Articles | Volume 16, issue 10
https://doi.org/10.5194/gmd-16-2753-2023
https://doi.org/10.5194/gmd-16-2753-2023
Methods for assessment of models
 | 
23 May 2023
Methods for assessment of models |  | 23 May 2023

PyFLEXTRKR: a flexible feature tracking Python software for convective cloud analysis

Zhe Feng, Joseph Hardin, Hannah C. Barnes, Jianfeng Li, L. Ruby Leung, Adam Varble, and Zhixiao Zhang

Related authors

Tracking precipitation features and associated large-scale environments over southeastern Texas
Ye Liu, Yun Qian, Larry K. Berg, Zhe Feng, Jianfeng Li, Jingyi Chen, and Zhao Yang
EGUsphere, https://doi.org/10.5194/egusphere-2024-112,https://doi.org/10.5194/egusphere-2024-112, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Climatological occurrences of hail and tornadoes associated with mesoscale convective systems in the United States
Jingyu Wang, Jiwen Fan, and Zhe Feng
Nat. Hazards Earth Syst. Sci., 23, 3823–3838, https://doi.org/10.5194/nhess-23-3823-2023,https://doi.org/10.5194/nhess-23-3823-2023, 2023
Short summary
A high-resolution unified observational data product of mesoscale convective systems and isolated deep convection in the United States for 2004–2017
Jianfeng Li, Zhe Feng, Yun Qian, and L. Ruby Leung
Earth Syst. Sci. Data, 13, 827–856, https://doi.org/10.5194/essd-13-827-2021,https://doi.org/10.5194/essd-13-827-2021, 2021
Short summary
The Green Ocean: precipitation insights from the GoAmazon2014/5 experiment
Die Wang, Scott E. Giangrande, Mary Jane Bartholomew, Joseph Hardin, Zhe Feng, Ryan Thalman, and Luiz A. T. Machado
Atmos. Chem. Phys., 18, 9121–9145, https://doi.org/10.5194/acp-18-9121-2018,https://doi.org/10.5194/acp-18-9121-2018, 2018
Overview: Precipitation characteristics and sensitivities to environmental conditions during GoAmazon2014/5 and ACRIDICON-CHUVA
Luiz A. T. Machado, Alan J. P. Calheiros, Thiago Biscaro, Scott Giangrande, Maria A. F. Silva Dias, Micael A. Cecchini, Rachel Albrecht, Meinrat O. Andreae, Wagner F. Araujo, Paulo Artaxo, Stephan Borrmann, Ramon Braga, Casey Burleyson, Cristiano W. Eichholz, Jiwen Fan, Zhe Feng, Gilberto F. Fisch, Michael P. Jensen, Scot T. Martin, Ulrich Pöschl, Christopher Pöhlker, Mira L. Pöhlker, Jean-François Ribaud, Daniel Rosenfeld, Jaci M. B. Saraiva, Courtney Schumacher, Ryan Thalman, David Walter, and Manfred Wendisch
Atmos. Chem. Phys., 18, 6461–6482, https://doi.org/10.5194/acp-18-6461-2018,https://doi.org/10.5194/acp-18-6461-2018, 2018
Short summary

Related subject area

Atmospheric sciences
High-resolution multi-scaling of outdoor human thermal comfort and its intra-urban variability based on machine learning
Ferdinand Briegel, Jonas Wehrle, Dirk Schindler, and Andreas Christen
Geosci. Model Dev., 17, 1667–1688, https://doi.org/10.5194/gmd-17-1667-2024,https://doi.org/10.5194/gmd-17-1667-2024, 2024
Short summary
Effects of vertical grid spacing on the climate simulated in the ICON-Sapphire global storm-resolving model
Hauke Schmidt, Sebastian Rast, Jiawei Bao, Amrit Cassim, Shih-Wei Fang, Diego Jimenez-de la Cuesta, Paul Keil, Lukas Kluft, Clarissa Kroll, Theresa Lang, Ulrike Niemeier, Andrea Schneidereit, Andrew I. L. Williams, and Bjorn Stevens
Geosci. Model Dev., 17, 1563–1584, https://doi.org/10.5194/gmd-17-1563-2024,https://doi.org/10.5194/gmd-17-1563-2024, 2024
Short summary
Development of the tangent linear and adjoint models of the global online chemical transport model MPAS-CO2 v7.3
Tao Zheng, Sha Feng, Jeffrey Steward, Xiaoxu Tian, David Baker, and Martin Baxter
Geosci. Model Dev., 17, 1543–1562, https://doi.org/10.5194/gmd-17-1543-2024,https://doi.org/10.5194/gmd-17-1543-2024, 2024
Short summary
Impacts of updated reaction kinetics on the global GEOS-Chem simulation of atmospheric chemistry
Kelvin H. Bates, Mathew J. Evans, Barron H. Henderson, and Daniel J. Jacob
Geosci. Model Dev., 17, 1511–1524, https://doi.org/10.5194/gmd-17-1511-2024,https://doi.org/10.5194/gmd-17-1511-2024, 2024
Short summary
Spatial spin-up of precipitation in limited-area convection-permitting simulations over North America using the CRCM6/GEM5.0 model
François Roberge, Alejandro Di Luca, René Laprise, Philippe Lucas-Picher, and Julie Thériault
Geosci. Model Dev., 17, 1497–1510, https://doi.org/10.5194/gmd-17-1497-2024,https://doi.org/10.5194/gmd-17-1497-2024, 2024
Short summary

Cited articles

Ashley, W. S., Mote, T. L., Dixon, P. G., Trotter, S. L., Powell, E. J., Durkee, J. D., and Grundstein, A. J.: Distribution of Mesoscale Convective Complex Rainfall in the United States, Mon. Weather Rev., 131, 3003–3017, https://doi.org/10.1175/1520-0493(2003)131<3003:DOMCCR>2.0.CO;2, 2003. 
Barber, K. A., Burleyson, C. D., Feng, Z., and Hagos, S. M.: The influence of shallow cloud populations on transitions to deep convection in the Amazon, J. Atmos. Sci., 79, 723–743, https://doi.org/10.1175/jas-d-21-0141.1, 2021. 
Catto, J. L., Jakob, C., and Nicholls, N.: Can the CMIP5 models represent winter frontal precipitation?, Geophys. Res. Lett., 42, 8596–8604, https://doi.org/10.1002/2015GL066015, 2015. 
Chen, J., Hagos, S., Feng, Z., Fast, J. D., and Xiao, H.: The Role of Cloud-Cloud Interactions in the Organization of Shallow Cumulus Clouds, J. Atmos. Sci., 80, 671–686, https://doi.org/10.1175/jas-d-22-0004.1, 2022. 
Download
Short summary
PyFLEXTRKR is a flexible atmospheric feature tracking framework with specific capabilities to track convective clouds from a variety of observations and model simulations. The package has a collection of multi-object identification algorithms and has been optimized for large datasets. This paper describes the algorithms and demonstrates applications for tracking deep convective cells and mesoscale convective systems from observations and model simulations at a wide range of scales.