Articles | Volume 16, issue 10
https://doi.org/10.5194/gmd-16-2753-2023
https://doi.org/10.5194/gmd-16-2753-2023
Methods for assessment of models
 | 
23 May 2023
Methods for assessment of models |  | 23 May 2023

PyFLEXTRKR: a flexible feature tracking Python software for convective cloud analysis

Zhe Feng, Joseph Hardin, Hannah C. Barnes, Jianfeng Li, L. Ruby Leung, Adam Varble, and Zhixiao Zhang

Related authors

Tracking precipitation features and associated large-scale environments over southeastern Texas
Ye Liu, Yun Qian, Larry K. Berg, Zhe Feng, Jianfeng Li, Jingyi Chen, and Zhao Yang
Atmos. Chem. Phys., 24, 8165–8181, https://doi.org/10.5194/acp-24-8165-2024,https://doi.org/10.5194/acp-24-8165-2024, 2024
Short summary
A derecho climatology (2004–2021) in the United States based on machine learning identification of bow echoes
Jianfeng Li, Andrew Geiss, Zhe Feng, L. Ruby Leung, Yun Qian, and Wenjun Cui
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-112,https://doi.org/10.5194/essd-2024-112, 2024
Revised manuscript accepted for ESSD
Short summary
Climatological occurrences of hail and tornadoes associated with mesoscale convective systems in the United States
Jingyu Wang, Jiwen Fan, and Zhe Feng
Nat. Hazards Earth Syst. Sci., 23, 3823–3838, https://doi.org/10.5194/nhess-23-3823-2023,https://doi.org/10.5194/nhess-23-3823-2023, 2023
Short summary
A high-resolution unified observational data product of mesoscale convective systems and isolated deep convection in the United States for 2004–2017
Jianfeng Li, Zhe Feng, Yun Qian, and L. Ruby Leung
Earth Syst. Sci. Data, 13, 827–856, https://doi.org/10.5194/essd-13-827-2021,https://doi.org/10.5194/essd-13-827-2021, 2021
Short summary
The Green Ocean: precipitation insights from the GoAmazon2014/5 experiment
Die Wang, Scott E. Giangrande, Mary Jane Bartholomew, Joseph Hardin, Zhe Feng, Ryan Thalman, and Luiz A. T. Machado
Atmos. Chem. Phys., 18, 9121–9145, https://doi.org/10.5194/acp-18-9121-2018,https://doi.org/10.5194/acp-18-9121-2018, 2018

Related subject area

Atmospheric sciences
Quantification of CO2 hotspot emissions from OCO-3 SAM CO2 satellite images using deep learning methods
Joffrey Dumont Le Brazidec, Pierre Vanderbecken, Alban Farchi, Grégoire Broquet, Gerrit Kuhlmann, and Marc Bocquet
Geosci. Model Dev., 18, 3607–3622, https://doi.org/10.5194/gmd-18-3607-2025,https://doi.org/10.5194/gmd-18-3607-2025, 2025
Short summary
Diagnosis of winter precipitation types using the spectral bin model (version 1DSBM-19M): comparison of five methods using ICE-POP 2018 field experiment data
Wonbae Bang, Jacob T. Carlin, Kwonil Kim, Alexander V. Ryzhkov, Guosheng Liu, and GyuWon Lee
Geosci. Model Dev., 18, 3559–3581, https://doi.org/10.5194/gmd-18-3559-2025,https://doi.org/10.5194/gmd-18-3559-2025, 2025
Short summary
Improving winter condition simulations in SURFEX-TEB v9.0 with a multi-layer snow model and ice
Gabriel Colas, Valéry Masson, François Bouttier, Ludovic Bouilloud, Laura Pavan, and Virve Karsisto
Geosci. Model Dev., 18, 3453–3472, https://doi.org/10.5194/gmd-18-3453-2025,https://doi.org/10.5194/gmd-18-3453-2025, 2025
Short summary
UA-ICON with the NWP physics package (version ua-icon-2.1): mean state and variability of the middle atmosphere
Markus Kunze, Christoph Zülicke, Tarique A. Siddiqui, Claudia C. Stephan, Yosuke Yamazaki, Claudia Stolle, Sebastian Borchert, and Hauke Schmidt
Geosci. Model Dev., 18, 3359–3385, https://doi.org/10.5194/gmd-18-3359-2025,https://doi.org/10.5194/gmd-18-3359-2025, 2025
Short summary
Integrated Methane Inversion (IMI) 2.0: an improved research and stakeholder tool for monitoring total methane emissions with high resolution worldwide using TROPOMI satellite observations
Lucas A. Estrada, Daniel J. Varon, Melissa Sulprizio, Hannah Nesser, Zichong Chen, Nicholas Balasus, Sarah E. Hancock, Megan He, James D. East, Todd A. Mooring, Alexander Oort Alonso, Joannes D. Maasakkers, Ilse Aben, Sabour Baray, Kevin W. Bowman, John R. Worden, Felipe J. Cardoso-Saldaña, Emily Reidy, and Daniel J. Jacob
Geosci. Model Dev., 18, 3311–3330, https://doi.org/10.5194/gmd-18-3311-2025,https://doi.org/10.5194/gmd-18-3311-2025, 2025
Short summary

Cited articles

Ashley, W. S., Mote, T. L., Dixon, P. G., Trotter, S. L., Powell, E. J., Durkee, J. D., and Grundstein, A. J.: Distribution of Mesoscale Convective Complex Rainfall in the United States, Mon. Weather Rev., 131, 3003–3017, https://doi.org/10.1175/1520-0493(2003)131<3003:DOMCCR>2.0.CO;2, 2003. 
Barber, K. A., Burleyson, C. D., Feng, Z., and Hagos, S. M.: The influence of shallow cloud populations on transitions to deep convection in the Amazon, J. Atmos. Sci., 79, 723–743, https://doi.org/10.1175/jas-d-21-0141.1, 2021. 
Catto, J. L., Jakob, C., and Nicholls, N.: Can the CMIP5 models represent winter frontal precipitation?, Geophys. Res. Lett., 42, 8596–8604, https://doi.org/10.1002/2015GL066015, 2015. 
Chen, J., Hagos, S., Feng, Z., Fast, J. D., and Xiao, H.: The Role of Cloud-Cloud Interactions in the Organization of Shallow Cumulus Clouds, J. Atmos. Sci., 80, 671–686, https://doi.org/10.1175/jas-d-22-0004.1, 2022. 
Download
Short summary
PyFLEXTRKR is a flexible atmospheric feature tracking framework with specific capabilities to track convective clouds from a variety of observations and model simulations. The package has a collection of multi-object identification algorithms and has been optimized for large datasets. This paper describes the algorithms and demonstrates applications for tracking deep convective cells and mesoscale convective systems from observations and model simulations at a wide range of scales.
Share