Green, Laurie Menviel, Katrin J. Meissner, Xavier Crosta, Deepak Chandan, Gerrit Lohmann, W. Richard Peltier, Xiaoxu Shi, and Jiang Zhu
Clim. Past, 18, 845–862, https://doi.org/10.5194/cp-18-845-2022, https://doi.org/10.5194/cp-18-845-2022, 2022
Short summary
Short summary
Climate models are used to predict future climate changes and as such, it is important to assess their performance in simulating past climate changes. We analyze seasonal sea-ice cover over the Southern Ocean simulated from numerical PMIP3, PMIP4 and LOVECLIM simulations during the Last Glacial Maximum (LGM). Comparing these simulations to proxy data, we provide improved estimates of LGM seasonal sea-ice cover. Our estimate of summer sea-ice extent is 20 %–30 % larger than previous estimates.
Viorica Nagavciuc, Patrick Scholz, and Monica Ionita
Nat. Hazards Earth Syst. Sci., 22, 1347–1369, https://doi.org/10.5194/nhess-22-1347-2022, https://doi.org/10.5194/nhess-22-1347-2022, 2022
Short summary
Short summary
Here we have assessed the variability and trends of hot and dry summers in Romania. The length, spatial extent, and frequency of heat waves in Romania have increased significantly over the last 70 years, while no significant changes have been observed in the drought conditions. The increased frequency of heat waves, especially after the 1990s, could be partially explained by an increase in the geopotential height over the eastern part of Europe.
Sebastian Hinck, Evan J. Gowan, Xu Zhang, and Gerrit Lohmann
The Cryosphere, 16, 941–965, https://doi.org/10.5194/tc-16-941-2022, https://doi.org/10.5194/tc-16-941-2022, 2022
Short summary
Short summary
Proglacial lakes were pervasive along the retreating continental ice margins after the Last Glacial Maximum. Similarly to the marine ice boundary, interactions at the ice-lake interface impact ice sheet dynamics and mass balance. Previous numerical ice sheet modeling studies did not include a dynamical lake boundary. We describe the implementation of an adaptive lake boundary condition in PISM and apply the model to the glacial retreat of the Laurentide Ice Sheet.
Justus Contzen, Thorsten Dickhaus, and Gerrit Lohmann
Geosci. Model Dev., 15, 1803–1820, https://doi.org/10.5194/gmd-15-1803-2022, https://doi.org/10.5194/gmd-15-1803-2022, 2022
Short summary
Short summary
Climate models are of paramount importance to predict future climate changes. Since many severe consequences of climate change are due to extreme events, the accurate behaviour of models in terms of extremes needs to be validated thoroughly. We present a method for model validation in terms of climate extremes and an algorithm to detect regions in which extremes tend to occur at the same time. These methods are applied to data from different climate models and to observational data.
Daniel Balting, Simon Michel, Viorica Nagavciuc, Gerhard Helle, Mandy Freund, Gerhard H. Schleser, David Steger, Gerrit Lohmann, and Monica Ionita
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-47, https://doi.org/10.5194/essd-2022-47, 2022
Preprint withdrawn
Short summary
Short summary
Vapor pressure deficit is a key component of vegetation dynamics, soil science, meteorology, and soil science. In this study, we reconstruct the variability of the vapor pressure deficit in the past and examine the changes in future scenarios using climate models. In this way, past, present and future changes of the vapor pressure deficit can be detected locally, regionally, and continentally with higher statistical significance.
Stephan Krätschmer, Michèlle van der Does, Frank Lamy, Gerrit Lohmann, Christoph Völker, and Martin Werner
Clim. Past, 18, 67–87, https://doi.org/10.5194/cp-18-67-2022, https://doi.org/10.5194/cp-18-67-2022, 2022
Short summary
Short summary
We use an atmospheric model coupled to an aerosol model to investigate the global mineral dust cycle with a focus on the Southern Hemisphere for warmer and colder climate states and compare our results to observational data. Our findings suggest that Australia is the predominant source of dust deposited over Antarctica during the last glacial maximum. In addition, we find that the southward transport of dust from all sources to Antarctica happens at lower altitudes in colder climates.
Patrick Scholz, Dmitry Sidorenko, Sergey Danilov, Qiang Wang, Nikolay Koldunov, Dmitry Sein, and Thomas Jung
Geosci. Model Dev., 15, 335–363, https://doi.org/10.5194/gmd-15-335-2022, https://doi.org/10.5194/gmd-15-335-2022, 2022
Short summary
Short summary
Structured-mesh ocean models are still the most mature in terms of functionality due to their long development history. However, unstructured-mesh ocean models have acquired new features and caught up in their functionality. This paper continues the work by Scholz et al. (2019) of documenting the features available in FESOM2.0. It focuses on the following two aspects: (i) partial bottom cells and embedded sea ice and (ii) dealing with mixing parameterisations enabled by using the CVMix package.
Martin Wegmann, Yvan Orsolini, Antje Weisheimer, Bart van den Hurk, and Gerrit Lohmann
Weather Clim. Dynam., 2, 1245–1261, https://doi.org/10.5194/wcd-2-1245-2021, https://doi.org/10.5194/wcd-2-1245-2021, 2021
Short summary
Short summary
Northern Hemisphere winter weather is influenced by the strength of westerly winds 30 km above the surface, the so-called polar vortex. Eurasian autumn snow cover is thought to modulate the polar vortex. So far, however, the modeled influence of snow on the polar vortex did not fit the observed influence. By analyzing a model experiment for the time span of 110 years, we could show that the causality of this impact is indeed sound and snow cover can weaken the polar vortex.
Kim H. Stadelmaier, Patrick Ludwig, Pascal Bertran, Pierre Antoine, Xiaoxu Shi, Gerrit Lohmann, and Joaquim G. Pinto
Clim. Past, 17, 2559–2576, https://doi.org/10.5194/cp-17-2559-2021, https://doi.org/10.5194/cp-17-2559-2021, 2021
Short summary
Short summary
We use regional climate simulations for the Last Glacial Maximum to reconstruct permafrost and to identify areas of thermal contraction cracking of the ground in western Europe. We find ground cracking, a precondition for the development of permafrost proxies, south of the probable permafrost border, implying that permafrost was not the limiting factor for proxy development. A good agreement with permafrost and climate proxy data is achieved when easterly winds are modelled more frequently.
Zixuan Han, Qiong Zhang, Qiang Li, Ran Feng, Alan M. Haywood, Julia C. Tindall, Stephen J. Hunter, Bette L. Otto-Bliesner, Esther C. Brady, Nan Rosenbloom, Zhongshi Zhang, Xiangyu Li, Chuncheng Guo, Kerim H. Nisancioglu, Christian Stepanek, Gerrit Lohmann, Linda E. Sohl, Mark A. Chandler, Ning Tan, Gilles Ramstein, Michiel L. J. Baatsen, Anna S. von der Heydt, Deepak Chandan, W. Richard Peltier, Charles J. R. Williams, Daniel J. Lunt, Jianbo Cheng, Qin Wen, and Natalie J. Burls
Clim. Past, 17, 2537–2558, https://doi.org/10.5194/cp-17-2537-2021, https://doi.org/10.5194/cp-17-2537-2021, 2021
Short summary
Short summary
Understanding the potential processes responsible for large-scale hydrological cycle changes in a warmer climate is of great importance. Our study implies that an imbalance in interhemispheric atmospheric energy during the mid-Pliocene could have led to changes in the dynamic effect, offsetting the thermodynamic effect and, hence, altering mid-Pliocene hydroclimate cycling. Moreover, a robust westward shift in the Pacific Walker circulation can moisten the northern Indian Ocean.
Arthur M. Oldeman, Michiel L. J. Baatsen, Anna S. von der Heydt, Henk A. Dijkstra, Julia C. Tindall, Ayako Abe-Ouchi, Alice R. Booth, Esther C. Brady, Wing-Le Chan, Deepak Chandan, Mark A. Chandler, Camille Contoux, Ran Feng, Chuncheng Guo, Alan M. Haywood, Stephen J. Hunter, Youichi Kamae, Qiang Li, Xiangyu Li, Gerrit Lohmann, Daniel J. Lunt, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, W. Richard Peltier, Gabriel M. Pontes, Gilles Ramstein, Linda E. Sohl, Christian Stepanek, Ning Tan, Qiong Zhang, Zhongshi Zhang, Ilana Wainer, and Charles J. R. Williams
Clim. Past, 17, 2427–2450, https://doi.org/10.5194/cp-17-2427-2021, https://doi.org/10.5194/cp-17-2427-2021, 2021
Short summary
Short summary
In this work, we have studied the behaviour of El Niño events in the mid-Pliocene, a period of around 3 million years ago, using a collection of 17 climate models. It is an interesting period to study, as it saw similar atmospheric carbon dioxide levels to the present day. We find that the El Niño events were less strong in the mid-Pliocene simulations, when compared to pre-industrial climate. Our results could help to interpret El Niño behaviour in future climate projections.
Vera Fofonova, Tuomas Kärnä, Knut Klingbeil, Alexey Androsov, Ivan Kuznetsov, Dmitry Sidorenko, Sergey Danilov, Hans Burchard, and Karen Helen Wiltshire
Geosci. Model Dev., 14, 6945–6975, https://doi.org/10.5194/gmd-14-6945-2021, https://doi.org/10.5194/gmd-14-6945-2021, 2021
Short summary
Short summary
We present a test case of river plume spreading to evaluate coastal ocean models. Our test case reveals the level of numerical mixing (due to parameterizations used and numerical treatment of processes in the model) and the ability of models to reproduce complex dynamics. The major result of our comparative study is that accuracy in reproducing the analytical solution depends less on the type of applied model architecture or numerical grid than it does on the type of advection scheme.
Nele Lamping, Juliane Müller, Jens Hefter, Gesine Mollenhauer, Christian Haas, Xiaoxu Shi, Maria-Elena Vorrath, Gerrit Lohmann, and Claus-Dieter Hillenbrand
Clim. Past, 17, 2305–2326, https://doi.org/10.5194/cp-17-2305-2021, https://doi.org/10.5194/cp-17-2305-2021, 2021
Short summary
Short summary
We analysed biomarker concentrations on surface sediment samples from the Antarctic continental margin. Highly branched isoprenoids and GDGTs are used for reconstructing recent sea-ice distribution patterns and ocean temperatures respectively. We compared our biomarker-based results with data obtained from satellite observations and estimated from a numerical model and find reasonable agreements. Further, we address caveats and provide recommendations for future investigations.
Saeid Bagheri Dastgerdi, Melanie Behrens, Jean-Louis Bonne, Maria Hörhold, Gerrit Lohmann, Elisabeth Schlosser, and Martin Werner
The Cryosphere, 15, 4745–4767, https://doi.org/10.5194/tc-15-4745-2021, https://doi.org/10.5194/tc-15-4745-2021, 2021
Short summary
Short summary
In this study, for the first time, water vapour isotope measurements in Antarctica for all seasons of a year are performed. Local temperature is identified as the main driver of δ18O and δD variability. A similar slope of the temperature–δ18O relationship in vapour and surface snow points to the water vapour isotope content as a potential key driver. This dataset can be used as a new dataset to evaluate the capability of isotope-enhanced climate models.
Qiang Wang, Sergey Danilov, Longjiang Mu, Dmitry Sidorenko, and Claudia Wekerle
The Cryosphere, 15, 4703–4725, https://doi.org/10.5194/tc-15-4703-2021, https://doi.org/10.5194/tc-15-4703-2021, 2021
Short summary
Short summary
Using simulations, we found that changes in ocean freshwater content induced by wind perturbations can significantly affect the Arctic sea ice drift, thickness, concentration and deformation rates years after the wind perturbations. The impact is through changes in sea surface height and surface geostrophic currents and the most pronounced in warm seasons. Such a lasting impact might become stronger in a warming climate and implies the importance of ocean initialization in sea ice prediction.
Ellen Berntell, Qiong Zhang, Qiang Li, Alan M. Haywood, Julia C. Tindall, Stephen J. Hunter, Zhongshi Zhang, Xiangyu Li, Chuncheng Guo, Kerim H. Nisancioglu, Christian Stepanek, Gerrit Lohmann, Linda E. Sohl, Mark A. Chandler, Ning Tan, Camille Contoux, Gilles Ramstein, Michiel L. J. Baatsen, Anna S. von der Heydt, Deepak Chandan, William Richard Peltier, Ayako Abe-Ouchi, Wing-Le Chan, Youichi Kamae, Charles J. R. Williams, Daniel J. Lunt, Ran Feng, Bette L. Otto-Bliesner, and Esther C. Brady
Clim. Past, 17, 1777–1794, https://doi.org/10.5194/cp-17-1777-2021, https://doi.org/10.5194/cp-17-1777-2021, 2021
Short summary
Short summary
The mid-Pliocene Warm Period (~ 3.2 Ma) is often considered an analogue for near-future climate projections, and model results from the PlioMIP2 ensemble show an increase of rainfall over West Africa and the Sahara region compared to pre-industrial conditions. Though previous studies of future projections show a west–east drying–wetting contrast over the Sahel, these results indicate a uniform rainfall increase over the Sahel in warm climates characterized by increased greenhouse gas forcing.
Xiaoxu Shi, Dirk Notz, Jiping Liu, Hu Yang, and Gerrit Lohmann
Geosci. Model Dev., 14, 4891–4908, https://doi.org/10.5194/gmd-14-4891-2021, https://doi.org/10.5194/gmd-14-4891-2021, 2021
Short summary
Short summary
The ice–ocean heat flux is one of the key elements controlling sea ice changes. It motivates our study, which aims to examine the responses of modeled climate to three ice–ocean heat flux parameterizations, including two old approaches that assume one-way heat transport and a new one describing a double-diffusive ice–ocean heat exchange. The results show pronounced differences in the modeled sea ice, ocean, and atmosphere states for the latter as compared to the former two parameterizations.
Masa Kageyama, Sandy P. Harrison, Marie-L. Kapsch, Marcus Lofverstrom, Juan M. Lora, Uwe Mikolajewicz, Sam Sherriff-Tadano, Tristan Vadsaria, Ayako Abe-Ouchi, Nathaelle Bouttes, Deepak Chandan, Lauren J. Gregoire, Ruza F. Ivanovic, Kenji Izumi, Allegra N. LeGrande, Fanny Lhardy, Gerrit Lohmann, Polina A. Morozova, Rumi Ohgaito, André Paul, W. Richard Peltier, Christopher J. Poulsen, Aurélien Quiquet, Didier M. Roche, Xiaoxu Shi, Jessica E. Tierney, Paul J. Valdes, Evgeny Volodin, and Jiang Zhu
Clim. Past, 17, 1065–1089, https://doi.org/10.5194/cp-17-1065-2021, https://doi.org/10.5194/cp-17-1065-2021, 2021
Short summary
Short summary
The Last Glacial Maximum (LGM; ~21 000 years ago) is a major focus for evaluating how well climate models simulate climate changes as large as those expected in the future. Here, we compare the latest climate model (CMIP6-PMIP4) to the previous one (CMIP5-PMIP3) and to reconstructions. Large-scale climate features (e.g. land–sea contrast, polar amplification) are well captured by all models, while regional changes (e.g. winter extratropical cooling, precipitations) are still poorly represented.
Uta Krebs-Kanzow, Paul Gierz, Christian B. Rodehacke, Shan Xu, Hu Yang, and Gerrit Lohmann
The Cryosphere, 15, 2295–2313, https://doi.org/10.5194/tc-15-2295-2021, https://doi.org/10.5194/tc-15-2295-2021, 2021
Short summary
Short summary
The surface mass balance scheme dEBM (diurnal Energy Balance Model) provides a novel, computationally inexpensive interface between the atmosphere and land ice for Earth system modeling. The dEBM is particularly suitable for Earth system modeling on multi-millennial timescales as it accounts for changes in the Earth's orbit and atmospheric greenhouse gas concentration.
Daniel F. Balting, Monica Ionita, Martin Wegmann, Gerhard Helle, Gerhard H. Schleser, Norel Rimbu, Mandy B. Freund, Ingo Heinrich, Diana Caldarescu, and Gerrit Lohmann
Clim. Past, 17, 1005–1023, https://doi.org/10.5194/cp-17-1005-2021, https://doi.org/10.5194/cp-17-1005-2021, 2021
Short summary
Short summary
To extend climate information back in time, we investigate the climate sensitivity of a δ18O network from tree rings, consisting of 26 European sites and covering the last 400 years. Our results suggest that the δ18O variability is associated with large-scale anomaly patterns that resemble those observed for the El Niño–Southern Oscillation. We conclude that the investigation of large-scale climate signals far beyond instrumental records can be done with a δ18O network derived from tree rings.
James Keeble, Birgit Hassler, Antara Banerjee, Ramiro Checa-Garcia, Gabriel Chiodo, Sean Davis, Veronika Eyring, Paul T. Griffiths, Olaf Morgenstern, Peer Nowack, Guang Zeng, Jiankai Zhang, Greg Bodeker, Susannah Burrows, Philip Cameron-Smith, David Cugnet, Christopher Danek, Makoto Deushi, Larry W. Horowitz, Anne Kubin, Lijuan Li, Gerrit Lohmann, Martine Michou, Michael J. Mills, Pierre Nabat, Dirk Olivié, Sungsu Park, Øyvind Seland, Jens Stoll, Karl-Hermann Wieners, and Tongwen Wu
Atmos. Chem. Phys., 21, 5015–5061, https://doi.org/10.5194/acp-21-5015-2021, https://doi.org/10.5194/acp-21-5015-2021, 2021
Short summary
Short summary
Stratospheric ozone and water vapour are key components of the Earth system; changes to both have important impacts on global and regional climate. We evaluate changes to these species from 1850 to 2100 in the new generation of CMIP6 models. There is good agreement between the multi-model mean and observations, although there is substantial variation between the individual models. The future evolution of both ozone and water vapour is strongly dependent on the assumed future emissions scenario.
Zhongshi Zhang, Xiangyu Li, Chuncheng Guo, Odd Helge Otterå, Kerim H. Nisancioglu, Ning Tan, Camille Contoux, Gilles Ramstein, Ran Feng, Bette L. Otto-Bliesner, Esther Brady, Deepak Chandan, W. Richard Peltier, Michiel L. J. Baatsen, Anna S. von der Heydt, Julia E. Weiffenbach, Christian Stepanek, Gerrit Lohmann, Qiong Zhang, Qiang Li, Mark A. Chandler, Linda E. Sohl, Alan M. Haywood, Stephen J. Hunter, Julia C. Tindall, Charles Williams, Daniel J. Lunt, Wing-Le Chan, and Ayako Abe-Ouchi
Clim. Past, 17, 529–543, https://doi.org/10.5194/cp-17-529-2021, https://doi.org/10.5194/cp-17-529-2021, 2021
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) is an important topic in the Pliocene Model Intercomparison Project. Previous studies have suggested a much stronger AMOC during the Pliocene than today. However, our current multi-model intercomparison shows large model spreads and model–data discrepancies, which can not support the previous hypothesis. Our study shows good consistency with future projections of the AMOC.
Daniel J. Lunt, Fran Bragg, Wing-Le Chan, David K. Hutchinson, Jean-Baptiste Ladant, Polina Morozova, Igor Niezgodzki, Sebastian Steinig, Zhongshi Zhang, Jiang Zhu, Ayako Abe-Ouchi, Eleni Anagnostou, Agatha M. de Boer, Helen K. Coxall, Yannick Donnadieu, Gavin Foster, Gordon N. Inglis, Gregor Knorr, Petra M. Langebroek, Caroline H. Lear, Gerrit Lohmann, Christopher J. Poulsen, Pierre Sepulchre, Jessica E. Tierney, Paul J. Valdes, Evgeny M. Volodin, Tom Dunkley Jones, Christopher J. Hollis, Matthew Huber, and Bette L. Otto-Bliesner
Clim. Past, 17, 203–227, https://doi.org/10.5194/cp-17-203-2021, https://doi.org/10.5194/cp-17-203-2021, 2021
Short summary
Short summary
This paper presents the first modelling results from the Deep-Time Model Intercomparison Project (DeepMIP), in which we focus on the early Eocene climatic optimum (EECO, 50 million years ago). We show that, in contrast to previous work, at least three models (CESM, GFDL, and NorESM) produce climate states that are consistent with proxy indicators of global mean temperature and polar amplification, and they achieve this at a CO2 concentration that is consistent with the CO2 proxy record.
Masa Kageyama, Louise C. Sime, Marie Sicard, Maria-Vittoria Guarino, Anne de Vernal, Ruediger Stein, David Schroeder, Irene Malmierca-Vallet, Ayako Abe-Ouchi, Cecilia Bitz, Pascale Braconnot, Esther C. Brady, Jian Cao, Matthew A. Chamberlain, Danny Feltham, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Katrin J. Meissner, Laurie Menviel, Polina Morozova, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, Ryouta O'ishi, Silvana Ramos Buarque, David Salas y Melia, Sam Sherriff-Tadano, Julienne Stroeve, Xiaoxu Shi, Bo Sun, Robert A. Tomas, Evgeny Volodin, Nicholas K. H. Yeung, Qiong Zhang, Zhongshi Zhang, Weipeng Zheng, and Tilo Ziehn
Clim. Past, 17, 37–62, https://doi.org/10.5194/cp-17-37-2021, https://doi.org/10.5194/cp-17-37-2021, 2021
Short summary
Short summary
The Last interglacial (ca. 127 000 years ago) is a period with increased summer insolation at high northern latitudes, resulting in a strong reduction in Arctic sea ice. The latest PMIP4-CMIP6 models all simulate this decrease, consistent with reconstructions. However, neither the models nor the reconstructions agree on the possibility of a seasonally ice-free Arctic. Work to clarify the reasons for this model divergence and the conflicting interpretations of the records will thus be needed.
Bette L. Otto-Bliesner, Esther C. Brady, Anni Zhao, Chris M. Brierley, Yarrow Axford, Emilie Capron, Aline Govin, Jeremy S. Hoffman, Elizabeth Isaacs, Masa Kageyama, Paolo Scussolini, Polychronis C. Tzedakis, Charles J. R. Williams, Eric Wolff, Ayako Abe-Ouchi, Pascale Braconnot, Silvana Ramos Buarque, Jian Cao, Anne de Vernal, Maria Vittoria Guarino, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Katrin J. Meissner, Laurie Menviel, Polina A. Morozova, Kerim H. Nisancioglu, Ryouta O'ishi, David Salas y Mélia, Xiaoxu Shi, Marie Sicard, Louise Sime, Christian Stepanek, Robert Tomas, Evgeny Volodin, Nicholas K. H. Yeung, Qiong Zhang, Zhongshi Zhang, and Weipeng Zheng
Clim. Past, 17, 63–94, https://doi.org/10.5194/cp-17-63-2021, https://doi.org/10.5194/cp-17-63-2021, 2021
Short summary
Short summary
The CMIP6–PMIP4 Tier 1 lig127k experiment was designed to address the climate responses to strong orbital forcing. We present a multi-model ensemble of 17 climate models, most of which have also completed the CMIP6 DECK experiments and are thus important for assessing future projections. The lig127ksimulations show strong summer warming over the NH continents. More than half of the models simulate a retreat of the Arctic minimum summer ice edge similar to the average for 2000–2018.
Gerrit Lohmann
Earth Syst. Dynam., 11, 1195–1208, https://doi.org/10.5194/esd-11-1195-2020, https://doi.org/10.5194/esd-11-1195-2020, 2020
Short summary
Short summary
With the development of computer capacities, simpler models like energy balance models have not disappeared, and a stronger emphasis has been given to the concept of a hierarchy of models. The global temperature is calculated by the radiation budget through the incoming energy from the Sun and the outgoing energy from the Earth. The argument that the temperature can be calculated by a simple radiation budget is revisited, and it is found that the effective heat capacity matters.
Maria-Elena Vorrath, Juliane Müller, Lorena Rebolledo, Paola Cárdenas, Xiaoxu Shi, Oliver Esper, Thomas Opel, Walter Geibert, Práxedes Muñoz, Christian Haas, Gerhard Kuhn, Carina B. Lange, Gerrit Lohmann, and Gesine Mollenhauer
Clim. Past, 16, 2459–2483, https://doi.org/10.5194/cp-16-2459-2020, https://doi.org/10.5194/cp-16-2459-2020, 2020
Short summary
Short summary
We tested the applicability of the organic biomarker IPSO25 for sea ice reconstructions in the industrial era at the western Antarctic Peninsula. We successfully evaluated our data with satellite sea ice observations. The comparison with marine and ice core records revealed that sea ice interpretations must consider climatic and sea ice dynamics. Sea ice biomarker production is mainly influenced by the Southern Annular Mode, while the El Niño–Southern Oscillation seems to have a minor impact.
Wesley de Nooijer, Qiong Zhang, Qiang Li, Qiang Zhang, Xiangyu Li, Zhongshi Zhang, Chuncheng Guo, Kerim H. Nisancioglu, Alan M. Haywood, Julia C. Tindall, Stephen J. Hunter, Harry J. Dowsett, Christian Stepanek, Gerrit Lohmann, Bette L. Otto-Bliesner, Ran Feng, Linda E. Sohl, Mark A. Chandler, Ning Tan, Camille Contoux, Gilles Ramstein, Michiel L. J. Baatsen, Anna S. von der Heydt, Deepak Chandan, W. Richard Peltier, Ayako Abe-Ouchi, Wing-Le Chan, Youichi Kamae, and Chris M. Brierley
Clim. Past, 16, 2325–2341, https://doi.org/10.5194/cp-16-2325-2020, https://doi.org/10.5194/cp-16-2325-2020, 2020
Short summary
Short summary
The simulations for the past climate can inform us about the performance of climate models in different climate scenarios. Here, we analyse Arctic warming in an ensemble of 16 simulations of the mid-Pliocene Warm Period (mPWP), when the CO2 level was comparable to today. The results highlight the importance of slow feedbacks in the model simulations and imply that we must be careful when using simulations of the mPWP as an analogue for future climate change.
Christian Stepanek, Eric Samakinwa, Gregor Knorr, and Gerrit Lohmann
Clim. Past, 16, 2275–2323, https://doi.org/10.5194/cp-16-2275-2020, https://doi.org/10.5194/cp-16-2275-2020, 2020
Short summary
Short summary
Future climate is expected to be warmer than today. We study climate based on simulations of the mid-Pliocene (about 3 million years ago), which was a time of elevated temperatures, and discuss implications for the future. Our results are provided towards a comparison to both proxy evidence and output of other climate models. We simulate a mid-Pliocene climate that is both warmer and wetter than today. Some climate characteristics can be more directly transferred to the near future than others.
Florian Fuhrmann, Benedikt Diensberg, Xun Gong, Gerrit Lohmann, and Frank Sirocko
Clim. Past, 16, 2221–2238, https://doi.org/10.5194/cp-16-2221-2020, https://doi.org/10.5194/cp-16-2221-2020, 2020
Short summary
Short summary
Proxy data of sediment cores, speleothem, pollen and isotope data were used to reconstruct past aridity of eight regions of the world over the last 60 000 years. These regions show humid conditions during the early MIS3 (60 to 45 ka). Also the early Holocene (14 to 6 ka) was humid throughout the regions. In contrast, MIS2 and the LGM were arid in Northern Nemisphere records. On- and offsets of aridity/humidity differ between the regions. All this is in good agreement with recent model results.
Xavier Fettweis, Stefan Hofer, Uta Krebs-Kanzow, Charles Amory, Teruo Aoki, Constantijn J. Berends, Andreas Born, Jason E. Box, Alison Delhasse, Koji Fujita, Paul Gierz, Heiko Goelzer, Edward Hanna, Akihiro Hashimoto, Philippe Huybrechts, Marie-Luise Kapsch, Michalea D. King, Christoph Kittel, Charlotte Lang, Peter L. Langen, Jan T. M. Lenaerts, Glen E. Liston, Gerrit Lohmann, Sebastian H. Mernild, Uwe Mikolajewicz, Kameswarrao Modali, Ruth H. Mottram, Masashi Niwano, Brice Noël, Jonathan C. Ryan, Amy Smith, Jan Streffing, Marco Tedesco, Willem Jan van de Berg, Michiel van den Broeke, Roderik S. W. van de Wal, Leo van Kampenhout, David Wilton, Bert Wouters, Florian Ziemen, and Tobias Zolles
The Cryosphere, 14, 3935–3958, https://doi.org/10.5194/tc-14-3935-2020, https://doi.org/10.5194/tc-14-3935-2020, 2020
Short summary
Short summary
We evaluated simulated Greenland Ice Sheet surface mass balance from 5 kinds of models. While the most complex (but expensive to compute) models remain the best, the faster/simpler models also compare reliably with observations and have biases of the same order as the regional models. Discrepancies in the trend over 2000–2012, however, suggest that large uncertainties remain in the modelled future SMB changes as they are highly impacted by the meltwater runoff biases over the current climate.
Alan M. Haywood, Julia C. Tindall, Harry J. Dowsett, Aisling M. Dolan, Kevin M. Foley, Stephen J. Hunter, Daniel J. Hill, Wing-Le Chan, Ayako Abe-Ouchi, Christian Stepanek, Gerrit Lohmann, Deepak Chandan, W. Richard Peltier, Ning Tan, Camille Contoux, Gilles Ramstein, Xiangyu Li, Zhongshi Zhang, Chuncheng Guo, Kerim H. Nisancioglu, Qiong Zhang, Qiang Li, Youichi Kamae, Mark A. Chandler, Linda E. Sohl, Bette L. Otto-Bliesner, Ran Feng, Esther C. Brady, Anna S. von der Heydt, Michiel L. J. Baatsen, and Daniel J. Lunt
Clim. Past, 16, 2095–2123, https://doi.org/10.5194/cp-16-2095-2020, https://doi.org/10.5194/cp-16-2095-2020, 2020
Short summary
Short summary
The large-scale features of middle Pliocene climate from the 16 models of PlioMIP Phase 2 are presented. The PlioMIP2 ensemble average was ~ 3.2 °C warmer and experienced ~ 7 % more precipitation than the pre-industrial era, although there are large regional variations. PlioMIP2 broadly agrees with a new proxy dataset of Pliocene sea surface temperatures. Combining PlioMIP2 and proxy data suggests that a doubling of atmospheric CO2 would increase globally averaged temperature by 2.6–4.8 °C.
Chris M. Brierley, Anni Zhao, Sandy P. Harrison, Pascale Braconnot, Charles J. R. Williams, David J. R. Thornalley, Xiaoxu Shi, Jean-Yves Peterschmitt, Rumi Ohgaito, Darrell S. Kaufman, Masa Kageyama, Julia C. Hargreaves, Michael P. Erb, Julien Emile-Geay, Roberta D'Agostino, Deepak Chandan, Matthieu Carré, Partrick J. Bartlein, Weipeng Zheng, Zhongshi Zhang, Qiong Zhang, Hu Yang, Evgeny M. Volodin, Robert A. Tomas, Cody Routson, W. Richard Peltier, Bette Otto-Bliesner, Polina A. Morozova, Nicholas P. McKay, Gerrit Lohmann, Allegra N. Legrande, Chuncheng Guo, Jian Cao, Esther Brady, James D. Annan, and Ayako Abe-Ouchi
Clim. Past, 16, 1847–1872, https://doi.org/10.5194/cp-16-1847-2020, https://doi.org/10.5194/cp-16-1847-2020, 2020
Short summary
Short summary
This paper provides an initial exploration and comparison to climate reconstructions of the new climate model simulations of the mid-Holocene (6000 years ago). These use state-of-the-art models developed for CMIP6 and apply the same experimental set-up. The models capture several key aspects of the climate, but some persistent issues remain.
Eric P. Chassignet, Stephen G. Yeager, Baylor Fox-Kemper, Alexandra Bozec, Frederic Castruccio, Gokhan Danabasoglu, Christopher Horvat, Who M. Kim, Nikolay Koldunov, Yiwen Li, Pengfei Lin, Hailong Liu, Dmitry V. Sein, Dmitry Sidorenko, Qiang Wang, and Xiaobiao Xu
Geosci. Model Dev., 13, 4595–4637, https://doi.org/10.5194/gmd-13-4595-2020, https://doi.org/10.5194/gmd-13-4595-2020, 2020
Short summary
Short summary
This paper presents global comparisons of fundamental global climate variables from a suite of four pairs of matched low- and high-resolution ocean and sea ice simulations to assess the robustness of climate-relevant improvements in ocean simulations associated with moving from coarse (∼1°) to eddy-resolving (∼0.1°) horizontal resolutions. Despite significant improvements, greatly enhanced horizontal resolution does not deliver unambiguous bias reduction in all regions for all models.
Josephine R. Brown, Chris M. Brierley, Soon-Il An, Maria-Vittoria Guarino, Samantha Stevenson, Charles J. R. Williams, Qiong Zhang, Anni Zhao, Ayako Abe-Ouchi, Pascale Braconnot, Esther C. Brady, Deepak Chandan, Roberta D'Agostino, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Polina A. Morozova, Rumi Ohgaito, Ryouta O'ishi, Bette L. Otto-Bliesner, W. Richard Peltier, Xiaoxu Shi, Louise Sime, Evgeny M. Volodin, Zhongshi Zhang, and Weipeng Zheng
Clim. Past, 16, 1777–1805, https://doi.org/10.5194/cp-16-1777-2020, https://doi.org/10.5194/cp-16-1777-2020, 2020
Short summary
Short summary
El Niño–Southern Oscillation (ENSO) is the largest source of year-to-year variability in the current climate, but the response of ENSO to past or future changes in climate is uncertain. This study compares the strength and spatial pattern of ENSO in a set of climate model simulations in order to explore how ENSO changes in different climates, including past cold glacial climates and past climates with different seasonal cycles, as well as gradual and abrupt future warming cases.
Jesper Sjolte, Florian Adolphi, Bo M. Vinther, Raimund Muscheler, Christophe Sturm, Martin Werner, and Gerrit Lohmann
Clim. Past, 16, 1737–1758, https://doi.org/10.5194/cp-16-1737-2020, https://doi.org/10.5194/cp-16-1737-2020, 2020
Short summary
Short summary
In this study we investigate seasonal climate reconstructions produced by matching climate model output to ice core and tree-ring data, and we evaluate the model–data reconstructions against meteorological observations. The reconstructions capture the main patterns of variability in sea level pressure and temperature in summer and winter. The performance of the reconstructions depends on seasonal climate variability itself, and definitions of seasons can be optimized to capture this variability.
Martin Renoult, James Douglas Annan, Julia Catherine Hargreaves, Navjit Sagoo, Clare Flynn, Marie-Luise Kapsch, Qiang Li, Gerrit Lohmann, Uwe Mikolajewicz, Rumi Ohgaito, Xiaoxu Shi, Qiong Zhang, and Thorsten Mauritsen
Clim. Past, 16, 1715–1735, https://doi.org/10.5194/cp-16-1715-2020, https://doi.org/10.5194/cp-16-1715-2020, 2020
Short summary
Short summary
Interest in past climates as sources of information for the climate system has grown in recent years. In particular, studies of the warm mid-Pliocene and cold Last Glacial Maximum showed relationships between the tropical surface temperature of the Earth and its sensitivity to an abrupt doubling of atmospheric CO2. In this study, we develop a new and promising statistical method and obtain similar results as previously observed, wherein the sensitivity does not seem to exceed extreme values.
Erin L. McClymont, Heather L. Ford, Sze Ling Ho, Julia C. Tindall, Alan M. Haywood, Montserrat Alonso-Garcia, Ian Bailey, Melissa A. Berke, Kate Littler, Molly O. Patterson, Benjamin Petrick, Francien Peterse, A. Christina Ravelo, Bjørg Risebrobakken, Stijn De Schepper, George E. A. Swann, Kaustubh Thirumalai, Jessica E. Tierney, Carolien van der Weijst, Sarah White, Ayako Abe-Ouchi, Michiel L. J. Baatsen, Esther C. Brady, Wing-Le Chan, Deepak Chandan, Ran Feng, Chuncheng Guo, Anna S. von der Heydt, Stephen Hunter, Xiangyi Li, Gerrit Lohmann, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, W. Richard Peltier, Christian Stepanek, and Zhongshi Zhang
Clim. Past, 16, 1599–1615, https://doi.org/10.5194/cp-16-1599-2020, https://doi.org/10.5194/cp-16-1599-2020, 2020
Short summary
Short summary
We examine the sea-surface temperature response to an interval of climate ~ 3.2 million years ago, when CO2 concentrations were similar to today and the near future. Our geological data and climate models show that global mean sea-surface temperatures were 2.3 to 3.2 ºC warmer than pre-industrial climate, that the mid-latitudes and high latitudes warmed more than the tropics, and that the warming was particularly enhanced in the North Atlantic Ocean.
Eric Samakinwa, Christian Stepanek, and Gerrit Lohmann
Clim. Past, 16, 1643–1665, https://doi.org/10.5194/cp-16-1643-2020, https://doi.org/10.5194/cp-16-1643-2020, 2020
Short summary
Short summary
Boundary conditions, forcing, and methodology for the two phases of PlioMIP differ considerably. We compare results from PlioMIP1 and PlioMIP2 simulations. We also carry out sensitivity experiments to infer the relative contribution of different boundary conditions to mid-Pliocene warmth. Our results show dominant effects of mid-Pliocene geography on the climate state and also that prescribing orbital forcing for different time slices within the mid-Pliocene could lead to pronounced variations.
Hiroyuki Tsujino, L. Shogo Urakawa, Stephen M. Griffies, Gokhan Danabasoglu, Alistair J. Adcroft, Arthur E. Amaral, Thomas Arsouze, Mats Bentsen, Raffaele Bernardello, Claus W. Böning, Alexandra Bozec, Eric P. Chassignet, Sergey Danilov, Raphael Dussin, Eleftheria Exarchou, Pier Giuseppe Fogli, Baylor Fox-Kemper, Chuncheng Guo, Mehmet Ilicak, Doroteaciro Iovino, Who M. Kim, Nikolay Koldunov, Vladimir Lapin, Yiwen Li, Pengfei Lin, Keith Lindsay, Hailong Liu, Matthew C. Long, Yoshiki Komuro, Simon J. Marsland, Simona Masina, Aleksi Nummelin, Jan Klaus Rieck, Yohan Ruprich-Robert, Markus Scheinert, Valentina Sicardi, Dmitry Sidorenko, Tatsuo Suzuki, Hiroaki Tatebe, Qiang Wang, Stephen G. Yeager, and Zipeng Yu
Geosci. Model Dev., 13, 3643–3708, https://doi.org/10.5194/gmd-13-3643-2020, https://doi.org/10.5194/gmd-13-3643-2020, 2020
Short summary
Short summary
The OMIP-2 framework for global ocean–sea-ice model simulations is assessed by comparing multi-model means from 11 CMIP6-class global ocean–sea-ice models calculated separately for the OMIP-1 and OMIP-2 simulations. Many features are very similar between OMIP-1 and OMIP-2 simulations, and yet key improvements in transitioning from OMIP-1 to OMIP-2 are also identified. Thus, the present assessment justifies that future ocean–sea-ice model development and analysis studies use the OMIP-2 framework.
Paul Gierz, Lars Ackermann, Christian B. Rodehacke, Uta Krebs-Kanzow, Christian Stepanek, Dirk Barbi, and Gerrit Lohmann
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-159, https://doi.org/10.5194/gmd-2020-159, 2020
Publication in GMD not foreseen
Short summary
Short summary
In this study, we describe the SCOPE coupler, which is used connect the ECHAM6/JSBACH/FESOM1.4 climate model to the PISM 1.1.4 ice sheet model. This system is used to simulate IPCC scenarios projected for the future, and several warm periods in the past; the mid Holocene and the Last Interglacial. Our new model allows us to simulate the ice sheet’s response to changes in the climatic conditions, providing a new avenue of investigation over the previous models, which keep the cryosphere fixed.
Dmitry Sidorenko, Sergey Danilov, Nikolay Koldunov, Patrick Scholz, and Qiang Wang
Geosci. Model Dev., 13, 3337–3345, https://doi.org/10.5194/gmd-13-3337-2020, https://doi.org/10.5194/gmd-13-3337-2020, 2020
Short summary
Short summary
Computation of barotropic and meridional overturning streamfunctions for models formulated on unstructured meshes is commonly preceded by interpolation to a regular mesh. This operation destroys the original conservation, which can be then be artificially imposed to make the computation possible. An elementary method is proposed that avoids interpolation and preserves conservation in a strict model sense.
Martin Wegmann, Marco Rohrer, María Santolaria-Otín, and Gerrit Lohmann
Earth Syst. Dynam., 11, 509–524, https://doi.org/10.5194/esd-11-509-2020, https://doi.org/10.5194/esd-11-509-2020, 2020
Short summary
Short summary
Predicting the climate of the upcoming season is of big societal benefit, but finding out which component of the climate system can act as a predictor is difficult. In this study, we focus on Eurasian snow cover as such a component and show that knowing the snow cover in November is very helpful in predicting the state of winter over Europe. However, this mechanism was questioned in the past. Using snow data that go back 150 years into the past, we are now very confident in this relationship.
Jianjun Zou, Xuefa Shi, Aimei Zhu, Selvaraj Kandasamy, Xun Gong, Lester Lembke-Jene, Min-Te Chen, Yonghua Wu, Shulan Ge, Yanguang Liu, Xinru Xue, Gerrit Lohmann, and Ralf Tiedemann
Clim. Past, 16, 387–407, https://doi.org/10.5194/cp-16-387-2020, https://doi.org/10.5194/cp-16-387-2020, 2020
Short summary
Short summary
Large-scale reorganization of global ocean circulation has been documented in a variety of marine archives, including the enhanced North Pacific Intermediate Water NPIW. Our data support both the model- and data-based ideas that the enhanced NPIW mainly developed during cold spells, while an expansion of oxygen-poor zones occurred at warming intervals (Bölling-Alleröd).
Xingxing Liu, Youbin Sun, Jef Vandenberghe, Peng Cheng, Xu Zhang, Evan J. Gowan, Gerrit Lohmann, and Zhisheng An
Clim. Past, 16, 315–324, https://doi.org/10.5194/cp-16-315-2020, https://doi.org/10.5194/cp-16-315-2020, 2020
Short summary
Short summary
The East Asian summer monsoon and winter monsoon are anticorrelated on a centennial timescale during 16–1 ka. The centennial monsoon variability is connected to changes of both solar activity and North Atlantic cooling events during the Early Holocene. Then, North Atlantic cooling became the major forcing of events during the Late Holocene. This work presents the great challenge and potential to understand the response of the monsoon system to global climate changes in the past and the future.
Patrick Scholz, Dmitry Sidorenko, Ozgur Gurses, Sergey Danilov, Nikolay Koldunov, Qiang Wang, Dmitry Sein, Margarita Smolentseva, Natalja Rakowsky, and Thomas Jung
Geosci. Model Dev., 12, 4875–4899, https://doi.org/10.5194/gmd-12-4875-2019, https://doi.org/10.5194/gmd-12-4875-2019, 2019
Short summary
Short summary
This paper is the first in a series documenting and assessing important key components of the Finite-volumE Sea ice-Ocean Model version 2.0 (FESOM2.0). We assess the hydrographic biases, large-scale circulation, numerical performance and scalability of FESOM2.0 compared with its predecessor, FESOM1.4. The main conclusion is that the results of FESOM2.0 compare well to FESOM1.4 in terms of model biases but with a remarkable performance speedup with a 3 times higher throughput.
Alexandre Cauquoin, Martin Werner, and Gerrit Lohmann
Clim. Past, 15, 1913–1937, https://doi.org/10.5194/cp-15-1913-2019, https://doi.org/10.5194/cp-15-1913-2019, 2019
Short summary
Short summary
We present here the first model results of a newly developed isotope-enhanced version of the Earth system model MPI-ESM. Our model setup has a finer spatial resolution compared to other isotope-enabled fully coupled models. We evaluate the model for preindustrial and mid-Holocene climate conditions. Our analyses show a good to very good agreement with various isotopic data. The spatial and temporal links between isotopes and climate variables under warm climatic conditions are also analyzed.
Nikolay V. Koldunov, Vadym Aizinger, Natalja Rakowsky, Patrick Scholz, Dmitry Sidorenko, Sergey Danilov, and Thomas Jung
Geosci. Model Dev., 12, 3991–4012, https://doi.org/10.5194/gmd-12-3991-2019, https://doi.org/10.5194/gmd-12-3991-2019, 2019
Short summary
Short summary
We measure how computational performance of the global FESOM2 ocean model (formulated on an unstructured mesh) changes with the increase in the number of computational cores. We find that for many components of the model the performance increases linearly but we also identify two bottlenecks: sea ice and ssh submodules. We show that FESOM2 is on par with the state-of-the-art ocean models in terms of throughput that reach 16 simulated years per day for eddy resolving configuration (1/10°).
Thomas Rackow, Dmitry V. Sein, Tido Semmler, Sergey Danilov, Nikolay V. Koldunov, Dmitry Sidorenko, Qiang Wang, and Thomas Jung
Geosci. Model Dev., 12, 2635–2656, https://doi.org/10.5194/gmd-12-2635-2019, https://doi.org/10.5194/gmd-12-2635-2019, 2019
Short summary
Short summary
Current climate models show errors in the deep ocean that are larger than the level of natural variability and the response to enhanced greenhouse gas concentrations. These errors are larger than the signals we aim to predict. With the AWI Climate Model, we show that increasing resolution to resolve eddies can lead to major reductions in deep ocean errors. AWI's next-generation (CMIP6) model configuration will thus use locally eddy-resolving computational grids for projecting climate change.
Lennert B. Stap, Peter Köhler, and Gerrit Lohmann
Earth Syst. Dynam., 10, 333–345, https://doi.org/10.5194/esd-10-333-2019, https://doi.org/10.5194/esd-10-333-2019, 2019
Short summary
Short summary
Processes causing the same global-average radiative forcing might lead to different global temperature changes. We expand the theoretical framework by which we calculate paleoclimate sensitivity with an efficacy factor. Applying the revised approach to radiative forcing caused by CO2 and land ice albedo perturbations, inferred from data of the past 800 000 years, gives a new paleo-based estimate of climate sensitivity.
Monica Ionita, Klaus Grosfeld, Patrick Scholz, Renate Treffeisen, and Gerrit Lohmann
Earth Syst. Dynam., 10, 189–203, https://doi.org/10.5194/esd-10-189-2019, https://doi.org/10.5194/esd-10-189-2019, 2019
Short summary
Short summary
Based on a simple statistical model we show that the September sea ice extent has a high predictive skill, up to 4 months ahead, based on previous months' oceanic and atmospheric conditions. Our statistical model skillfully captures the interannual variability of the September sea ice extent and could provide a valuable tool for identifying relevant regions and oceanic and atmospheric parameters that are important for the sea ice development in the Arctic.
Evan J. Gowan, Lu Niu, Gregor Knorr, and Gerrit Lohmann
Earth Syst. Sci. Data, 11, 375–391, https://doi.org/10.5194/essd-11-375-2019, https://doi.org/10.5194/essd-11-375-2019, 2019
Short summary
Short summary
The speed of ice sheet flow is largely controlled by the strength of the ice–bed interface. We present three datasets on the geological properties of regions in North America, Greenland and Iceland that were covered by Quaternary ice sheets. These include the grain size of glacial sediments, the continuity of sediment cover and bedrock geology. Simple ice modelling experiments show that altering the basal strength of the ice sheet on the basis of these datasets impacts ice thickness.
Uta Krebs-Kanzow, Paul Gierz, and Gerrit Lohmann
The Cryosphere, 12, 3923–3930, https://doi.org/10.5194/tc-12-3923-2018, https://doi.org/10.5194/tc-12-3923-2018, 2018
Short summary
Short summary
We present a new surface melt scheme for land ice. Derived from the energy balance of melting surfaces, the scheme may be particularly suitable for long ice-sheet simulations of past and future climates. It is computationally inexpensive and can be adapted to changes in the Earth's orbit and atmospheric composition. The scheme yields a better spatial representation of surface melt than common empirical schemes when applied to the Greenland Ice Sheet under present-day climate conditions.
Gerrit Lohmann
Earth Syst. Dynam., 9, 1279–1281, https://doi.org/10.5194/esd-9-1279-2018, https://doi.org/10.5194/esd-9-1279-2018, 2018
Short summary
Short summary
Long-term sea surface temperature trends and variability are underestimated in models compared to paleoclimate data. The idea is presented that the trends and variability are related, which is elaborated in a conceptual model framework. The temperature spectrum can be used to estimate the timescale-dependent climate sensitivity.
Axel Wagner, Gerrit Lohmann, and Matthias Prange
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-172, https://doi.org/10.5194/gmd-2018-172, 2018
Publication in GMD not foreseen
Short summary
Short summary
This study demonstrates the dependence of simulated surface air temperatures on variations in grid resolution and resolution-dependent orography in simulations of the Mid-Holocene. A set of Mid-Holocene sensitivity experiments is carried out. The simulated Mid-Holocene temperature differences (low versus high resolution) reveal a response that regionally exceeds the Mid-Holocene to preindustrial modelled temperature anomalies, and show partly reversed signs across the same geographical regions.
Jesper Sjolte, Christophe Sturm, Florian Adolphi, Bo M. Vinther, Martin Werner, Gerrit Lohmann, and Raimund Muscheler
Clim. Past, 14, 1179–1194, https://doi.org/10.5194/cp-14-1179-2018, https://doi.org/10.5194/cp-14-1179-2018, 2018
Short summary
Short summary
Tropical volcanic eruptions and variations in solar activity have been suggested to influence the strength of westerly winds across the North Atlantic. We use Greenland ice core records together with a climate model simulation, and find stronger westerly winds for five winters following tropical volcanic eruptions. We see a delayed response to solar activity of 5 years, and the response to solar minima corresponds well to the cooling pattern during the period known as the Little Ice Age.
Monica Ionita, Patrick Scholz, Klaus Grosfeld, and Renate Treffeisen
Earth Syst. Dynam., 9, 939–954, https://doi.org/10.5194/esd-9-939-2018, https://doi.org/10.5194/esd-9-939-2018, 2018
Short summary
Short summary
In austral spring 2016 the Antarctic region experienced anomalous sea ice retreat in all sectors, with sea ice extent in October and November 2016 being the lowest in the Southern Hemisphere over the observational record (1979–present). The extreme sea ice retreat was accompanied by the wettest and warmest spring on record, over large areas covering the Indian ocean, the Ross Sea, and the Weddell Sea.
Sebastian G. Mutz, Todd A. Ehlers, Martin Werner, Gerrit Lohmann, Christian Stepanek, and Jingmin Li
Earth Surf. Dynam., 6, 271–301, https://doi.org/10.5194/esurf-6-271-2018, https://doi.org/10.5194/esurf-6-271-2018, 2018
Short summary
Short summary
We use a climate model and statistics to provide an overview of regional climates from different times in the late Cenozoic. We focus on tectonically active mountain ranges in particular. Our results highlight significant changes in climates throughout the late Cenozoic, which should be taken into consideration when interpreting erosion rates. We also document the differences between model- and proxy-based estimates for late Cenozoic climate change in South America and Tibet.
Akil Hossain, Xu Zhang, and Gerrit Lohmann
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-9, https://doi.org/10.5194/cp-2018-9, 2018
Revised manuscript not accepted
Christopher Irrgang, Jan Saynisch-Wagner, and Maik Thomas
Ann. Geophys., 36, 167–180, https://doi.org/10.5194/angeo-36-167-2018, https://doi.org/10.5194/angeo-36-167-2018, 2018
Norel Rimbu, Monica Ionita, Markus Czymzik, Achim Brauer, and Gerrit Lohmann
Clim. Past Discuss., https://doi.org/10.5194/cp-2017-137, https://doi.org/10.5194/cp-2017-137, 2017
Manuscript not accepted for further review
Short summary
Short summary
Multi-decadal to millennial flood frequency variations in the Mid- to Late Holocene in a flood layer record from Lake Ammersee is strongly related to the occurrence of extreme precipitation and temperatures in the northeastern Europe.
Bette L. Otto-Bliesner, Pascale Braconnot, Sandy P. Harrison, Daniel J. Lunt, Ayako Abe-Ouchi, Samuel Albani, Patrick J. Bartlein, Emilie Capron, Anders E. Carlson, Andrea Dutton, Hubertus Fischer, Heiko Goelzer, Aline Govin, Alan Haywood, Fortunat Joos, Allegra N. LeGrande, William H. Lipscomb, Gerrit Lohmann, Natalie Mahowald, Christoph Nehrbass-Ahles, Francesco S. R. Pausata, Jean-Yves Peterschmitt, Steven J. Phipps, Hans Renssen, and Qiong Zhang
Geosci. Model Dev., 10, 3979–4003, https://doi.org/10.5194/gmd-10-3979-2017, https://doi.org/10.5194/gmd-10-3979-2017, 2017
Short summary
Short summary
The PMIP4 and CMIP6 mid-Holocene and Last Interglacial simulations provide an opportunity to examine the impact of two different changes in insolation forcing on climate at times when other forcings were relatively similar to present. This will allow exploration of the role of feedbacks relevant to future projections. Evaluating these simulations using paleoenvironmental data will provide direct out-of-sample tests of the reliability of state-of-the-art models to simulate climate changes.
Masa Kageyama, Samuel Albani, Pascale Braconnot, Sandy P. Harrison, Peter O. Hopcroft, Ruza F. Ivanovic, Fabrice Lambert, Olivier Marti, W. Richard Peltier, Jean-Yves Peterschmitt, Didier M. Roche, Lev Tarasov, Xu Zhang, Esther C. Brady, Alan M. Haywood, Allegra N. LeGrande, Daniel J. Lunt, Natalie M. Mahowald, Uwe Mikolajewicz, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, Hans Renssen, Robert A. Tomas, Qiong Zhang, Ayako Abe-Ouchi, Patrick J. Bartlein, Jian Cao, Qiang Li, Gerrit Lohmann, Rumi Ohgaito, Xiaoxu Shi, Evgeny Volodin, Kohei Yoshida, Xiao Zhang, and Weipeng Zheng
Geosci. Model Dev., 10, 4035–4055, https://doi.org/10.5194/gmd-10-4035-2017, https://doi.org/10.5194/gmd-10-4035-2017, 2017
Short summary
Short summary
The Last Glacial Maximum (LGM, 21000 years ago) is an interval when global ice volume was at a maximum, eustatic sea level close to a minimum, greenhouse gas concentrations were lower, atmospheric aerosol loadings were higher than today, and vegetation and land-surface characteristics were different from today. This paper describes the implementation of the LGM numerical experiment for the PMIP4-CMIP6 modelling intercomparison projects and the associated sensitivity experiments.
Lu Niu, Gerrit Lohmann, Sebastian Hinck, and Evan J. Gowan
Clim. Past Discuss., https://doi.org/10.5194/cp-2017-105, https://doi.org/10.5194/cp-2017-105, 2017
Revised manuscript not accepted
Short summary
Short summary
The sensitivity of Northern Hemisphere ice sheets to atmospheric forcing during the last glacial-interglacial cycle is investigated by using output from PMIP3 models. The results show large diversity in simulated ice sheets between different models. We found that summer surface air temperature pattern resembles the ice sheet extent pattern at the LGM. This study implies careful constrains on climate output is essential for simulating reliable glacial-interglacial Northern Hemisphere ice sheets.
Vera D. Meyer, Jens Hefter, Gerrit Lohmann, Lars Max, Ralf Tiedemann, and Gesine Mollenhauer
Clim. Past, 13, 359–377, https://doi.org/10.5194/cp-13-359-2017, https://doi.org/10.5194/cp-13-359-2017, 2017
Monica Ionita, Lena M. Tallaksen, Daniel G. Kingston, James H. Stagge, Gregor Laaha, Henny A. J. Van Lanen, Patrick Scholz, Silvia M. Chelcea, and Klaus Haslinger
Hydrol. Earth Syst. Sci., 21, 1397–1419, https://doi.org/10.5194/hess-21-1397-2017, https://doi.org/10.5194/hess-21-1397-2017, 2017
Short summary
Short summary
This paper analyses the European summer drought of 2015 from a climatological perspective, including its origin and spatial and temporal development, and how it compares with the 2003 event. It discusses the main contributing factors controlling the occurrence and persistence of the event: temperature and precipitation anomalies, blocking episodes and sea surface temperatures. The results represent the outcome of a collaborative initiative of members of UNESCO’s FRIEND-Water program.
Sergey Danilov, Dmitry Sidorenko, Qiang Wang, and Thomas Jung
Geosci. Model Dev., 10, 765–789, https://doi.org/10.5194/gmd-10-765-2017, https://doi.org/10.5194/gmd-10-765-2017, 2017
Short summary
Short summary
Numerical models of global ocean circulation are used to learn about future climate. The ocean circulation is characterized by processes on different spatial scales which are still beyond the reach of present computers. We describe a new model setup that allows one to vary a model's spatial resolution and hence focus the computational power on regional dynamics, reaching a better description of local processes in areas of interest.
Liangjing Zhang, Henryk Dobslaw, Tobias Stacke, Andreas Güntner, Robert Dill, and Maik Thomas
Hydrol. Earth Syst. Sci., 21, 821–837, https://doi.org/10.5194/hess-21-821-2017, https://doi.org/10.5194/hess-21-821-2017, 2017
Short summary
Short summary
Global numerical models perform differently, as has been found in some model intercomparison studies, which mainly focused on components like evapotranspiration, soil moisture or runoff. We have applied terrestrial water storage that is estimated from a GRACE-based state-of-art post-processing method to validate four global numerical models and try to identify the advantages and deficiencies of a certain model. GRACE-based TWS demonstrates its additional benefits to improve the models in future.
Bette L. Otto-Bliesner, Pascale Braconnot, Sandy P. Harrison, Daniel J. Lunt, Ayako Abe-Ouchi, Samuel Albani, Patrick J. Bartlein, Emilie Capron, Anders E. Carlson, Andrea Dutton, Hubertus Fischer, Heiko Goelzer, Aline Govin, Alan Haywood, Fortunat Joos, Allegra N. Legrande, William H. Lipscomb, Gerrit Lohmann, Natalie Mahowald, Christoph Nehrbass-Ahles, Jean-Yves Peterschmidt, Francesco S.-R. Pausata, Steven Phipps, and Hans Renssen
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-106, https://doi.org/10.5194/cp-2016-106, 2016
Preprint retracted
Madlene Pfeiffer and Gerrit Lohmann
Clim. Past, 12, 1313–1338, https://doi.org/10.5194/cp-12-1313-2016, https://doi.org/10.5194/cp-12-1313-2016, 2016
Short summary
Short summary
The Last Interglacial was warmer, with a reduced Greenland Ice Sheet (GIS), compared to the late Holocene. We analyse – through climate model simulations – the impact of a reduced GIS on the global surface air temperature and find a relatively strong warming especially in the Northern Hemisphere. These results are then compared to temperature reconstructions, indicating good agreement with respect to the pattern. However, the simulated temperatures underestimate the proxy-based temperatures.
Norel Rimbu, Markus Czymzik, Monica Ionita, Gerrit Lohmann, and Achim Brauer
Clim. Past, 12, 377–385, https://doi.org/10.5194/cp-12-377-2016, https://doi.org/10.5194/cp-12-377-2016, 2016
M. Werner, B. Haese, X. Xu, X. Zhang, M. Butzin, and G. Lohmann
Geosci. Model Dev., 9, 647–670, https://doi.org/10.5194/gmd-9-647-2016, https://doi.org/10.5194/gmd-9-647-2016, 2016
Short summary
Short summary
This paper presents the first results of a new isotope-enabled GCM set-up, based on the ECHAM5/MPI-OM fully coupled atmosphere-ocean model. Results of two equilibrium simulations under pre-industrial and Last Glacial Maximum conditions reveal a good to very good agreement with many delta O-18 and delta D observational records, and a remarkable improvement for the modelling of the deuterium excess signal in Antarctic ice cores.
M. Stärz, G. Lohmann, and G. Knorr
Clim. Past, 12, 151–170, https://doi.org/10.5194/cp-12-151-2016, https://doi.org/10.5194/cp-12-151-2016, 2016
Short summary
Short summary
In order to account for coupled climate-soil processes, we developed a soil scheme which is asynchronously coupled to an earth system model. We tested the scheme and found additional warming for a relatively warm climate (mid-Holocene), and extra cooling for a colder (Last Glacial Maximum) than preindustrial climate. These findings indicate a relatively strong positive soil feedback to climate, which may help to reduce model-data discrepancies for the climate of the geological past.
C. Irrgang, J. Saynisch, and M. Thomas
Ocean Sci., 12, 129–136, https://doi.org/10.5194/os-12-129-2016, https://doi.org/10.5194/os-12-129-2016, 2016
Short summary
Short summary
In this study, the influence of a spatio-temporally variable seawater conductivity on ocean-circulation-induced magnetic signals is investigated. To simulate the ocean-circulation-induced magnetic field, a combination of an ocean general circulation model (OMCT) and an electromagnetic induction model is used. It is found that a spatially varying seawater conductivity has a significant impact on the temporal variability of the induced magnetic field.
M. Forrest, J. T. Eronen, T. Utescher, G. Knorr, C. Stepanek, G. Lohmann, and T. Hickler
Clim. Past, 11, 1701–1732, https://doi.org/10.5194/cp-11-1701-2015, https://doi.org/10.5194/cp-11-1701-2015, 2015
Short summary
Short summary
We simulated Late Miocene (11-7 Million years ago) vegetation using two plausible CO2 concentrations: 280ppm CO2 and 450ppm CO2. We compared the simulated vegetation to existing plant fossil data for the whole Northern Hemisphere. Our results suggest that during the Late Miocene the CO2 levels have been relatively low, or that other factors that are not included in the models maintained the seasonal temperate forests and open vegetation.
X. Shi and G. Lohmann
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esdd-6-2137-2015, https://doi.org/10.5194/esdd-6-2137-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
Our work is to investigate to what degree the open water ice formation affects the ice and ocean properties.
Our results show a positive feedback among the Arctic sea ice, the AMOC, and the surface air temperature in the Arctic.
The sea ice transport affects the freshwater budget in regions of deep water formation.
A link between the climate of Northern Hemisphere continents and the lead closing rate during ice formation period is also shown by the model.
S. Danilov, Q. Wang, R. Timmermann, N. Iakovlev, D. Sidorenko, M. Kimmritz, T. Jung, and J. Schröter
Geosci. Model Dev., 8, 1747–1761, https://doi.org/10.5194/gmd-8-1747-2015, https://doi.org/10.5194/gmd-8-1747-2015, 2015
Short summary
Short summary
Unstructured meshes allow multi-resolution modeling of ocean dynamics. Sea ice models formulated on unstructured meshes are a necessary component of ocean models intended for climate studies. This work presents a description of a finite-element sea ice model which is used as a component of a finite-element sea ice ocean circulation model. The principles underlying its design can be of interest to other groups pursuing ocean modelling on unstructured meshes.
B. de Boer, A. M. Dolan, J. Bernales, E. Gasson, H. Goelzer, N. R. Golledge, J. Sutter, P. Huybrechts, G. Lohmann, I. Rogozhina, A. Abe-Ouchi, F. Saito, and R. S. W. van de Wal
The Cryosphere, 9, 881–903, https://doi.org/10.5194/tc-9-881-2015, https://doi.org/10.5194/tc-9-881-2015, 2015
Short summary
Short summary
We present results from simulations of the Antarctic ice sheet by means of an intercomparison project with six ice-sheet models. Our results demonstrate the difficulty of all models used here to simulate a significant retreat or re-advance of the East Antarctic ice grounding line. Improved grounding-line physics could be essential for a correct representation of the migration of the grounding line of the Antarctic ice sheet during the Pliocene.
A. M. Dolan, S. J. Hunter, D. J. Hill, A. M. Haywood, S. J. Koenig, B. L. Otto-Bliesner, A. Abe-Ouchi, F. Bragg, W.-L. Chan, M. A. Chandler, C. Contoux, A. Jost, Y. Kamae, G. Lohmann, D. J. Lunt, G. Ramstein, N. A. Rosenbloom, L. Sohl, C. Stepanek, H. Ueda, Q. Yan, and Z. Zhang
Clim. Past, 11, 403–424, https://doi.org/10.5194/cp-11-403-2015, https://doi.org/10.5194/cp-11-403-2015, 2015
Short summary
Short summary
Climate and ice sheet models are often used to predict the nature of ice sheets in Earth history. It is important to understand whether such predictions are consistent among different models, especially in warm periods of relevance to the future. We use input from 15 different climate models to run one ice sheet model and compare the predictions over Greenland. We find that there are large differences between the predicted ice sheets for the warm Pliocene (c. 3 million years ago).
V. Schourup-Kristensen, D. Sidorenko, D. A. Wolf-Gladrow, and C. Völker
Geosci. Model Dev., 7, 2769–2802, https://doi.org/10.5194/gmd-7-2769-2014, https://doi.org/10.5194/gmd-7-2769-2014, 2014
D. Barbi, G. Lohmann, K. Grosfeld, and M. Thoma
Geosci. Model Dev., 7, 2003–2013, https://doi.org/10.5194/gmd-7-2003-2014, https://doi.org/10.5194/gmd-7-2003-2014, 2014
T. Goelles, K. Grosfeld, and G. Lohmann
Geosci. Model Dev., 7, 1395–1408, https://doi.org/10.5194/gmd-7-1395-2014, https://doi.org/10.5194/gmd-7-1395-2014, 2014
Q. Wang, S. Danilov, D. Sidorenko, R. Timmermann, C. Wekerle, X. Wang, T. Jung, and J. Schröter
Geosci. Model Dev., 7, 663–693, https://doi.org/10.5194/gmd-7-663-2014, https://doi.org/10.5194/gmd-7-663-2014, 2014
A. Basu, M. G. Schultz, S. Schröder, L. Francois, X. Zhang, G. Lohmann, and T. Laepple
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-3193-2014, https://doi.org/10.5194/acpd-14-3193-2014, 2014
Revised manuscript not accepted
D. J. Hill, A. M. Haywood, D. J. Lunt, S. J. Hunter, F. J. Bragg, C. Contoux, C. Stepanek, L. Sohl, N. A. Rosenbloom, W.-L. Chan, Y. Kamae, Z. Zhang, A. Abe-Ouchi, M. A. Chandler, A. Jost, G. Lohmann, B. L. Otto-Bliesner, G. Ramstein, and H. Ueda
Clim. Past, 10, 79–90, https://doi.org/10.5194/cp-10-79-2014, https://doi.org/10.5194/cp-10-79-2014, 2014
X. Zhang, G. Lohmann, G. Knorr, and X. Xu
Clim. Past, 9, 2319–2333, https://doi.org/10.5194/cp-9-2319-2013, https://doi.org/10.5194/cp-9-2319-2013, 2013
B. Haese, M. Werner, and G. Lohmann
Geosci. Model Dev., 6, 1463–1480, https://doi.org/10.5194/gmd-6-1463-2013, https://doi.org/10.5194/gmd-6-1463-2013, 2013
R. Zhang, Q. Yan, Z. S. Zhang, D. Jiang, B. L. Otto-Bliesner, A. M. Haywood, D. J. Hill, A. M. Dolan, C. Stepanek, G. Lohmann, C. Contoux, F. Bragg, W.-L. Chan, M. A. Chandler, A. Jost, Y. Kamae, A. Abe-Ouchi, G. Ramstein, N. A. Rosenbloom, L. Sohl, and H. Ueda
Clim. Past, 9, 2085–2099, https://doi.org/10.5194/cp-9-2085-2013, https://doi.org/10.5194/cp-9-2085-2013, 2013
Z.-S. Zhang, K. H. Nisancioglu, M. A. Chandler, A. M. Haywood, B. L. Otto-Bliesner, G. Ramstein, C. Stepanek, A. Abe-Ouchi, W.-L. Chan, F. J. Bragg, C. Contoux, A. M. Dolan, D. J. Hill, A. Jost, Y. Kamae, G. Lohmann, D. J. Lunt, N. A. Rosenbloom, L. E. Sohl, and H. Ueda
Clim. Past, 9, 1495–1504, https://doi.org/10.5194/cp-9-1495-2013, https://doi.org/10.5194/cp-9-1495-2013, 2013
M. Kageyama, U. Merkel, B. Otto-Bliesner, M. Prange, A. Abe-Ouchi, G. Lohmann, R. Ohgaito, D. M. Roche, J. Singarayer, D. Swingedouw, and X Zhang
Clim. Past, 9, 935–953, https://doi.org/10.5194/cp-9-935-2013, https://doi.org/10.5194/cp-9-935-2013, 2013
C. Giry, T. Felis, M. Kölling, W. Wei, G. Lohmann, and S. Scheffers
Clim. Past, 9, 841–858, https://doi.org/10.5194/cp-9-841-2013, https://doi.org/10.5194/cp-9-841-2013, 2013
A. M. Haywood, D. J. Hill, A. M. Dolan, B. L. Otto-Bliesner, F. Bragg, W.-L. Chan, M. A. Chandler, C. Contoux, H. J. Dowsett, A. Jost, Y. Kamae, G. Lohmann, D. J. Lunt, A. Abe-Ouchi, S. J. Pickering, G. Ramstein, N. A. Rosenbloom, U. Salzmann, L. Sohl, C. Stepanek, H. Ueda, Q. Yan, and Z. Zhang
Clim. Past, 9, 191–209, https://doi.org/10.5194/cp-9-191-2013, https://doi.org/10.5194/cp-9-191-2013, 2013
G. Lohmann, A. Wackerbarth, P. M. Langebroek, M. Werner, J. Fohlmeister, D. Scholz, and A. Mangini
Clim. Past, 9, 89–98, https://doi.org/10.5194/cp-9-89-2013, https://doi.org/10.5194/cp-9-89-2013, 2013
S. Dietrich, M. Werner, T. Spangehl, and G. Lohmann
Clim. Past, 9, 13–26, https://doi.org/10.5194/cp-9-13-2013, https://doi.org/10.5194/cp-9-13-2013, 2013
Related subject area
Oceanography
Barents-2.5km v2.0: an operational data-assimilative coupled ocean and sea ice ensemble prediction model for the Barents Sea and Svalbard
Open-ocean tides simulated by ICON-O, version icon-2.6.6
Using Probability Density Functions to Evaluate Models (PDFEM, v1.0) to compare a biogeochemical model with satellite-derived chlorophyll
Data assimilation sensitivity experiments in the East Auckland Current system using 4D-Var
Using the COAsT Python package to develop a standardised validation workflow for ocean physics models
Improving Antarctic Bottom Water precursors in NEMO for climate applications
Formulation, optimization, and sensitivity of NitrOMZv1.0, a biogeochemical model of the nitrogen cycle in oceanic oxygen minimum zones
Waves in SKRIPS: WAVEWATCH III coupling implementation and a case study of Tropical Cyclone Mekunu
Adding sea ice effects to a global operational model (NEMO v3.6) for forecasting total water level: approach and impact
Enhanced ocean wave modeling by including effect of breaking under both deep- and shallow-water conditions
An internal solitary wave forecasting model in the northern South China Sea (ISWFM-NSCS)
The 3D biogeochemical marine mercury cycling model MERCY v2.0 – linking atmospheric Hg to methylmercury in fish
Global seamless tidal simulation using a 3D unstructured-grid model (SCHISM v5.10.0)
Arctic Ocean simulations in the CMIP6 Ocean Model Intercomparison Project (OMIP)
ChemicalDrift 1.0: an open-source Lagrangian chemical-fate and transport model for organic aquatic pollutants
The Met Office operational wave forecasting system: the evolution of the regional and global models
4DVarNet-SSH: end-to-end learning of variational interpolation schemes for nadir and wide-swath satellite altimetry
Development and validation of a global 1∕32° surface-wave–tide–circulation coupled ocean model: FIO-COM32
Implementation and assessment of a model including mixotrophs and the carbonate cycle (Eco3M_MIX-CarbOx v1.0) in a highly dynamic Mediterranean coastal environment (Bay of Marseille, France) (Part I): Evolution of ecosystem composition under limited light and nutrient conditions
Evaluation of the CMCC global eddying ocean model for the Ocean Model Intercomparison Project (OMIP2)
Reproducible and relocatable regional ocean modelling: fundamentals and practices
Barotropic tides in MPAS-Ocean (E3SM V2): impact of ice shelf cavities
Using the two-way nesting technique AGRIF with MARS3D V11.2 to improve hydrodynamics and estimate environmental indicators
Multidecadal and climatological surface current simulations for the southwestern Indian Ocean at 1∕50° resolution
A flexible z-coordinate approach for the accurate representation of free surface flows in a coastal ocean model (SHYFEM v. 7_5_71)
HIDRA2: deep-learning ensemble sea level and storm tide forecasting in the presence of seiches – the case of the northern Adriatic
Moana Ocean Hindcast – a > 25-year simulation for New Zealand waters using the Regional Ocean Modeling System (ROMS) v3.9 model
A nonhydrostatic oceanic regional model, ORCTM v1, for internal solitary wave simulation
How does 4DVar data assimilation affect the vertical representation of mesoscale eddies? A case study with observing system simulation experiments (OSSEs) using ROMS v3.9
An ensemble Kalman filter-based ocean data assimilation system improved by adaptive observation error inflation (AOEI)
GULF18, a high-resolution NEMO-based tidal ocean model of the Arabian/Persian Gulf
The Baltic Sea Model Intercomparison Project (BMIP) – a platform for model development, evaluation, and uncertainty assessment
An ensemble Kalman filter system with the Stony Brook Parallel Ocean Model v1.0
Wind work at the air-sea interface: a modeling study in anticipation of future space missions
Improved upper-ocean thermodynamical structure modeling with combined effects of surface waves and M2 internal tides on vertical mixing: a case study for the Indian Ocean
The bulk parameterizations of turbulent air–sea fluxes in NEMO4: the origin of sea surface temperature differences in a global model study
NeverWorld2: an idealized model hierarchy to investigate ocean mesoscale eddies across resolutions
Observing system simulation experiments reveal that subsurface temperature observations improve estimates of circulation and heat content in a dynamic western boundary current
Parallel implementation of the SHYFEM (System of HydrodYnamic Finite Element Modules) model
Block-structured, equal-workload, multi-grid-nesting interface for the Boussinesq wave model FUNWAVE-TVD (Total Variation Diminishing)
Evaluation of an emergent feature of sub-shelf melt oscillations from an idealized coupled ice sheet–ocean model using FISOC (v1.1) – ROMSIceShelf (v1.0) – Elmer/Ice (v9.0)
GNOM v1.0: an optimized steady-state model of the modern marine neodymium cycle
Implementation and evaluation of open boundary conditions for sea ice in a regional coupled ocean (ROMS) and sea ice (CICE) modeling system
ROMSPath v1.0: offline particle tracking for the Regional Ocean Modeling System (ROMS)
DINCAE 2.0: multivariate convolutional neural network with error estimates to reconstruct sea surface temperature satellite and altimetry observations
RADIv1: a non-steady-state early diagenetic model for ocean sediments in Julia and MATLAB/GNU Octave
IBI-CCS: a regional high-resolution model to simulate sea level in western Europe
Empirical Lagrangian parametrization for wind-driven mixing of buoyant particles at the ocean surface
Improving ocean modeling software NEMO 4.0 benchmarking and communication efficiency
Improvements in the regional South China Sea Operational Oceanography Forecasting System (SCSOFSv2)
Johannes Röhrs, Yvonne Gusdal, Edel S. U. Rikardsen, Marina Durán Moro, Jostein Brændshøi, Nils Melsom Kristensen, Sindre Fritzner, Keguang Wang, Ann Kristin Sperrevik, Martina Idžanović, Thomas Lavergne, Jens Boldingh Debernard, and Kai H. Christensen
Geosci. Model Dev., 16, 5401–5426, https://doi.org/10.5194/gmd-16-5401-2023, https://doi.org/10.5194/gmd-16-5401-2023, 2023
Short summary
Short summary
A model to predict ocean currents, temperature, and sea ice is presented, covering the Barents Sea and northern Norway. To quantify forecast uncertainties, the model calculates ensemble forecasts with 24 realizations of ocean and ice conditions. Observations from satellites, buoys, and ships are ingested by the model. The model forecasts are compared with observations, and we show that the ocean model has skill in predicting sea surface temperatures.
Jin-Song von Storch, Eileen Hertwig, Veit Lüschow, Nils Brüggemann, Helmuth Haak, Peter Korn, and Vikram Singh
Geosci. Model Dev., 16, 5179–5196, https://doi.org/10.5194/gmd-16-5179-2023, https://doi.org/10.5194/gmd-16-5179-2023, 2023
Short summary
Short summary
The new ocean general circulation model ICON-O is developed for running experiments at kilometer scales and beyond. One targeted application is to simulate internal tides crucial for ocean mixing. To ensure their realism, which is difficult to assess, we evaluate the barotropic tides that generate internal tides. We show that ICON-O is able to realistically simulate the major aspects of the observed barotropic tides and discuss the aspects that impact the quality of the simulated tides.
Bror F. Jönsson, Christopher L. Follett, Jacob Bien, Stephanie Dutkiewicz, Sangwon Hyun, Gemma Kulk, Gael L. Forget, Christian Müller, Marie-Fanny Racault, Christopher N. Hill, Thomas Jackson, and Shubha Sathyendranath
Geosci. Model Dev., 16, 4639–4657, https://doi.org/10.5194/gmd-16-4639-2023, https://doi.org/10.5194/gmd-16-4639-2023, 2023
Short summary
Short summary
While biogeochemical models and satellite-derived ocean color data provide unprecedented information, it is problematic to compare them. Here, we present a new approach based on comparing probability density distributions of model and satellite properties to assess model skills. We also introduce Earth mover's distances as a novel and powerful metric to quantify the misfit between models and observations. We find that how 3D chlorophyll fields are aggregated can be a significant source of error.
Rafael Santana, Helen Macdonald, Joanne O'Callaghan, Brian Powell, Sarah Wakes, and Sutara H. Suanda
Geosci. Model Dev., 16, 3675–3698, https://doi.org/10.5194/gmd-16-3675-2023, https://doi.org/10.5194/gmd-16-3675-2023, 2023
Short summary
Short summary
We show the importance of assimilating subsurface temperature and velocity data in a model of the East Auckland Current. Assimilation of velocity increased the representation of large oceanic vortexes. Assimilation of temperature is needed to correctly simulate temperatures around 100 m depth, which is the most difficult region to simulate in ocean models. Our simulations showed improved results in comparison to the US Navy global model and highlight the importance of regional models.
David Byrne, Jeff Polton, Enda O'Dea, and Joanne Williams
Geosci. Model Dev., 16, 3749–3764, https://doi.org/10.5194/gmd-16-3749-2023, https://doi.org/10.5194/gmd-16-3749-2023, 2023
Short summary
Short summary
Validation is a crucial step during the development of models for ocean simulation. The purpose of validation is to assess how accurate a model is. It is most commonly done by comparing output from a model to actual observations. In this paper, we introduce and demonstrate usage of the COAsT Python package to standardise the validation process for physical ocean models. We also discuss our five guiding principles for standardised validation.
Katherine Hutchinson, Julie Deshayes, Christian Éthé, Clément Rousset, Casimir de Lavergne, Martin Vancoppenolle, Nicolas C. Jourdain, and Pierre Mathiot
Geosci. Model Dev., 16, 3629–3650, https://doi.org/10.5194/gmd-16-3629-2023, https://doi.org/10.5194/gmd-16-3629-2023, 2023
Short summary
Short summary
Bottom Water constitutes the lower half of the ocean’s overturning system and is primarily formed in the Weddell and Ross Sea in the Antarctic due to interactions between the atmosphere, ocean, sea ice and ice shelves. Here we use a global ocean 1° resolution model with explicit representation of the three large ice shelves important for the formation of the parent waters of Bottom Water. We find doing so reduces salt biases, improves water mass realism and gives realistic ice shelf melt rates.
Daniele Bianchi, Daniel McCoy, and Simon Yang
Geosci. Model Dev., 16, 3581–3609, https://doi.org/10.5194/gmd-16-3581-2023, https://doi.org/10.5194/gmd-16-3581-2023, 2023
Short summary
Short summary
We present NitrOMZ, a new model of the oceanic nitrogen cycle that simulates chemical transformations within oxygen minimum zones (OMZs). We describe the model formulation and its implementation in a one-dimensional representation of the water column before evaluating its ability to reproduce observations in the eastern tropical South Pacific. We conclude by describing the model sensitivity to parameter choices and environmental factors and its application to nitrogen cycling in the ocean.
Rui Sun, Alison Cobb, Ana B. Villas Bôas, Sabique Langodan, Aneesh C. Subramanian, Matthew R. Mazloff, Bruce D. Cornuelle, Arthur J. Miller, Raju Pathak, and Ibrahim Hoteit
Geosci. Model Dev., 16, 3435–3458, https://doi.org/10.5194/gmd-16-3435-2023, https://doi.org/10.5194/gmd-16-3435-2023, 2023
Short summary
Short summary
In this work, we integrated the WAVEWATCH III model into the regional coupled model SKRIPS. We then performed a case study using the newly implemented model to study Tropical Cyclone Mekunu, which occurred in the Arabian Sea. We found that the coupled model better simulates the cyclone than the uncoupled model, but the impact of waves on the cyclone is not significant. However, the waves change the sea surface temperature and mixed layer, especially in the cold waves produced due to the cyclone.
Pengcheng Wang and Natacha B. Bernier
Geosci. Model Dev., 16, 3335–3354, https://doi.org/10.5194/gmd-16-3335-2023, https://doi.org/10.5194/gmd-16-3335-2023, 2023
Short summary
Short summary
Effects of sea ice are typically neglected in operational flood forecast systems. In this work, we capture these effects via the addition of a parameterized ice–ocean stress. The parameterization takes advantage of forecast fields from an advanced ice–ocean model and features a novel, consistent representation of the tidal relative ice–ocean velocity. The new parameterization leads to improved forecasts of tides and storm surges in polar regions. Associated physical processes are discussed.
Yue Xu and Xiping Yu
Geosci. Model Dev., 16, 2811–2831, https://doi.org/10.5194/gmd-16-2811-2023, https://doi.org/10.5194/gmd-16-2811-2023, 2023
Short summary
Short summary
An accurate description of the wind energy input into ocean waves is crucial to ocean wave modeling, and a physics-based consideration of the effect of wave breaking is absolutely necessary to obtain such an accurate description, particularly under extreme conditions. This study evaluates the performance of a recently improved formula, taking into account not only the effect of breaking but also the effect of airflow separation on the leeside of steep wave crests in a reasonably consistent way.
Yankun Gong, Xueen Chen, Jiexin Xu, Jieshuo Xie, Zhiwu Chen, Yinghui He, and Shuqun Cai
Geosci. Model Dev., 16, 2851–2871, https://doi.org/10.5194/gmd-16-2851-2023, https://doi.org/10.5194/gmd-16-2851-2023, 2023
Short summary
Short summary
Internal solitary waves (ISWs) play crucial roles in mass transport and ocean mixing in the northern South China Sea. Massive numerical investigations have been conducted in this region, but there was no systematic evaluation of a three-dimensional model about precisely simulating ISWs. Here, an ISW forecasting model is employed to evaluate the roles of resolution, tidal forcing and stratification in accurately reproducing wave properties via comparison to field and remote-sensing observations.
Johannes Bieser, David J. Amptmeijer, Ute Daewel, Joachim Kuss, Anne L. Soerensen, and Corinna Schrum
Geosci. Model Dev., 16, 2649–2688, https://doi.org/10.5194/gmd-16-2649-2023, https://doi.org/10.5194/gmd-16-2649-2023, 2023
Short summary
Short summary
MERCY is a 3D model to study mercury (Hg) cycling in the ocean. Hg is a highly harmful pollutant regulated by the UN Minamata Convention on Mercury due to widespread human emissions. These emissions eventually reach the oceans, where Hg transforms into the even more toxic and bioaccumulative pollutant methylmercury. MERCY predicts the fate of Hg in the ocean and its buildup in the food chain. It is the first model to consider Hg accumulation in fish, a major source of Hg exposure for humans.
Y. Joseph Zhang, Tomas Fernandez-Montblanc, William Pringle, Hao-Cheng Yu, Linlin Cui, and Saeed Moghimi
Geosci. Model Dev., 16, 2565–2581, https://doi.org/10.5194/gmd-16-2565-2023, https://doi.org/10.5194/gmd-16-2565-2023, 2023
Short summary
Short summary
Simulating global ocean from deep basins to coastal areas is a daunting task but is important for disaster mitigation efforts. We present a new 3D global ocean model on flexible mesh to study both tidal and nontidal processes and total water prediction. We demonstrate the potential for
seamlesssimulation, on a single mesh, from the global ocean to a few estuaries along the US West Coast. The model can serve as the backbone of a global tide surge and compound flooding forecasting framework.
Qi Shu, Qiang Wang, Chuncheng Guo, Zhenya Song, Shizhu Wang, Yan He, and Fangli Qiao
Geosci. Model Dev., 16, 2539–2563, https://doi.org/10.5194/gmd-16-2539-2023, https://doi.org/10.5194/gmd-16-2539-2023, 2023
Short summary
Short summary
Ocean models are often used for scientific studies on the Arctic Ocean. Here the Arctic Ocean simulations by state-of-the-art global ocean–sea-ice models participating in the Ocean Model Intercomparison Project (OMIP) were evaluated. The simulations on Arctic Ocean hydrography, freshwater content, stratification, sea surface height, and gateway transports were assessed and the common biases were detected. The simulations forced by different atmospheric forcing were also evaluated.
Manuel Aghito, Loris Calgaro, Knut-Frode Dagestad, Christian Ferrarin, Antonio Marcomini, Øyvind Breivik, and Lars Robert Hole
Geosci. Model Dev., 16, 2477–2494, https://doi.org/10.5194/gmd-16-2477-2023, https://doi.org/10.5194/gmd-16-2477-2023, 2023
Short summary
Short summary
The newly developed ChemicalDrift model can simulate the transport and fate of chemicals in the ocean and in coastal regions. The model combines ocean physics, including transport due to currents, turbulence due to surface winds and the sinking of particles to the sea floor, with ocean chemistry, such as the partitioning, the degradation and the evaporation of chemicals. The model will be utilized for risk assessment of ocean and sea-floor contamination from pollutants emitted from shipping.
Nieves G. Valiente, Andrew Saulter, Breogan Gomez, Christopher Bunney, Jian-Guo Li, Tamzin Palmer, and Christine Pequignet
Geosci. Model Dev., 16, 2515–2538, https://doi.org/10.5194/gmd-16-2515-2023, https://doi.org/10.5194/gmd-16-2515-2023, 2023
Short summary
Short summary
We document the Met Office operational global and regional wave models which provide wave forecasts up to 7 d ahead. Our models present coarser resolution offshore to higher resolution near the coastline. The increased resolution led to replication of the extremes but to some overestimation during modal conditions. If currents are included, wave directions and long period swells near the coast are significantly improved. New developments focus on the optimisation of the models with resolution.
Maxime Beauchamp, Quentin Febvre, Hugo Georgenthum, and Ronan Fablet
Geosci. Model Dev., 16, 2119–2147, https://doi.org/10.5194/gmd-16-2119-2023, https://doi.org/10.5194/gmd-16-2119-2023, 2023
Short summary
Short summary
4DVarNet is a learning-based method based on traditional data assimilation (DA). This new class of algorithms can be used to provide efficient reconstructions of a dynamical system based on single observations. We provide a 4DVarNet application to sea surface height reconstructions based on nadir and future Surface Water and Ocean and Topography data. It outperforms other methods, from optimal interpolation to sophisticated DA algorithms. This work is part of on-going AI Chair Oceanix projects.
Bin Xiao, Fangli Qiao, Qi Shu, Xunqiang Yin, Guansuo Wang, and Shihong Wang
Geosci. Model Dev., 16, 1755–1777, https://doi.org/10.5194/gmd-16-1755-2023, https://doi.org/10.5194/gmd-16-1755-2023, 2023
Short summary
Short summary
A new global surface-wave–tide–circulation coupled ocean model (FIO-COM32) with a resolution of 1/32° × 1/32° is developed and validated. Both the promotion of the horizontal resolution and included physical processes are shown to be important contributors to the significant improvements in FIO-COM32 simulations. It is time to merge these separated model components (surface waves, tidal currents and ocean circulation) and start a new generation of ocean model development.
Lucille Barré, Frédéric Diaz, Thibaut Wagener, France Van Wambeke, Camille Mazoyer, Christophe Yohia, and Christel Pinazo
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-33, https://doi.org/10.5194/gmd-2023-33, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
While several studies have shown that mixotrophs play a crucial role in the carbon cycle, the impact of environmental forcings on their dynamics remains poorly investigated. Using a biogeochemical model that considers mixotrophs, we study the impact of light and nutrient concentration on the ecosystem composition, in a highly dynamic Mediterranean coastal area: the Bay of Marseille. We show that mixotrophs cope better with oligotrophic conditions compared to strict auto- and heterotrophs.
Doroteaciro Iovino, Pier Giuseppe Fogli, and Simona Masina
EGUsphere, https://doi.org/10.5194/egusphere-2023-469, https://doi.org/10.5194/egusphere-2023-469, 2023
Short summary
Short summary
The paper describes the model performance of three global ocean/sea ice configurations, from non-eddying (1°) to eddy-rich (1/16°) resolutions. Model simulations are obtained following the OMIP-2 protocol. We compare key global climate variables across the three models and against observations, emphasizing the relative advantages and disadvantages of running forced ocean–sea ice models at higher resolution.
Jeff Polton, James Harle, Jason Holt, Anna Katavouta, Dale Partridge, Jenny Jardine, Sarah Wakelin, Julia Rulent, Anthony Wise, Katherine Hutchinson, David Byrne, Diego Bruciaferri, Enda O'Dea, Michela De Dominicis, Pierre Mathiot, Andrew Coward, Andrew Yool, Julien Palmiéri, Gennadi Lessin, Claudia Gabriela Mayorga-Adame, Valérie Le Guennec, Alex Arnold, and Clément Rousset
Geosci. Model Dev., 16, 1481–1510, https://doi.org/10.5194/gmd-16-1481-2023, https://doi.org/10.5194/gmd-16-1481-2023, 2023
Short summary
Short summary
The aim is to increase the capacity of the modelling community to respond to societally important questions that require ocean modelling. The concept of reproducibility for regional ocean modelling is developed: advocating methods for reproducible workflows and standardised methods of assessment. Then, targeting the NEMO framework, we give practical advice and worked examples, highlighting key considerations that will the expedite development cycle and upskill the user community.
Nairita Pal, Kristin N. Barton, Mark R. Petersen, Steven R. Brus, Darren Engwirda, Brian K. Arbic, Andrew F. Roberts, Joannes J. Westerink, and Damrongsak Wirasaet
Geosci. Model Dev., 16, 1297–1314, https://doi.org/10.5194/gmd-16-1297-2023, https://doi.org/10.5194/gmd-16-1297-2023, 2023
Short summary
Short summary
Understanding tides is essential to accurately predict ocean currents. Over the next several decades coastal processes such as flooding and erosion will be severely impacted due to climate change. Tides affect currents along the coastal regions the most. In this paper we show the results of implementing tides in a global ocean model known as MPAS–Ocean. We also show how Antarctic ice shelf cavities affect global tides. Our work points towards future research with tide–ice interactions.
Sébastien Petton, Valérie Garnier, Matthieu Caillaud, Laurent Debreu, and Franck Dumas
Geosci. Model Dev., 16, 1191–1211, https://doi.org/10.5194/gmd-16-1191-2023, https://doi.org/10.5194/gmd-16-1191-2023, 2023
Short summary
Short summary
The nesting AGRIF library is implemented in the MARS3D hydrodynamic model, a semi-implicit, free-surface numerical model which uses a time scheme as an alternating-direction implicit (ADI) algorithm. Two applications at the regional and coastal scale are introduced. We compare the two-nesting approach to the classic offline one-way approach, based on an in situ dataset. This method is an efficient means to significantly improve the physical hydrodynamics and unravel ecological challenges.
Noam S. Vogt-Vincent and Helen L. Johnson
Geosci. Model Dev., 16, 1163–1178, https://doi.org/10.5194/gmd-16-1163-2023, https://doi.org/10.5194/gmd-16-1163-2023, 2023
Short summary
Short summary
Ocean currents transport things over large distances across the ocean surface. Predicting this transport is key for tackling many environmental problems, such as marine plastic pollution and coral reef resilience. However, doing this requires a good understanding ocean currents, which is currently lacking. Here, we present and validate state-of-the-art simulations for surface currents in the southwestern Indian Ocean, which will support future marine dispersal studies across this region.
Luca Arpaia, Christian Ferrarin, Marco Bajo, and Georg Umgiesser
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-13, https://doi.org/10.5194/gmd-2023-13, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
We propose a z-coordinate vertical algorithm for coastal ocean models which, thanks to the insertion and removal of surface layers, can deal with an arbitrarily large tidal oscillation, independently of the vertical resolution, in a stable and accurate fashion. With simple analysis and realistic numerical experiments we show that it can be used to simulate effectively coastal flows with wetting and drying.
Marko Rus, Anja Fettich, Matej Kristan, and Matjaž Ličer
Geosci. Model Dev., 16, 271–288, https://doi.org/10.5194/gmd-16-271-2023, https://doi.org/10.5194/gmd-16-271-2023, 2023
Short summary
Short summary
We propose a new fast and reliable deep-learning architecture HIDRA2 for sea level and storm surge modeling. HIDRA2 features new feature encoders and a fusion-regression block. We test HIDRA2 on Adriatic storm surges, which depend on an interaction between tides and seiches. We demonstrate that HIDRA2 learns to effectively mimic the timing and amplitude of Adriatic seiches. This is essential for reliable HIDRA2 predictions of total storm surge sea levels.
Joao Marcos Azevedo Correia de Souza, Sutara H. Suanda, Phellipe P. Couto, Robert O. Smith, Colette Kerry, and Moninya Roughan
Geosci. Model Dev., 16, 211–231, https://doi.org/10.5194/gmd-16-211-2023, https://doi.org/10.5194/gmd-16-211-2023, 2023
Short summary
Short summary
The current paper describes the configuration and evaluation of the Moana Ocean Hindcast, a > 25-year simulation of the ocean state around New Zealand using the Regional Ocean Modeling System v3.9. This is the first open-access, long-term, continuous, realistic ocean simulation for this region and provides information for improving the understanding of the ocean processes that affect the New Zealand exclusive economic zone.
Hao Huang, Pengyang Song, Shi Qiu, Jiaqi Guo, and Xueen Chen
Geosci. Model Dev., 16, 109–133, https://doi.org/10.5194/gmd-16-109-2023, https://doi.org/10.5194/gmd-16-109-2023, 2023
Short summary
Short summary
The Oceanic Regional Circulation and Tide Model (ORCTM) is developed to reproduce internal solitary wave dynamics. The three-dimensional nonlinear momentum equations are involved with the nonhydrostatic pressure obtained via solving the Poisson equation. The validation experimental results agree with the internal wave theories and observations, demonstrating that the ORCTM can successfully describe the life cycle of nonlinear internal solitary waves under different oceanic environments.
David E. Gwyther, Shane R. Keating, Colette Kerry, and Moninya Roughan
Geosci. Model Dev., 16, 157–178, https://doi.org/10.5194/gmd-16-157-2023, https://doi.org/10.5194/gmd-16-157-2023, 2023
Short summary
Short summary
Ocean eddies are important for weather, climate, biology, navigation, and search and rescue. Since eddies change rapidly, models that incorporate or assimilate observations are required to produce accurate eddy timings and locations, yet the model accuracy is rarely assessed below the surface. We use a unique type of ocean model experiment to assess three-dimensional eddy structure in the East Australian Current and explore two pathways in which this subsurface structure is being degraded.
Shun Ohishi, Takemasa Miyoshi, and Misako Kachi
Geosci. Model Dev., 15, 9057–9073, https://doi.org/10.5194/gmd-15-9057-2022, https://doi.org/10.5194/gmd-15-9057-2022, 2022
Short summary
Short summary
An adaptive observation error inflation (AOEI) method was proposed for atmospheric data assimilation to mitigate erroneous analysis updates caused by large observation-minus-forecast differences for satellite brightness temperature around clear- and cloudy-sky boundaries. This study implemented the AOEI with an ocean data assimilation system, leading to an improvement of analysis accuracy and dynamical balance around the frontal regions with large meridional temperature differences.
Diego Bruciaferri, Marina Tonani, Isabella Ascione, Fahad Al Senafi, Enda O'Dea, Helene T. Hewitt, and Andrew Saulter
Geosci. Model Dev., 15, 8705–8730, https://doi.org/10.5194/gmd-15-8705-2022, https://doi.org/10.5194/gmd-15-8705-2022, 2022
Short summary
Short summary
More accurate predictions of the Gulf's ocean dynamics are needed. We investigate the impact on the predictive skills of a numerical shelf sea model of the Gulf after changing a few key aspects. Increasing the lateral and vertical resolution and optimising the vertical coordinate system to best represent the leading physical processes at stake significantly improve the accuracy of the simulated dynamics. Additional work may be needed to get real benefit from using a more realistic bathymetry.
Matthias Gröger, Manja Placke, H. E. Markus Meier, Florian Börgel, Sandra-Esther Brunnabend, Cyril Dutheil, Ulf Gräwe, Magnus Hieronymus, Thomas Neumann, Hagen Radtke, Semjon Schimanke, Jian Su, and Germo Väli
Geosci. Model Dev., 15, 8613–8638, https://doi.org/10.5194/gmd-15-8613-2022, https://doi.org/10.5194/gmd-15-8613-2022, 2022
Short summary
Short summary
Comparisons of oceanographic climate data from different models often suffer from different model setups, forcing fields, and output of variables. This paper provides a protocol to harmonize these elements to set up multidecadal simulations for the Baltic Sea, a marginal sea in Europe. First results are shown from six different model simulations from four different model platforms. Topical studies for upwelling, marine heat waves, and stratification are also assessed.
Shun Ohishi, Tsutomu Hihara, Hidenori Aiki, Joji Ishizaka, Yasumasa Miyazawa, Misako Kachi, and Takemasa Miyoshi
Geosci. Model Dev., 15, 8395–8410, https://doi.org/10.5194/gmd-15-8395-2022, https://doi.org/10.5194/gmd-15-8395-2022, 2022
Short summary
Short summary
We develop an ensemble-Kalman-filter-based regional ocean data assimilation system in which satellite and in situ observations are assimilated at a daily frequency. We find the best setting for dynamical balance and accuracy based on sensitivity experiments focused on how to inflate the ensemble spread and how to apply the analysis update to the model evolution. This study has a broader impact on more general data assimilation systems in which the initial shocks are a significant issue.
Hector S. Torres, Patrice Klein, Jinbo Wang, Alexander Wineteer, Bo Qiu, Andrew F. Thompson, Lionel Renault, Ernesto Rodriguez, Dimitris Menemenlis, Andrea Molod, Christopher N. Hill, Ehud Strobach, Hong Zhang, Mar Flexas, and Dragana Perkovic-Martin
Geosci. Model Dev., 15, 8041–8058, https://doi.org/10.5194/gmd-15-8041-2022, https://doi.org/10.5194/gmd-15-8041-2022, 2022
Short summary
Short summary
Wind work at the air-sea interface is the scalar product of winds and currents and is the transfer of kinetic energy between the ocean and the atmosphere. Using a new global coupled ocean-atmosphere simulation performed at kilometer resolution, we show that all scales of winds and currents impact the ocean dynamics at spatial and temporal scales. The consequential interplay of surface winds and currents in the numerical simulation motivates the need for a winds and currents satellite mission.
Zhanpeng Zhuang, Quanan Zheng, Yongzeng Yang, Zhenya Song, Yeli Yuan, Chaojie Zhou, Xinhua Zhao, Ting Zhang, and Jing Xie
Geosci. Model Dev., 15, 7221–7241, https://doi.org/10.5194/gmd-15-7221-2022, https://doi.org/10.5194/gmd-15-7221-2022, 2022
Short summary
Short summary
We evaluate the impacts of surface waves and internal tides on the upper-ocean mixing in the Indian Ocean. The surface-wave-generated turbulent mixing is dominant if depth is < 30 m, while the internal-tide-induced mixing is larger than surface waves in the ocean interior from 40
to 130 m. The simulated thermal structure, mixed layer depth and surface current are all improved when the mixing schemes are jointly incorporated into the ocean model because of the strengthened vertical mixing.
Giulia Bonino, Doroteaciro Iovino, Laurent Brodeau, and Simona Masina
Geosci. Model Dev., 15, 6873–6889, https://doi.org/10.5194/gmd-15-6873-2022, https://doi.org/10.5194/gmd-15-6873-2022, 2022
Short summary
Short summary
The sea surface temperature (SST) is highly influenced by the transfer of energy driven by turbulent air–sea fluxes (TASFs). In the NEMO ocean general circulation model, TASFs are computed by means of bulk formulas. Bulk formulas require the choice of a given bulk parameterization, which influences the magnitudes of the TASFs. Our results show that parameterization-related SST differences are primarily sensitive to the wind stress differences across parameterizations.
Gustavo M. Marques, Nora Loose, Elizabeth Yankovsky, Jacob M. Steinberg, Chiung-Yin Chang, Neeraja Bhamidipati, Alistair Adcroft, Baylor Fox-Kemper, Stephen M. Griffies, Robert W. Hallberg, Malte F. Jansen, Hemant Khatri, and Laure Zanna
Geosci. Model Dev., 15, 6567–6579, https://doi.org/10.5194/gmd-15-6567-2022, https://doi.org/10.5194/gmd-15-6567-2022, 2022
Short summary
Short summary
We present an idealized ocean model configuration and a set of simulations performed using varying horizontal grid spacing. While the model domain is idealized, it resembles important geometric features of the Atlantic and Southern oceans. The simulations described here serve as a framework to effectively study mesoscale eddy dynamics, to investigate the effect of mesoscale eddies on the large-scale dynamics, and to test and evaluate eddy parameterizations.
David E. Gwyther, Colette Kerry, Moninya Roughan, and Shane R. Keating
Geosci. Model Dev., 15, 6541–6565, https://doi.org/10.5194/gmd-15-6541-2022, https://doi.org/10.5194/gmd-15-6541-2022, 2022
Short summary
Short summary
The ocean current flowing along the southeastern coast of Australia is called the East Australian Current (EAC). Using computer simulations, we tested how surface and subsurface observations might improve models of the EAC. Subsurface observations are particularly important for improving simulations, and if made in the correct location and time, can have impact 600 km upstream. The stability of the current affects model estimates could be capitalized upon in future observing strategies.
Giorgio Micaletto, Ivano Barletta, Silvia Mocavero, Ivan Federico, Italo Epicoco, Giorgia Verri, Giovanni Coppini, Pasquale Schiano, Giovanni Aloisio, and Nadia Pinardi
Geosci. Model Dev., 15, 6025–6046, https://doi.org/10.5194/gmd-15-6025-2022, https://doi.org/10.5194/gmd-15-6025-2022, 2022
Short summary
Short summary
The full exploitation of supercomputing architectures requires a deep revision of the current climate models. This paper presents the parallelization of the three-dimensional hydrodynamic model SHYFEM (System of HydrodYnamic Finite Element Modules). Optimized numerical libraries were used to partition the model domain and solve the sparse linear system of equations in parallel. The performance assessment demonstrates a good level of scalability with a realistic configuration used as a benchmark.
Young-Kwang Choi, Fengyan Shi, Matt Malej, Jane M. Smith, James T. Kirby, and Stephan T. Grilli
Geosci. Model Dev., 15, 5441–5459, https://doi.org/10.5194/gmd-15-5441-2022, https://doi.org/10.5194/gmd-15-5441-2022, 2022
Short summary
Short summary
The multi-grid-nesting technique is an important methodology used for modeling transoceanic tsunamis and coastal effects. In this study, we developed a two-way nesting interface in a multi-grid-nesting system for the Boussinesq wave model FUNWAVE-TVD. The interface acts as a
backboneof the nesting framework, handling data input, output, time sequencing, and internal interactions between grids at different scales.
Chen Zhao, Rupert Gladstone, Benjamin Keith Galton-Fenzi, David Gwyther, and Tore Hattermann
Geosci. Model Dev., 15, 5421–5439, https://doi.org/10.5194/gmd-15-5421-2022, https://doi.org/10.5194/gmd-15-5421-2022, 2022
Short summary
Short summary
We use a coupled ice–ocean model to explore an oscillation feature found in several contributing models to MISOMIP1. The oscillation is closely related to the discretized grounding line retreat and likely strengthened by the buoyancy–melt feedback and/or melt–geometry feedback near the grounding line, and frequent ice–ocean coupling. Our model choices have a non-trivial impact on mean melt and ocean circulation strength, which might be interesting for the coupled ice–ocean community.
Benoît Pasquier, Sophia K. V. Hines, Hengdi Liang, Yingzhe Wu, Steven L. Goldstein, and Seth G. John
Geosci. Model Dev., 15, 4625–4656, https://doi.org/10.5194/gmd-15-4625-2022, https://doi.org/10.5194/gmd-15-4625-2022, 2022
Short summary
Short summary
Neodymium isotopes in seawater have the potential to provide key information about ocean circulation, both today and in the past. This can shed light on the underlying drivers of global climate, which will improve our ability to predict future climate change, but uncertainties in our understanding of neodymium cycling have limited use of this tracer. We present a new model of neodymium in the modern ocean that runs extremely fast, matches observations, and is freely available for development.
Pedro Duarte, Jostein Brændshøi, Dmitry Shcherbin, Pauline Barras, Jon Albretsen, Yvonne Gusdal, Nicholas Szapiro, Andreas Martinsen, Annette Samuelsen, Keguang Wang, and Jens Boldingh Debernard
Geosci. Model Dev., 15, 4373–4392, https://doi.org/10.5194/gmd-15-4373-2022, https://doi.org/10.5194/gmd-15-4373-2022, 2022
Short summary
Short summary
Sea ice models are often implemented for very large domains beyond the regions of sea ice formation, such as the whole Arctic or all of Antarctica. In this study, we implement changes in the Los Alamos Sea Ice Model, allowing it to be implemented for relatively small regions within the Arctic or Antarctica and yet considering the presence and influence of sea ice outside the represented areas. Such regional implementations are important when spatially detailed results are required.
Elias J. Hunter, Heidi L. Fuchs, John L. Wilkin, Gregory P. Gerbi, Robert J. Chant, and Jessica C. Garwood
Geosci. Model Dev., 15, 4297–4311, https://doi.org/10.5194/gmd-15-4297-2022, https://doi.org/10.5194/gmd-15-4297-2022, 2022
Short summary
Short summary
ROMSPath is an offline particle tracking model tailored for use with output from Regional Ocean Modeling System (ROMS) simulations. It is an update to an established system, the Lagrangian TRANSport (LTRANS) model, including a number of improvements. These include a modification of the model coordinate system which improved accuracy and numerical efficiency, and added functionality for nested grids and Stokes drift.
Alexander Barth, Aida Alvera-Azcárate, Charles Troupin, and Jean-Marie Beckers
Geosci. Model Dev., 15, 2183–2196, https://doi.org/10.5194/gmd-15-2183-2022, https://doi.org/10.5194/gmd-15-2183-2022, 2022
Short summary
Short summary
Earth-observing satellites provide routine measurement of several ocean parameters. However, these datasets have a significant amount of missing data due to the presence of clouds or other limitations of the employed sensors. This paper describes a method to infer the value of the missing satellite data based on a convolutional autoencoder (a specific type of neural network architecture). The technique also provides a reliable error estimate of the interpolated value.
Olivier Sulpis, Matthew P. Humphreys, Monica M. Wilhelmus, Dustin Carroll, William M. Berelson, Dimitris Menemenlis, Jack J. Middelburg, and Jess F. Adkins
Geosci. Model Dev., 15, 2105–2131, https://doi.org/10.5194/gmd-15-2105-2022, https://doi.org/10.5194/gmd-15-2105-2022, 2022
Short summary
Short summary
A quarter of the surface of the Earth is covered by marine sediments rich in calcium carbonates, and their dissolution acts as a giant antacid tablet protecting the ocean against human-made acidification caused by massive CO2 emissions. Here, we present a new model of sediment chemistry that incorporates the latest experimental findings on calcium carbonate dissolution kinetics. This model can be used to predict how marine sediments evolve through time in response to environmental perturbations.
Alisée A. Chaigneau, Guillaume Reffray, Aurore Voldoire, and Angélique Melet
Geosci. Model Dev., 15, 2035–2062, https://doi.org/10.5194/gmd-15-2035-2022, https://doi.org/10.5194/gmd-15-2035-2022, 2022
Short summary
Short summary
Climate-change-induced sea level rise is a major threat for coastal and low-lying regions. Projections of coastal sea level changes are thus of great interest for coastal risk assessment and have significantly developed in recent years. In this paper, the objective is to provide high-resolution (6 km) projections of sea level changes in the northeastern Atlantic region bordering western Europe. For that purpose, a regional model is used to refine existing coarse global projections.
Victor Onink, Erik van Sebille, and Charlotte Laufkötter
Geosci. Model Dev., 15, 1995–2012, https://doi.org/10.5194/gmd-15-1995-2022, https://doi.org/10.5194/gmd-15-1995-2022, 2022
Short summary
Short summary
Turbulent mixing is a vital process in 3D modeling of particle transport in the ocean. However, since turbulence occurs on very short spatial scales and timescales, large-scale ocean models generally have highly simplified turbulence representations. We have developed parametrizations for the vertical turbulent transport of buoyant particles that can be easily applied in a large-scale particle tracking model. The predicted vertical concentration profiles match microplastic observations well.
Gaston Irrmann, Sébastien Masson, Éric Maisonnave, David Guibert, and Erwan Raffin
Geosci. Model Dev., 15, 1567–1582, https://doi.org/10.5194/gmd-15-1567-2022, https://doi.org/10.5194/gmd-15-1567-2022, 2022
Short summary
Short summary
To be efficient on supercomputers, software must be high-performance at computing many concurrent tasks. Communications between tasks is often necessary but time consuming, and ocean modelling software NEMO 4.0 is no exception.
In this work we describe approaches enabling fewer communications, an optimization to share the workload more equally between tasks and a new flexible configuration to assess NEMO's performance easily.
Xueming Zhu, Ziqing Zu, Shihe Ren, Miaoyin Zhang, Yunfei Zhang, Hui Wang, and Ang Li
Geosci. Model Dev., 15, 995–1015, https://doi.org/10.5194/gmd-15-995-2022, https://doi.org/10.5194/gmd-15-995-2022, 2022
Short summary
Short summary
SCSOFS has provided daily updated marine forecasting in the South China Sea for the next 5 d since 2013. Comprehensive updates have been conducted to the configurations of SCSOFS's physical model and data assimilation scheme in order to improve its forecasting skill. The three most sensitive updates are highlighted. Scientific comparison and accuracy assessment results indicate that remarkable improvements have been achieved in SCSOFSv2 with respect to the original version SCSOFSv1.
Cited articles
Accad, Y. and Pekeris, C. L.: Solution of the tidal equations for the M2 and
S2 tides in the world oceans from a knowledge of the tidal potential alone,
Philos. T. R. Soc. S.-A, 290, 235–266,
https://doi.org/10.1098/rsta.1978.0083, 1978. a
Ackermann, L., Danek, C., Gierz, P., and Lohmann, G.: AMOC Recovery in a
Multicentennial Scenario Using a Coupled Atmosphere-Ocean-Ice Sheet Model,
Geophys. Res. Lett., 47, e2019GL086810, https://doi.org/10.1029/2019GL086810, 2020. a
Arbic, B. K., Alford, M. H., Ansong, J. K., Buijsman, M. C., Ciotti, R. B.,
Farrar, J. T., Hallberg, R. W., Henze, C. E., Hill, C. N., Luecke, C. A.,
Menemenlis, D., Metzger, E. J., Müeller, M., Nelson, A. D., Nelson,
B. C., Ngodock, H. E., Ponte, R. M., Richman, J. G., Savage, A. C., Scott,
R. B., Shriver, J. F., Simmons, H. L., Souopgui, I., Timko, P. G., Wallcraft,
A. J., Zamudio, L., and Zhao, Z.: A Primer on Global Internal Tide and
Internal Gravity Wave Continuum Modeling in HYCOM and MITgcm, in: New
Frontiers in Operational Oceanography, GODAE OceanView, 307–392,
https://doi.org/10.17125/gov2018.ch13, 2018. a
Bessières, L., Madec, G., and Lyard, F.: Global tidal residual mean
circulation: Does it affect a climate OGCM?, Geophys. Res. Lett.,
35, L03609, https://doi.org/10.1029/2007GL032644, 2008. a
Biastoch, A., Böning, C. W., and Lutjeharms, J.: Agulhas leakage dynamics
affects decadal variability in Atlantic overturning circulation, Nature,
456, 489–492, https://doi.org/10.1038/nature07426, 2008. a
Bryan, F.: Parameter Sensitivity of Primitive Equation Ocean General
Circulation Models, J. Phys. Oceanogr., 17, 970–985,
https://doi.org/10.1175/1520-0485(1987)017<0970:PSOPEO>2.0.CO;2, 1987. a
Caldwell, P. C., Merrifield, M. A., and Thompson, P. R.: Sea level measured by tide gauges from global oceans as part of the Joint Archive for Sea Level (JASL) since 1846, NOAA National Centers for Environmental
Information [data set], https://doi.org/10.7289/V5V40S7W, 2015. a, b
Cummins, P. F. and Oey, L. Y.: Simulation of barotropic and baroclinic tides
off northern British Columbia, J. Phys. Oceanogr., 27,
762–781, https://doi.org/10.1175/1520-0485(1997)027<0762:SOBABT>2.0.CO;2, 1997. a
Danek, C., Scholz, P., and Lohmann, G.: Effects of high resolution and spinup
time on modeled North Atlantic circulation, J. Phys.
Oceanogr., 49, 1159–1181, https://doi.org/10.1175/JPO-D-18-0141.1, 2019. a
Danilov, S., Sidorenko, D., Wang, Q., and Jung, T.: The Finite-volumE Sea ice–Ocean Model (FESOM2), Geosci. Model Dev., 10, 765–789, https://doi.org/10.5194/gmd-10-765-2017, 2017. a, b, c
Duffett-Smith, P.: Astronomy with your Personal Computer, 2 edn., Cambridge University
Press, https://doi.org/10.1017/CBO9780511564888, 1990. a
Ermold, W. and Steele, M.: Polar science center Hydrographic Climatology (PHC), Polar Science Center [data set], http://psc.apl.washington.edu/nonwp_projects/PHC/Climatology.html, last access: 11 August 2022. a
Exarchou, E., Von Storch, J. S., and Jungclaus, J. H.: Impact of tidal
mixing with different scales of bottom roughness on the general circulation,
Ocean Dynam., 62, 1545–1563, https://doi.org/10.1007/s10236-012-0573-1, 2012. a
Falahat, S. and Nycander, J.: On the generation of bottom-trapped internal
tides, J. Phys. Oceanogr., 45, 526–545,
https://doi.org/10.1175/JPO-D-14-0081.1, 2015. a, b
Ferrari, R., Griffies, S. M., Nurser, A. G., and Vallis, G. K.: A
boundary-value problem for the parameterized mesoscale eddy transport, Ocean
Model., 32, 143–156, https://doi.org/10.1016/j.ocemod.2010.01.004, 2010. a
Ferrari, R., Mashayek, A., McDougall, T. J., Nikurashin, M., and Campin, J. M.:
Turning ocean mixing upside down, J. Phys. Oceanogr., 46,
2239–2261, https://doi.org/10.1175/JPO-D-15-0244.1, 2016. a
Friedrich, T., Timmermann, A., Decloedt, T., Luther, D. S., and Mouchet, A.:
The effect of topography-enhanced diapycnal mixing on ocean and atmospheric
circulation and marine biogeochemistry, Ocean Model., 39, 262–274,
https://doi.org/10.1016/j.ocemod.2011.04.012, 2011. a, b
Gent, P. R. and Mcwilliams, J. C.: Isopycnal Mixing in Ocean Circulation
Models, J. Phys. Oceanogr., 20, 150–155,
https://doi.org/10.1175/1520-0485(1990)020<0150:imiocm>2.0.co;2, 1990. a, b
Geophysical Fluid Dynamics Laboratory: Version 2 Forcing for Coordinated Ocean-ice Reference Experiments (CORE), Geophysical Fluid Dynamics Laboratory [data set], https://data1.gfdl.noaa.gov/nomads/forms/core/COREv2.html, last access: 11 August 2022. a
Griffies, S. M., Levy, M., Adcroft, A. J., Danabasoglu, G., Hallberg, R. W., Jacobsen, D., Large, W., and Ringler, T.: Theory and numerics of the Community Ocean Vertical Mixing (CVMix) project, Technical Report, https://github.com/CVMix/CVMix-description/blob/master/cvmix.pdf (last access: 9 January 2022), 2015. a
Hibler, W. D.: A Dynamic Thermodynamic Sea Ice Model, J. Phys.
Oceanogr., 9, 815–846,
https://doi.org/10.1175/1520-0485(1979)009<0815:ADTSIM>2.0.CO;2, 1979. a
Huang, R. X.: Energetics of the oceanic circulation, in: Ocean Circulation:
Wind-Driven and Thermohaline Processes, Cambridge University
Press, Cambridge, 149–258, https://doi.org/10.1017/CBO9780511812293.004, 2009. a
Itoh, S., Tanaka, Y., Osafune, S., Yasuda, I., Yagi, M., Kaneko, H., Konda, S.,
Nishioka, J., and N. Volkov, Y.: Direct breaking of large-amplitude
internal waves in the Urup Strait, Prog. Oceanogr., 126, 109–120,
https://doi.org/10.1016/j.pocean.2014.04.014, 2014. a
Jayne, S. R.: The impact of abyssal mixing parameterizations in an ocean
general circulation model, J. Phys. Oceanogr., 39, 1756–1775,
https://doi.org/10.1175/2009JPO4085.1, 2009. a, b, c
Jayne, S. R. and St. Laurent, L. C.: Parameterizing tidal dissipation over
rough topography, Geophys. Res. Lett., 28, 811–814,
https://doi.org/10.1029/2000GL012044, 2001. a
Juricke, S., Danilov, S., Kutsenko, A., and Oliver, M.: Ocean kinetic energy
backscatter parametrizations on unstructured grids: Impact on mesoscale
turbulence in a channel, Ocean Model., 138, 51–67,
https://doi.org/10.1016/j.ocemod.2019.03.009, 2019. a, b
Kantha, L. H.: Barotropic tides in the global oceans from a nonlinear tidal
model assimilating altimetric tides 1. Model description and results,
J. Geophys. Res., 100, 25283–25308, https://doi.org/10.1029/95jc02578, 1995. a
Koch-Larrouy, A., Madec, G., Bouruet-Aubertot, P., Gerkema, T.,
Bessières, L., and Molcard, R.: On the transformation of Pacific Water
into Indonesian Throughflow Water by internal tidal mixing, Geophys.
Res. Lett., 34, L04604, https://doi.org/10.1029/2006GL028405, 2007. a
Large, W. G. and Yeager, S. G.: The global climatology of an interannually
varying air–sea flux data set, Clim. Dynam., 33, 341–364,
https://doi.org/10.1007/s00382-008-0441-3, 2009. a, b
Large, W. G., McWilliams, J. C., and Doney, S. C.: Oceanic vertical mixing: A
review and a model with a nonlocal boundary layer parameterization, Rev. Geophys., 32, 363–403, https://doi.org/10.1029/94RG01872, 1994. a
Ledwell, J. R., Montgomery, E. T., Polzin, K. L., St. Laurent, L. C.,
Schmitt, R. W., and Toole, J. M.: Evidence for enhanced mixing over rough
topography in the abyssal ocean, Nature, 403, 179–182,
https://doi.org/10.1038/35003164, 2000. a, b, c
Lee, H. C., Rosati, A., and Spelman, M. J.: Barotropic tidal mixing effects in
a coupled climate model: Oceanic conditions in the Northern Atlantic, Ocean
Model., 11, 464–477, https://doi.org/10.1016/j.ocemod.2005.03.003, 2006. a, b
Lemarié, F., Debreu, L., Madec, G., Demange, J., Molines, J. M., and
Honnorat, M.: Stability constraints for oceanic numerical models:
Implications for the formulation of time and space discretizations, Ocean
Model., 92, 124–148, https://doi.org/10.1016/j.ocemod.2015.06.006, 2015. a
Li, Z., von Storch, J. S., and Müller, M.: The M2 internal tide
simulated by a ∘ OGCM, J. Phys. Oceanogr., 45,
3119–3135, https://doi.org/10.1175/JPO-D-14-0228.1, 2015. a
Locarnini, R. A., Mishonov, A.V., Baranova, O. K., Boyer, T. P., Zweng, M. M., Garcia, H. E., Reagan, J. R., Seidov, D., Weathers, K. W., Paver, C. R., and Smolyar, I. V.: World Ocean Atlas 2018 Volume 1: Temperature, edited by: Mishonov, A., Technical Editor, NOAA Atlas NESDIS, 81, 52 pp., 2019. a, b
Logemann, K., Linardakis, L., Korn, P., and Schrum, C.: Global tide
simulations with ICON-O: testing the model performance on highly irregular
meshes, Ocean Dynam., 71, 43–57, https://doi.org/10.1007/s10236-020-01428-7, 2021. a
Lohmann, G.: Temperatures from energy balance models: the effective heat capacity matters, Earth Syst. Dynam., 11, 1195–1208, https://doi.org/10.5194/esd-11-1195-2020, 2020. a
Lohmann, G., Butzin, M., Eissner, N., Shi, X., and Stepanek, C.: Abrupt
Climate and Weather Changes Across Time Scales, Paleoceanography and
Paleoclimatology, 35, e2019PA003782, https://doi.org/10.1029/2019PA003782, 2020. a
Marshall, J. and Speer, K.: Closure of the meridional overturning circulation
through Southern Ocean upwelling, Nat. Geosci., 5, 171–180,
https://doi.org/10.1038/ngeo1391, 2012. a
Melet, A., Legg, S., and Hallberg, R.: Climatic impacts of parameterized local
and remote tidal mixing, J. Climate, 29, 3473–3500,
https://doi.org/10.1175/JCLI-D-15-0153.1, 2016. a
Müller, M., Haak, H., Jungclaus, J. H., Sündermann, J., and Thomas,
M.: The effect of ocean tides on a climate model simulation, Ocean
Model., 35, 304–313, https://doi.org/10.1016/j.ocemod.2010.09.001, 2010. a, b, c
Nagai, T. and Hibiya, T.: Internal tides and associated vertical mixing in the
Indonesian Archipelago, J. Geophys. Res.-Oceans, 120,
3373–3390, https://doi.org/10.1002/2014JC010592, 2015. a
Nakamura, T., Isoda, Y., Mitsudera, H., Takagi, S., and Nagasawa, M.: Breaking
of unsteady lee waves generated by diurnal tides, Geophys. Res.
Lett., 37, L04602, https://doi.org/10.1029/2009GL041456, 2010. a
National Centers for Environmental Information (NCEI): World Ocean Atlas, NCEI [data set], https://www.ncei.noaa.gov/products/world-ocean-atlas, last access: 11 August 2022. a
Niwa, Y. and Hibiya, T.: Estimation of baroclinic tide energy available for
deep ocean mixing based on three-dimensional global numerical simulations,
J. Oceanogr., 67, 493–502, https://doi.org/10.1007/s10872-011-0052-1, 2011. a, b
Niwa, Y. and Hibiya, T.: Generation of baroclinic tide energy in a global
three-dimensional numerical model with different spatial grid resolutions,
Ocean Model., 80, 59–73, https://doi.org/10.1016/j.ocemod.2014.05.003, 2014. a, b
Oka, A. and Niwa, Y.: Pacific deep circulation and ventilation controlled by
tidal mixing away from the sea bottom, Nat. Commun., 4, 2419,
https://doi.org/10.1038/ncomms3419, 2013. a, b
Olbers, D. and Eden, C.: A global model for the diapycnal diffusivity induced
by internal gravity waves, J. Phys. Oceanogr., 43, 1759–1779,
https://doi.org/10.1175/JPO-D-12-0207.1, 2013. a
Osborn, T. R.: Estimates of the Local Rate of Vertical Diffusion from
Dissipation Measurements, J. Phys. Oceanogr., 10, 83–89,
https://doi.org/10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2, 1980. a
Pawlowicz, R., Beardsley, B., and Lentz, S.: Classical tidal harmonic analysis
including error estimates in MATLAB using TDE, Comput. Geosci.,
28, 929–937, https://doi.org/10.1016/S0098-3004(02)00013-4, 2002. a
Polzin, K. L., Toole, J. M., Ledwell, J. R., and Schmitt, R. W.: Spatial
variability of turbulent mixing in the abyssal ocean, Science, 276, 93–96,
https://doi.org/10.1126/science.276.5309.93, 1997. a, b, c, d
Prange, M., Lohmann, G., and Paul, A.: Influence of Vertical Mixing on the
Thermohaline Hysteresis: Analyses of an OGCM, J. Phys.
Oceanogr., 33, 1707–1721,
https://doi.org/10.1175/1520-0485(2003)033<1707:iovmot>2.0.co;2, 2003. a
Ray, R. D.: Ocean self-attraction and loading in numerical tidal models,
Mar. Geod., 21, 181–192, https://doi.org/10.1080/01490419809388134, 1998. a
Redi, M. H.: Oceanic isopycnal mixing by coordinate rotation, J.
Phys. Oceanogr., 12, 1154–1158,
https://doi.org/10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2, 1982. a
Saenko, O. A. and Merryfield, W. J.: On the effect of topographically enhanced
mixing on the global ocean circulation, J. Phys. Oceanogr.,
35, 826–834, https://doi.org/10.1175/JPO2722.1, 2005. a, b
Sasaki, H., Kida, S., Furue, R., Nonaka, M., and Masumoto, Y.: An Increase of
the Indonesian Throughflow by Internal Tidal Mixing in a High-Resolution
Quasi-Global Ocean Simulation, Geophys. Res. Lett., 45, 8416–8424,
https://doi.org/10.1029/2018GL078040, 2018. a
Schiller, A.: Effects of explicit tidal forcing in an OGCM on the water-mass
structure and circulation in the Indonesian throughflow region, Ocean
Model., 6, 31–49, https://doi.org/10.1016/S1463-5003(02)00057-4, 2004. a, b
Scholz, P., Sidorenko, D., Gurses, O., Danilov, S., Koldunov, N., Wang, Q., Sein, D., Smolentseva, M., Rakowsky, N., and Jung, T.: Assessment of the Finite-volumE Sea ice-Ocean Model (FESOM2.0) – Part 1: Description of selected key model elements and comparison to its predecessor version, Geosci. Model Dev., 12, 4875–4899, https://doi.org/10.5194/gmd-12-4875-2019, 2019. a
Scholz, P., Sidorenko, D., Danilov, S., Wang, Q., Koldunov, N., Sein, D., and Jung, T.: Assessment of the Finite-VolumE Sea ice–Ocean Model (FESOM2.0) – Part 2: Partial bottom cells, embedded sea ice and vertical mixing library CVMix, Geosci. Model Dev., 15, 335–363, https://doi.org/10.5194/gmd-15-335-2022, 2022. a
Scott, J. R. and Marotzke, J.: The Location of Diapycnal Mixing and the
Meridional Overturning Circulation, J. Phys. Oceanogr., 32,
3578–3595, https://doi.org/10.1175/1520-0485(2002)032<3578:TLODMA>2.0.CO;2, 2002. a
Shchepetkin, A. F.: An adaptive, Courant-number-dependent implicit scheme for
vertical advection in oceanic modeling, Ocean Model., 91, 38–69,
https://doi.org/10.1016/j.ocemod.2015.03.006, 2015. a
Shi, X. and Lohmann, G.: Simulated response of the mid-Holocene Atlantic
meridional overturning circulation in ECHAM6-FESOM/MPIOM, J.
Geophys. Res.-Oceans, 121, 6444–6469, https://doi.org/10.1002/2015JC011584,
2016. a
Shihora, L., Sulzbach, R., Dobslaw, H., and Thomas, M.: Self-attraction and
loading feedback on ocean dynamics in both shallow water equations and
primitive equations, Ocean Model., 169, 101914,
https://doi.org/10.1016/j.ocemod.2021.101914, 2022. a
Shriver, J. F., Arbic, B. K., Richman, J. G., Ray, R. D., Metzger, E. J.,
Wallcraft, A. J., and Timko, P. G.: An evaluation of the barotropic and
internal tides in a high-resolution global ocean circulation model, J. Geophys. Res.-Oceans, 117, C10024, https://doi.org/10.1029/2012JC008170, 2012. a, b
Sidorenko, D., Danilov, S., Koldunov, N., Scholz, P., and Wang, Q.: Simple algorithms to compute meridional overturning and barotropic streamfunctions on unstructured meshes, Geosci. Model Dev., 13, 3337–3345, https://doi.org/10.5194/gmd-13-3337-2020, 2020. a, b, c
Simmons, H. L., Jayne, S. R., St. Laurent, L. C., and Weaver, A. J.: Tidally
driven mixing in a numerical model of the ocean general circulation, Ocean
Model., 6, 245–263, https://doi.org/10.1016/S1463-5003(03)00011-8, 2004. a, b, c, d
Song, P. and Chen, X.: Investigation of the Internal Tides in the Northwest
Pacific Ocean Considering the Background Circulation and Stratification,
J. Phys. Oceanogr., 50, 3165–3188,
https://doi.org/10.1175/JPO-D-19-0177.1, 2020. a
Song, P., Sidorenko, D., Scholz, P., Thomas, M., and Lohmann, G.: The tidal
effects in the Finite-volumE Sea ice–Ocean Model (FESOM2.1): a comparison
between parameterized tidal mixing and explicit tidal forcing, Zenodo [code and data set],
https://doi.org/10.5281/zenodo.7457752, 2021. a
Steele, M., Morley, R., and Ermold, W.: PHC: A Global Ocean Hydrography with a
High-Quality Arctic Ocean, J. Climate, 14, 2079–2087,
https://doi.org/10.1175/1520-0442(2001)014<2079:PAGOHW>2.0.CO;2, 2001. a, b
Stepanov, V. N. and Hughes, C. W.: Parameterization of ocean self-attraction
and loading in numerical models of the ocean circulation, J.
Geophys. Res.-Oceans, 109, C03037, https://doi.org/10.1029/2003jc002034, 2004. a
St. Laurent, L. C., Simmons, H. L., and Jayne, S. R.: Estimating tidally
driven mixing in the deep ocean, Geophys. Res. Lett., 29,
2106, https://doi.org/10.1029/2002GL015633, 2002. a
Sulzbach, R., Dobslaw, H., and Thomas, M.: High-Resolution Numerical Modeling
of Barotropic Global Ocean Tides for Satellite Gravimetry, J.
Geophys. Res.-Oceans, 126, e2020JC017097, https://doi.org/10.1029/2020JC017097, 2021.
a
Talley, L. D., Pickard, G. L., Emery, W. J., and Swift, J. H.: Chapter S14 –
Global Circulation and Water Properties: Supplementary Materials, in:
Descriptive Physical Oceanography (Sixth Edition), 6 edn., Academic Press,
Boston, 1–9, https://doi.org/10.1016/B978-0-7506-4552-2.10026-5, 2011. a
Tanaka, T., Yasuda, I., Tanaka, Y., and Carter, G. S.: Numerical study on
tidal mixing along the shelf break in the Green Belt in the southeastern
Bering Sea, J. Geophys. Res.-Oceans, 118, 6525–6542,
https://doi.org/10.1002/2013JC009113, 2013. a
Tanaka, Y., Hibiya, T., Niwa, Y., and Iwamae, N.: Numerical study of K1
internal tides in the Kuril straits, J. Geophys. Res.-Oceans, 115, C09016, https://doi.org/10.1029/2009JC005903, 2010. a
Tatebe, H., Tanaka, Y., Komuro, Y., and Hasumi, H.: Impact of deep ocean
mixing on the climatic mean state in the Southern Ocean, Scientific Reports,
8, 14479, https://doi.org/10.1038/s41598-018-32768-6, 2018. a, b
Thomas, M., Sündermann, J., and Maier-Reimer, E.: Consideration of ocean
tides in an OGCM and impacts on subseasonal to decadal polar motion
excitation, Geophys. Res. Lett., 28, 2457–2460,
https://doi.org/10.1029/2000GL012234, 2001. a, b
Tsujino, H., Hasumi, H., and Suginohara, N.: Deep Pacific Circulation
Controlled by Vertical Diffusivity at the Lower Thermocline Depths, J. Phys. Oceanogr., 30, 2853–2865,
https://doi.org/10.1175/1520-0485(2001)031<2853:DPCCBV>2.0.CO;2, 2000. a
Wahr, J. M.: Body tides on an elliptical, rotating, elastic and oceanless
earth, Geophys. J. Int., 64, 677–703,
https://doi.org/10.1111/j.1365-246X.1981.tb02690.x, 1981. a
Wang, Q., Danilov, S., Sidorenko, D., Timmermann, R., Wekerle, C., Wang, X., Jung, T., and Schröter, J.: The Finite Element Sea Ice-Ocean Model (FESOM) v.1.4: formulation of an ocean general circulation model, Geosci. Model Dev., 7, 663–693, https://doi.org/10.5194/gmd-7-663-2014, 2014. a
Weber, T. and Thomas, M.: Tidal dynamics and their influence on the climate
system from the Cretaceous to present day, Global Planet. Change, 158,
173–183, https://doi.org/10.1016/j.gloplacha.2017.09.019, 2017. a
Yu, Y., Liu, H., and Lan, J.: The influence of explicit tidal forcing in a
climate ocean circulation model, Acta Oceanol. Sin., 35, 42–50,
https://doi.org/10.1007/s13131-016-0931-9, 2016. a, b
Zweng, M. M., Reagan, J. R., Seidov, D., Boyer T. P., Locarnini, R. A., Garcia, H. E., Mishonov, A. V., Baranova, O. K., Weathers, K. W., Paver, C. R., and Smolyar, I. V.: World Ocean Atlas 2018, Volume 2: Salinity, edited by: Mishonov, A., Technical Editor, NOAA Atlas NESDIS, 82, 50 pp., 2019. a, b
Short summary
Tides have essential effects on the ocean and climate. Most previous research applies parameterised tidal mixing to discuss their effects in models. By comparing the effect of a tidal mixing parameterisation and tidal forcing on the ocean state, we assess the advantages and disadvantages of the two methods. Our results show that tidal mixing in the North Pacific Ocean strongly affects the global thermohaline circulation. We also list some effects that are not considered in the parameterisation.
Tides have essential effects on the ocean and climate. Most previous research applies...