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Abstract. This paper describes the new open-source frame-
work PyFLEXTRKR (Python FLEXible object TRacKeR), a
flexible atmospheric feature tracking software package with
specific capabilities to track convective clouds from a va-
riety of observations and model simulations. This software
can track any atmospheric 2D objects and handle merg-
ing and splitting explicitly. The package has a collection of
multi-object identification algorithms, scalable paralleliza-
tion options, and has been optimized for large datasets in-
cluding global high-resolution data. We demonstrate appli-
cations of PyFLEXTRKR on tracking individual deep con-
vective cells and mesoscale convective systems from obser-
vations and model simulations ranging from large-eddy re-
solving (∼ 100s m) to mesoscale (∼ 10s km) resolutions. Vi-
sualization, post-processing, and statistical analysis tools are
included in the package. New Lagrangian analyses of con-
vective clouds produced by PyFLEXTRKR applicable to a
wide range of datasets and scales facilitate advanced model
evaluation and development efforts as well as scientific dis-
covery.

1 Introduction

Processing and analyzing model output to perform scien-
tific studies has become more challenging and resource de-
manding due to the growth of weather and climate model
data volume with ever-increasing resolution. Automated fea-
ture tracking software has become increasingly popular in
weather and climate research with the recognition that prop-

agating weather phenomena affect society, thus highlighting
the importance of assessing their prediction. Feature track-
ing software tools in atmospheric science typically identify
specific types of weather features (e.g., tropical cyclones, at-
mospheric rivers, convective storms) based on a basic scien-
tific understanding of their spatiotemporal structure within
available datasets, from which the features are labeled and
tracked in space and time. These tracking tools enable ex-
traction of relevant information from a large amount of data
and typically distill them into a summary of statistics in
a Lagrangian framework (e.g., location, time, movement,
duration) that facilitates scientific analyses of the weather
phenomena of interest. Examples in the literature include
tracking of tropical cyclones (Walsh et al., 2007; Knapp et
al., 2010), extratropical cyclones (Hewson and Titley, 2010;
Sinclair, 1997), frontal systems (Catto et al., 2015), low-
pressure systems (Vishnu et al., 2020), large-scale temper-
ature anomalies (Tamarin-Brodsky et al., 2020), atmospheric
rivers (Rutz et al., 2019), convective storm systems (Williams
and Houze, 1987; Laing and Fritsch, 1997), and individual
convective cells (Dixon and Wiener, 1993).

There are a number of open-source feature track-
ing software tools available for atmospheric research.
A few of them are built for general-purpose fea-
ture tracking. For example, TempestExtremes (https://
github.com/ClimateGlobalChange/tempestextremes, last ac-
cess: 8 November 2022) was originally developed as a
pointwise feature tracking that can detect and track gen-
eral features in climate datasets with either structured or
unstructured grids (Ullrich and Zarzycki, 2017) but has re-
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cently been updated to also work on areal features (Ull-
rich et al., 2021). The Tracking and Object-Based Analysis
of Clouds (TOBAC; Heikenfeld et al., 2019) (https://github.
com/tobac-project/tobac, last access: 8 November 2022) is
a Python-based package for tracking cloud systems in fine-
scale model simulations or remote sensing datasets. Both 2D
and 3D datasets are supported in TOBAC, allowing tracking
of individual convective clouds from cloud-resolving model
outputs and satellite or radar observations.

Most of the feature tracking algorithms are tuned for track-
ing specific phenomena. For example, many existing meth-
ods tracking mesoscale convective systems (MCSs) use satel-
lite infrared (IR) images, remote-sensing precipitation re-
trievals, or ground-based weather radar observations. The
method for object-based diagnostic evaluation time domain
(MODE time domain or MTD; Clark et al., 2014) (https://
met.readthedocs.io/, last access: 8 November 2022) uses area
overlap techniques for tracking convective objects, similar
to those first developed nearly 3 decades ago (Williams and
Houze, 1987; Velasco and Fritsch, 1987; Laing and Fritsch,
1997; Machado et al., 1998). The “Grab ’em, Tag ’em, Graph
’em” (GTG) algorithm (Whitehall et al., 2015) also uses the
area overlap method combined with graph theory to track
satellite IR brightness temperature (Tb)-defined objects and
identify MCSs. The Tracking Of Organized Convection Al-
gorithm through a 3D segmentation (TOOCAN; Fiolleau and
Roca, 2013) tracks convective systems using satellite IR Tb
data. Their technique uses 3D segmentation on a sequence
of Tb images (spatial and temporal) and improves upon tra-
ditional area overlap techniques. More recently, further im-
provements in the technique to account for cloud movements
have been developed, such as the Tracking Algorithm for
Mesoscale Convective Systems (TAMS; Núñez Ocasio et
al., 2020) (https://tams.readthedocs.io/en/latest/, last access:
8 November 2022). Other studies label and track precipi-
tation objects to identify MCSs using either ground-based
radar reflectivity (Haberlie and Ashley, 2018a, b) or precipi-
tation retrievals from radar or spaceborne platforms (Hayden
et al., 2021; Prein et al., 2017).

Tracking of individual convective cells that are either iso-
lated or as part of a convective complex typically requires
the use of active remote sensing observations such as scan-
ning radar. The pioneering work that uses optimization to
match convective cell objects between successive radar vol-
ume scans for tracking was developed in the early 1990s
and is known as the Thunderstorm Identification, Tracking,
Analysis, and Nowcasting (TITAN, Dixon and Wiener, 1993)
(https://github.com/NCAR/lrose-titan, last access: 8 Novem-
ber 2022). A similar technique written in Python has re-
cently been developed (TINT; Raut et al., 2021) (https://
github.com/openradar/TINT, last access: 8 November 2022).
More sophisticated methods using atmospheric wind and
storm motion estimates were developed to track supercells
(Gropp and Davenport, 2021) (https://github.com/wxmatt/
Supercell-Tracking, last access: 8 November 2022). Despite

the many available open-source feature tracking tools, most
are tailored to track a specific phenomenon only (e.g., either
convective cells or MCSs), are limited to using a single type
of data for tracking (e.g., IR Tb or radar reflectivity), do not
treat merging and splitting, or are not optimized to work with
large volumes of data.

In this study, we introduce a new framework called the
Python FLEXible object TRacKeR (PyFLEXTRKR), a flex-
ible object-based atmospheric feature tracking Python soft-
ware package with the specific capability to track convective
clouds using datasets from satellite, radar, or model simula-
tions. PyFLEXTRKR has a collection of multi-object iden-
tification algorithms and a modular design. Unlike most ex-
isting packages tuned for a specific phenomenon or a sin-
gle type of data, PyFLEXTRKR is adapted to track different
types of features at a variety of scales; handles feature merg-
ing and splitting explicitly; and includes visualization, post-
processing, and analysis of tracked features. In addition, the
package includes scalable parallelization options and perfor-
mance optimizations for large datasets, which makes it par-
ticularly suitable for high-resolution models or general circu-
lation models with long-term outputs. FLEXTRKR has been
used in previous studies to track MCSs (Feng et al., 2018,
2019; Zhang et al., 2021; Feng et al., 2021a), deep convec-
tive cells (Li et al., 2021; Feng et al., 2022), shallow cumulus
(Chen et al., 2022; Fast et al., 2019), and precipitation-driven
cold pools (Feng et al., 2015). FLEXTRKR is adaptable to
work with a variety of observations including satellite Tb
(Feng et al., 2012; Hagos et al., 2013), precipitation (Feng
et al., 2016), radar reflectivity (Feng et al., 2022), and model
simulations across scales from large-eddy resolving (Fast et
al., 2019) to convection-permitting (Feng et al., 2018; Chen
et al., 2021; Barber et al., 2021) and mesoscale (Feng et al.,
2021b; Lin et al., 2022). The algorithm has recently been im-
plemented in Python. The goal of this paper is to describe
the PyFLEXTRKR algorithm and demonstrate its capabili-
ties with examples applying to models and observations at
different scales.

The rest of the paper is structured as follows: Sect. 2 de-
scribes the PyFLEXTRKR algorithm and general workflow,
Sect. 3 demonstrates application to track convective cells on
radar observations and high-resolution model simulations,
Sect. 4 describes the MCS tracking workflow, examples of
visualization and post analysis are provided in Sect. 5, and a
summary is given in Sect. 6.

2 Workflow

This section describes the design and general workflow of
PyFLEXTRKR as shown in Fig. 1. PyFLEXTRKR has a
modular design where different parts of the workflow can be
updated, replaced, and run independently, making it flexible
and adaptable for specific usage cases.
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Figure 1. PyFLEXTRKR general workflow. (a) Identify and label features on input 2D grid, (b) link features in pairs of adjacent times,
(c) assign track numbers, (d) calculate track statistics, and (e) map track numbers back to input 2D grid. See Sect. 2.1 for more details.
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2.1 Feature tracking algorithm

The basic design of PyFLEXTRKR is illustrated in Fig. 1.
The five steps represent an end-to-end workflow starting
from reading the input data, identifying features, tracking,
and calculating statistics to outputting final tracking data.
Each step is handled by a driver module that produces
netCDF files as intermediate data that are used for the sub-
sequent steps (indicated by the gray arrows). Such a design
makes it easy to update or replace individual modules and
allows them to be run independently. It also reduces the time
to perform sensitivity tests of adjusting tracking parameters
because only the modules affected by the altered parameters
need to be run. The current version of PyFLEXTRKR only
tracks features in 2D, but the workflow is adaptable to 3D
tracking in future updates due to the modular design.

Similar to many other feature tracking software, step 1 in
PyFLEXTRKR identifies features from input data for each
time frame (Fig. 1a). The identified features are assigned
a label number on the original input 2D grid (e.g., lati-
tude× longitude). The 2D labeled feature masks are treated
as image-like arrays for subsequent tracking, which is inde-
pendent of the spatial resolution or projection of the input
data. The feature numbers, determined by the number of grid
points associated with the feature, are sorted by the feature
size in each time frame. The feature of interest can be any
object that can be defined as a contiguous region (e.g., grid
cells exceeding a threshold and are adjacent in the x–y direc-
tion). Two specific examples of convective clouds associated
with individual convective cells and MCSs are discussed in
more detail in Sects. 3 and 4. An example of a generic feature
identification method using thresholds and connectivity (e.g.,
contiguous grid points with values greater than a threshold)
is provided in the package.

In step 2, the 2D labeled features are linked in pairs of ad-
jacent time frames based on their overlap area (Fig. 1b). If
their overlap area fraction exceeds the user-defined thresh-
old, their label numbers are recorded in a correspondence
pair. This simple overlap tracking technique has been used
in previous studies (e.g., Williams and Houze, 1987) and
other tracking software (e.g., MTD, TAMS). The underly-
ing assumption with the overlap technique is that the tempo-
ral resolution of the dataset is sufficient to resolve the spa-
tial movements of the features and that objects with suffi-
cient overlap between two time steps belong to the same fea-
ture. In PyFLEXTRKR, the overlap area fraction is calcu-
lated in both temporal directions (i.e., from time 1 to time 2
and from time 2 to time 1), such that objects that are ei-
ther growing or shrinking in size are considered. In addition,
more than one object at a time can be linked to an object
between two time frames if they satisfy the overlap thresh-
old. In this case, they are candidates for merging or splitting
and are treated explicitly in the subsequent steps. It is im-
portant to note that the accuracy of feature tracking for any
automated technique hinges upon sufficient spatial and tem-

poral resolution of the dataset to resolve the feature of in-
terest. While a higher-resolution dataset (particularly in the
temporal dimension) is typically desired for more accurate
tracking, lower-resolution datasets (e.g., earlier generation of
geostationary satellite Tb images, large-scale model simula-
tion outputs) are more widely available. Caution is needed
when applying PyFLEXTRKR to lower temporal resolution
datasets, and specific examples for tracking convective cells
and MCSs are further discussed in Sects. 3 and 4.

After the objects are linked in adjacent pairs of time frames
throughout the tracking period, step 3 assigns track numbers
to the features by going over all pairs of linked label num-
bers (Fig. 1c). The same labeled object linked across differ-
ent time frames is assigned a track number (e.g., each colored
line in Fig. 1c). If more than one object at a time is linked
to one object at the next time, merging occurs and is flagged
(e.g., track 4 merges with track 1 at time= 4 in Fig. 1c). Sim-
ilarly, if one object at a time is linked to more than one object
at the next time, splitting occurs and is flagged (e.g., track 5
splits from track 2 at time= 5 in Fig. 1c). When merging
or splitting occurs, the largest object is assumed to be the
same feature and tracked continuously, whereas the smaller
objects are marked as terminated (in merging) or started (in
splitting). The track numbers these smaller features merge
with or split from are recorded for subsequent use. A track
is terminated at the time when no objects are recorded in the
pair from step 2 (i.e., no object exceeds the overlap fraction).
This list of merges and splits forms a directed acyclic graph
and can be used to reassemble whole lifetime behaviors and
to understand original sources of down graph features.

In step 4, the tracked data saved in step 3 are reorganized
into a more convenient format for use, and additional statis-
tics of the features are calculated and saved (Fig. 1d). Indi-
vidual object statistics, such as their size, duration, and in-
tensity, are calculated by reading from the pixel-level files
generated in step 1. These statistics, along with the objects’
centroid locations and physical times, are then saved in a
2D array format with tracks (track numbers) and times (rel-
ative to each track) as the two dimensions (right panel of
Fig. 1d). This way, times= 0 is the starting time of each
track, and selecting a specific track is straightforward. The
empty space in the array after a track ends is filled with miss-
ing values (gray blocks in the right panel of Fig. 1d). While
easy to use, this format requires the array to be large enough
to store the longest duration of a track, with many missing
values in the array. We use SciPy’s Sparse matrices (https:
//docs.scipy.org/doc/scipy/reference/sparse.html, last access:
8 November 2022) to store these arrays to reduce internal
memory usage and provide an option to output traditional
2D dense matrices in netCDF format. In addition, the start
and end status of each track including whether a track starts
as a split or ends as a merge, the track number it splits from
or merges with, and the time and object number associated
with the merger or split are all recorded as 1D arrays for each
track. These variables enable users to make decisions on how
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to treat these merge/split tracks based on specific scientific
needs. An example of including merger and splits as parts of
the identified MCS cloud shields is provided in Sect. 4.3.

Step 5 of the general workflow maps the tracked feature
numbers to the native pixel-level grid as masks (Fig. 1e). The
track numbers correspond to the tracks indices in the track
statistics file generated in step 4. For example, the area la-
beled as tracks= 1 at any time (red object masks in Fig. 1e)
corresponds to the track statistics for tracks= 0 (Python ar-
ray indices are 0 based). The tracked feature masks make it
easy to link the track statistics data at a given time to a spe-
cific region in the native pixel-level grid.

2.2 Usage and performance considerations

Installation of PyFLEXTRKR uses the Conda environment
setup. An environment YAML file containing all the required
Python packages is provided for setting up the PyFLEX-
TRKR environment. Simple instructions for installing
PyFLEXTRKR are provided on GitHub (https://github.com/
FlexTRKR/PyFLEXTRKR, last access: 8 November 2022).

All user-defined parameters are contained in a YAML
(https://yaml.org/, last access: 8 November 2022) format
configuration file, which is essentially a text file with key-
value pairs and supports comments. Example configuration
files for tracking generic features, convective cells, or MCSs
are provided in the package. The configuration file also con-
trols which steps in PyFLEXTRKR to run as well as data lo-
cations, various thresholds, and parallel processing options.

PyFLEXTRKR uses Dask (https://www.dask.org/, last ac-
cess: 8 November 2022) for parallelization. Dask enables
scalable parallelization options that work seamlessly from
personal computers (PCs) to high-performance computing
(HPC) clusters. Most of the time-consuming steps are par-
allelized in the current version. These steps typically include
processing the native pixel-level data (e.g., steps 1, 2, 4, and 5
described in Sect. 2.1 and illustrated in Fig. 1). Two options
for Dask parallelization are included: (1) multi-CPUs on a
single cluster (or PC) and (2) multi-CPUs on network clus-
ters (or HPC). These parallel options enable a large amount
of data (e.g., multi-year, large domain convection-permitting
simulations or high-resolution satellite observations) to be
processed in a short amount of time on HPCs and facilitate
the scientific analysis of the tracking results. Example scripts
for running on HPCs are also provided in the package.

3 Convective cell tracking

In this section, we provide an example of tracking individual
convective cells from scanning radar observations and sim-
ulations from the Weather Research and Forecasting (WRF)
model at both convection-permitting (∼ 1000 m) and large-
eddy resolving (∼ 100 m) resolutions. The radar observa-
tions are collected from the Cloud, Aerosols, and Complex

Terrain Interactions (CACTI) field campaign in central Ar-
gentina (Varble et al., 2021). The WRF simulations are pro-
duced by the Department of Energy’s Atmospheric Radia-
tion Measurement (ARM) user facility under the large-eddy
simulation (LES) ARM Symbiotic Simulation and Observa-
tion (LASSO) activity (Gustafson et al., 2020) (https://www.
arm.gov/capabilities/modeling/lasso, last access: 8 Novem-
ber 2022). The input data used for convective cell tracking in
PyFLEXTRKR are Cartesian gridded (fixed horizontal res-
olution) 3D radar reflectivity. The vertical resolution can ei-
ther be fixed (e.g., from gridded radar observations) or vari-
able (e.g., from WRF with terrain-following vertical coordi-
nates). The quality controlled CACTI C-band radar obser-
vations (Hardin et al., 2018a, b) are gridded to a Cartesian
grid using the Python ARM Radar Toolkit (PyART) (Helmus
and Collis, 2016). The CACTI C-band radar convective cell
tracking database (Feng, 2022a) is available through ARM.

3.1 Cell identification

The convective cell identification implemented in the current
version of PyFLEXTRKR is a modified version of the tech-
nique first introduced by Steiner et al. (1995). The technique
primarily uses radar reflectivity horizontal texture to iden-
tify convective cells. Convective cells are marked by their
horizontal “peakedness” of radar reflectivity (i.e., the differ-
ence in radar reflectivity between a grid point and its sur-
rounding background reflectivity Zbkg for a horizontal 2D
field). Besides intense convective cells with high reflectivity
(e.g., > 60 dBZ), this texture method can identify moderate
to weak convective cells that would be missed by a purely
threshold-based method and hence is more general in study-
ing convective cloud populations with varying sizes, depths,
and intensities. Composite reflectivity (maximum radar re-
flectivity in a vertical column) is currently used as input to
identify convective cells, although it is easy to modify the
input to use reflectivity at an individual height if needed.
Echo-top heights with a series of thresholds (e.g., 10, 20,
. . . , 50 dBZ) are also calculated from the 3D radar reflectiv-
ity data. More details of the modified Steiner technique are
described in Feng et al. (2022), who applied the adapted al-
gorithm to scanning radar observations collected during the
CACTI field campaign (Varble et al., 2021).

All threshold parameters used to define convective cells,
such as the background radius, radar reflectivity differences
between a grid point and the background (peakedness), and
expansion radius, are set up in the configuration file. Many
of these thresholds depend on the resolution of data and the
nature of the convective cells being studied. Based on our re-
cent work that tracked∼ 7000 convective cells in central Ar-
gentina over a 3.5-month period (Feng et al., 2022), the cell
identification works quite well across with a wide range of
conditions, including relatively shallow and isolated cells, in-
tense deep convection, and organized convective clusters em-
bedded within MCSs with broad stratiform rain areas. The al-
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gorithm is able to identify both weak and intense cells while
avoiding contamination from strong brightbands associated
with MCS stratiform rain due to tuned horizontal peaked-
ness criteria. Nevertheless, users can set threshold parameter
values to any values that satisfy their specific research needs
and/or dataset constraints. The parallel processing options in
PyFLEXTRKR allow fast processing of a large amount of
data to facilitate this tuning of threshold parameters.

Figure 2 shows examples of convective cell identification
applied to three sets of WRF simulations with grid spac-
ings of 2.5 km, 500 m, and 100 m, respectively. The con-
vective cell masks show that the modified Steiner algo-
rithm implemented in PyFLEXTRKR can identify convec-
tive cells across various resolutions ranging from convection-
permitting to large-eddy resolving. To facilitate tracking, the
convective cell masks (colored shading in Fig. 2d–f) are in-
crementally dilated outward within a 5 km radius with 1 km
radius steps, starting from the largest cell in a scene with-
out merging the cells. Such an expansion creates larger foot-
prints (black contours in Fig. 2a–f) for the cell masks to im-
prove cell tracking accuracy. The dilation radii in this ex-
ample are tuned to work well for 15 min temporal resolu-
tion data (discussed further in Sect. 3.2). The dilation radii
are user-defined parameters, which can be easily adjusted to
adapt for different datasets and research applications. The
identified convective cells using radar reflectivity correspond
to important model-simulated physical processes, as demon-
strated by vertical velocities at 6 km altitude showing most of
the significant updrafts and downdrafts encapsulated within
the footprints of the cell masks (Fig. 2h–j) across the three
resolutions. In addition, tracking convective cells using radar
reflectivity can be applied consistently to both radar obser-
vations and model simulations, facilitating model evaluation
and interpretation.

3.2 Advection estimates

We implemented a hierarchical methodology to estimate the
mean advection velocity of convective features in PyFLEX-
TRKR to assist cell tracking, which is illustrated in Fig. 3.
This method helps improve the tracking accuracy for fast-
moving convective cells when background winds are strong
and/or when the temporal frequency of the dataset is insuf-
ficient to capture the movement of individual cells. First, we
estimate large-scale horizontal wind, before estimating indi-
vidual feature advection based on that wind.

The large-scale mean advection is calculated by perform-
ing a 2D cross-correlation using a Scikit-image implemen-
tation of Padfield (2012) between composite reflectivity
fields with significant echoes (composite reflectivity > user-
defined threshold) from two adjacent time frames. The off-
sets in the x and y directions between the time frames
that have the maximum 2D cross-correlation are saved to a
netCDF file. An optional median filter can be applied to the

time series of advection estimates to remove occasional spu-
rious values.

The convective cell masks from the previous time are
shifted by the estimated advection (black arrow in Fig. 3a),
and the shifted cell masks are then used to calculate the over-
lap fraction with the next time (Fig. 3b). This method in-
creases the overlap of convective cell masks between times,
as demonstrated by the example in Fig. 3c and d, therefore
improving the accuracy of tracking individual cells. While
using storm motion in tracking is similar to techniques used
in some existing cell tracking tools (e.g., TITAN, TOBAC,
TAMS), in the current version of PyFLEXTRKR, mean ad-
vection is calculated over a single domain, rather than for
individual cells. If convective cells move in significantly dif-
ferent directions (e.g., when the domain is sufficiently large
(> 300 km) with significantly different background wind di-
rections), it is recommended to run cell tracking over a sub-
set of the domain. PyFLEXTRKR provides a simple domain
subset capability (by specifying the latitudes and longitudes
boundary in the configuration file) to perform tracking. We
will expand the capability to enable advection estimates in
multiple subdomains in future versions.

An example sequence of convective cell tracking applied
to CACTI C-band radar observations is shown in Fig. 4. The
volume scan update from the radar observation is 15 min,
which is slower than many operational radars (e.g., the Next-
Generation Weather Radar network, or NEXRAD, in the
United States typically updates a volume scan in 5 min or
less) and presents a challenge for cell tracking. The estimated
mean cell advection during the period shown in Fig. 4 is
∼ 14 m s−1 (∼ 50 km h−1), suggesting the cells are being ad-
vected by the background wind quickly. Nevertheless, most
of the significant convective cells embedded in broad strat-
iform anvils (composite reflectivity < 25 dBZ) are tracked
reasonably well, as indicated by the relatively smooth cell
tracks (thick black lines with symbols in Fig. 4). This ex-
ample demonstrates that PyFLEXTRKR is capable of track-
ing convective cells even in challenging situations with fast-
moving convective cells and slow radar volume update time.
Our previous work developing the C-band radar convective
cell tracking database during the CACTI field campaign used
an area overlap fraction of 0.3, which seems to work well
with the advection technique and the 15 min volume scan up-
date (Feng et al., 2022). PyFLEXTRKR thus enables individ-
ual convective cell tracking on observations and model simu-
lations with radar reflectivity outputs at 15 min or shorter for
at least most deep convective situations. This capability re-
duces the need for model simulations to output very frequent
3D radar reflectivity data (e.g., 10 min or less) but still allows
tracking of individual convective cells.

3.3 Convective cell statistical analysis

For convective cell tracking, additional statistics of the fea-
tures are calculated in step 4 (Fig. 1d), such as maximum
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Figure 2. Convective cell identification example from WRF simulations at horizontal grid spacings of 2.5 km (left column), 500 m (middle
column), and 100 m (right column). The domain size shown is the same across the three simulations (∼ 200 km× 200 km). (a–c) Composite
reflectivity, (d–f) convective cell masks, and (h–j) vertical velocity at 6 km a.m.s.l. (above mean sea level). Numbers in the cell centers in
(a)–(f) are the labeled cell numbers. Black contours show convective cell mask boundaries expanded outward to a 5 km radius.

radar reflectivity and echo-top heights with various reflectiv-
ity thresholds (10 or 20 dBZ, etc.), with a flag indicating the
features being tracked are radar_cells. Additional statistics
can be easily added in the function if needed. All variables
calculated in the function will be written out in the statistics
driver module without additional I/O coding.

Figure 5 shows several example convective cell statistical
comparisons between radar observations and WRF simula-
tions based on PyFLEXTRKR outputs. The frequencies of

convection initiation (CI, defined as the starting location of
the tracked cells) locations show that the model simulations
generally capture the radar-observed CI enhancement asso-
ciated with the elevated terrain (colored contours in Fig. 5a–
c), but the peak CI frequency locations in the simulations
are shifted slightly westward over the peak of the mountain
range as opposed to over the eastern slope in the radar ob-
servations. The simulations with 100 m grid spacing have a
slightly less concentrated CI near the peak of the mountain
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Figure 3. Schematic of mean advection estimate by (a) using the 2D cross-correlation method between time 1 and time 2 and (b) shifting
the cell masks from time 1 and overlaying them on those in time 2. An example application on actual data is shown in (c) and (d): shadings
are composite reflectivity from two radar scans 15 min apart, contours of convective cells at the two respective times are shown in blue, and
the cell masks shifted by the mean advection are shown in dark red.

close to the radar site, compared to the 500 m simulations and
radar observations (Fig. 5a–c). The simulated cell lifetime
distributions also compare quite well with the radar observa-
tions (Fig. 5d). In addition, some important radar-observed
convective cell characteristics reported by Feng et al. (2022)
are also reasonably reproduced by the model. For example,
wider and deeper convective cells have higher maximum re-
flectivity (i.e., more intense) as shown in Fig. 5e and f. There
are notable differences such as simulated maximum reflec-
tivity and echo-top heights having slightly narrower distri-
butions, and the increase in simulated maximum reflectiv-
ity with echo-top height is faster than observed. The cell
tracking outputs from PyFLEXTRKR facilitate many statis-
tical comparisons between observations and model simula-
tions with a minimal amount of coding. More examples of
visualization, analysis, and Python notebooks included in the
PyFLEXTRKR package are discussed in Sect. 5.

4 MCS tracking

4.1 Workflow

The current implementation of MCS tracking in PyFLEX-
TRKR primarily uses infrared brightness temperature (Tb)
that is commonly available from geostationary satellite ob-
servations. Model simulations, however, typically output top-
of-atmosphere outgoing longwave radiation (OLR). A sim-
ple empirical function is provided in PyFLEXTRKR to con-
vert OLR to Tb following the formula from Yang and Slingo
(2001). A new method using collocated surface precipitation
to further constrain MCS identification recently developed
by Feng et al. (2021a) has also been implemented, which
will be described in more detail next. One of the advan-
tages of using Tb/OLR and precipitation for tracking MCSs
is that models can typically output these 2D variables at rel-
atively high-temporal frequency (e.g., hourly or finer) with-
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Figure 4. An example of cell tracking for an event on 11 November 2018 observed by a C-band radar in central Argentina during the CACTI
field campaign. Symbols denote tracked cells and are color coded by their lifetime (color bar at upper left of each panel). Only tracks that
last longer than 30 min are shown in the figure. CI locations are indicated by a larger symbol for each track. An animation of this event is
provided in the Supplement.

out incurring much additional computational cost. Therefore,
MCS tracking using PyFLEXTRKR should be applicable to
a wide range of regional and global models with convection-
permitting (< 5 km) to mesoscale resolutions (grid spacing
finer than ∼ 50 km).

PyFLEXTRKR tracks all deep convective clouds larger
than a user-defined minimum area threshold (can be as
small as a single grid point) and then subsequently identifies

MCSs from the tracked clouds. Therefore, MCS tracking in
PyFLEXTRKR includes the early growth stage of individual
deep convective clouds before they reach mesoscale dimen-
sions as well as the decay stage when the systems shrink in
size.
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Figure 5. Example of convective cell tracking statistics. Convection initiation location kernel density estimates (KDEs) from (a) radar ob-
servations and WRF simulations with (b) 500 m grid spacing and (c) 100 m grid spacing. Color contours in (a)–(c) are terrain heights (500 m
interval starting from 500 m a.m.s.l. in white) and the red dot is the radar location. (d) KDE of cell lifetime, joint KDEs of (e) maximum cell
area and maximum reflectivity, and (f) maximum 20 dBZ echo-top height and maximum reflectivity. In (e)–(f), shadings are from observa-
tions and contours are from simulations with marginal distributions also shown. The maximum cell area, reflectivity and echo-top heights
are obtained over the lifetime of each cell.

Figure 6. Schematic to identify cold cloud systems (CCSs) using Tb and precipitation. (a) Cold cores (contiguous area with Tb < Tb-
threshold-cold) are spread outwards through an iterative dilation process until reaching Tb-threshold-warm to identify and label CCSs (black
contours), and (b) CCSs that share a coherent precipitation feature (PF, contiguous area with precipitation rate > threshold) are combined
(thick black contour).
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4.2 Deep convective cloud system identification

Cold cloud systems (CCSs) are first identified as proxies
for deep convection using Tb data. Two methods are pro-
vided in the package to identify CCSs: (1) contiguous grid
points with Tb < a user-defined threshold and (2) a detect-
and-spread method using two Tb thresholds (Tb-cold and Tb-
warm), similar to the approach in Futyan and Del Genio
(2007). The first method is straightforward and fast. The sec-
ond method first labels cold cores, which are defined as con-
tiguous grid points with Tb < Tb-cold and area > N pixels.
Each cold core is treated as an individual convective cloud
object, which is then spread outward iteratively to surround-
ing grid points with higher Tb until the Tb-warm threshold is
reached (Fig. 6a). The spreading procedure does not merge
individual cold cores. The remaining area with Tb < Tb-
warm but without cold cores (which thus has not been iden-
tified as a CCS in the detect-and-spread method) is further
labeled using the simple connectivity method. In analyzing
high-resolution (kilometer-scale) satellite observations and
CPM simulations from past studies (Feng et al., 2018, 2019,
2021a), we find that the second method produces more “nat-
ural” segmentation of CCSs, where cloud systems with indi-
vidual cold cores (resembling active convective updrafts) that
share surrounding anvil clouds are better segmented. Hence
it is recommended to use the detect-and-spread method for
high-resolution datasets.

An optional smoothing function with a user-defined win-
dow size using the convolution filtering in Astropy (https:
//docs.astropy.org/en/stable/convolution/index.html, last ac-
cess: 8 November 2022) can be applied to the Tb field. The
convolution function in Astropy provides better treatment
for missing values that occur in satellite images compared
to the equivalent function in SciPy. This smoothing pro-
cedure (only applied in labeling cold cores) reduces over-
segmentation of cold cores in high-resolution Tb datasets.
Tuning of the Tb thresholds and smoothing window size may
be needed to adapt to specific scientific needs and datasets
to define desirable CCS objects, as they can alter the MCS
tracking results. Several example configurations that have
been used in previous studies to track MCSs at resolutions
of 2–4, 10, 25, and 50 km are provided in the package.

When collocated gridded mean surface precipitation data
are available with the same temporal resolution as the Tb
data, an optional function to improve CCS segmentation is
provided. This function uses precipitation rate to identify
precipitation features (PFs), which are defined as contigu-
ous objects with precipitation rate > a user-defined threshold.
The purpose of this function is to reduce segmenting of co-
herent PFs in the CCS identification procedure. If multiple
CCSs share a coherent PF, this option combines those CCSs
(Fig. 6b).

After CCSs are identified, they are tracked by running the
first four steps in Fig. 1. For tracking DCSs using satellite-
observed Tb or model simulated OLR, an area overlap frac-

tion of 0.5 typically works well for datasets with hourly tem-
poral resolution and on the order of 10 km spatial resolution,
although finer-resolution data are preferred for more accu-
rate tracking. Similar to convective cell tracking, additional
statistics of the features are calculated in step 4 (Fig. 1d),
such as cold core and CCS area and minimum Tb, with a flag
indicating the features being tracked are tb_pf. The additional
workflow used to identify MCSs is illustrated in Fig. 7.

4.3 MCS identification

In step 5, MCSs are identified based on the CCS area and du-
ration, which has been widely used in past studies (Fritsch et
al., 1986; Ashley et al., 2003; Laing and Fritsch, 1997; Roca
et al., 2014, 2017). If the CCS area exceeds a user-defined
threshold continuously for more than a user-defined period,
that track is defined as an MCS and saved (Fig. 7a). Short-
lived (a user-defined duration threshold) non-MCS tracks
that merge with or split from the identified MCSs are also
retained. The labeled cloud numbers and sizes from these
merge/split tracks at the same corresponding times with
MCSs are stored in the MCS track statistics file, which al-
lows their areas to be included in calculating the total MCS
cloud shield area by users. This treatment helps reduce large
fluctuations of MCS cloud shield area due to merging/split-
ting or cloud segmentation artifacts in step 1. The cloud mask
associated with these merge/split tracks are included as part
of the MCS cloud shield in subsequent steps (see illustration
in Fig. 8). Other non-MCS tracks that do not merge with or
split from MCS tracks are removed. This step can reduce the
number of tracks by an order of magnitude or more. For MCS
tracking using only Tb data, the final output is the netCDF file
containing track statistics produced from this step.

While merging and splitting of clouds can occur naturally
during the lifetime of MCSs, it is often more important to
identify whether an MCS initiates or decays naturally (i.e., a
complete life cycle) as opposed to starting as a split from an
existing system or ending as a merger to another system (i.e.,
a partial life cycle). PyFLEXTRKR provides two variables
(start_split_cloudnumber and end_merge_cloudnumber) to
easily identify the status of each MCS at the track start and
end time (a positive value indicates a split or merge). Table 1
shows the sensitivity of the fraction of MCS merging/split-
ting to Tb thresholds used to define CCS for tracking. As Tb
thresholds increase, more MCSs are identified, MCS max-
imum cloud area and lifetime both increase, and the frac-
tion of MCSs that start as a split or end as a merge also in-
creases from ∼ 16 % at the lowest Tb thresholds to ∼ 44 %
to the highest Tb thresholds. This is expected because as a
larger part of the anvil clouds surrounding the cold cores or
clouds with warmer cloud tops are included in the tracking
with higher Tb thresholds, the probability of merging/split-
ting would increase due to more complex morphologies as
anvils spread and interact with nearby convection. The de-
fault Tb thresholds result in∼ 28 % splits/mergers during the
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Figure 7. Additional PyFLEXTRKR workflow for MCS tracking. (a) Identify MCS using Tb-defined CCS area and duration, (b) calculate
precipitation feature (PF) statistics within CCS masks, (c) identify robust MCSs using PF characteristics, (d) map robust MCS track numbers
to input 2D grid, and (e) calculate MCS movement by maximizing the 2D cross-correlation on MCS PFs between adjacent times. See
Sect. 4.1 for more details.
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Figure 8. Treatments of merge/split tracks for MCS tracking in PyFLEXTRKR. The blue mask denotes the MCS track and the green, orange,
and yellow tracks denote non-MCS tracks that merge with or split from the MCS track, respectively. Their associated cloud numbers and
sizes are stored at the same corresponding time of the MCS (marked as time 2, 3, or 4, etc.) in the MCS track statistics file in step 5, and their
cloud masks are included as part of the MCS track in steps 6–9.

Table 1. Sensitivity of MCS metrics to Tb thresholds. The bold values in the first column are defaults. Results are obtained from 1 month
of MCS tracking using the combined satellite Tb and GPM IMERG precipitation data from Feng et al. (2021b) over South America during
January 2019. Note that starting as split means the tracked CCS that is identified as an MCS starts from a split from another CCS, not
necessarily from another MCS. Similarly, ending as a merge refers to a track ending by merging with another CCS.

Tb thresholds Number Fraction starting Fraction ending Average MCS Average max
Tb-cold, Tb-warm of MCSs as a split as a merge lifetime (h) CCS area (km2)

210, 226 K 244 17 % 16 % 16.2 143 889
215, 231 K 303 20 % 20 % 16.7 159 127
220, 236 K 360 29 % 26 % 17.2 174 788
225, 241 K 399 29 % 27 % 18.1 202 802
230, 246 K 417 34 % 34 % 19.0 240 740
235, 251 K 433 39 % 36 % 19.5 290 869
240, 256 K 428 44 % 46 % 19.7 353 582

test period, suggesting that majority of the MCS tracks ob-
tained have complete life cycles.

If collocated precipitation data are available, step 6 cal-
culates PF statistics associated with the MCS cloud masks
using the MCS track statistics file from step 5 and labeled
CCS mask files from step 1 (Fig. 7b). For each MCS at
a given time, both the MCS cloud mask and all non-MCS
merging/splitting cloud masks (Fig. 8) are used to locate PFs
underneath the MCS cloud shield. PF statistics including PF
centroids, area, major axis length, mean/max rain rate, rain
rate skewness, and total and heavy (rain rate > user-defined
threshold) rain volume are calculated. If there are multiple
PFs under an MCS cloud shield, they are sorted by their
sizes, and the largest nmaxpf PFs are saved, where nmaxpf
is the user-defined maximum number of PFs to save. These

newly derived PF variables are added to the track statistics
and written to a netCDF file.

With saved PF variables, step 7 identifies robust MCSs
using the method developed by Feng et al. (2021a). Four
tracked PF parameters are used to define a robust MCS: PF
area, PF mean rain rate, PF rain rate skewness, and heavy
rain volume ratio. For a given track, the periods when the
largest PF major axis length exceeds 100 km is examined
(shaded yellow period in Fig. 7c). If all four PF parame-
ters exceed their corresponding thresholds, that track is de-
fined as a robust MCS and retained. The PF thresholds fol-
low a simple linear formula of y = a ·X+ b, where a and
b are user-defined slope and intercept thresholds, and X is
the time period when the largest PF major axis length ex-
ceeds 100 km. The lifetime-dependent PF threshold method
was developed in our previous works based on observations
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(Feng et al., 2021a, b). These PF thresholds are sensitive to
the spatial resolution of the dataset. Coarser-resolution data
tend to have larger PF area, smaller PF mean rain rate, and PF
rain rate skewness (see Fig. S4 in Feng et al., 2021b). There-
fore, adjustments to these thresholds to adapt to the specific
dataset may be needed. Multiple sets of example configura-
tions that have been used to identify robust MCSs at spatial
resolutions of 10, 25, and 50 km are provided in the package
based on previous studies (Feng et al., 2021a, b).

After robust MCSs are identified, step 7 maps the tracked
MCSs to the native pixel-level grid as masks (Fig. 7d), sim-
ilar to step 5 in the general workflow. Both cloud masks and
PF masks are labeled with the MCS track number. Clouds
that merge with or split from MCSs are also labeled with
the MCS track number (Fig. 8) and in separate masks such
that they can be separated if needed. In addition, the input Tb
and precipitation fields are written in the output pixel-level
netCDF files for convenience.

Lastly, MCS movements are estimated in step 9 using the
labeled MCS pixel-level files. For a given MCS, the precip-
itation fields between two adjacent times are masked, and
a 2D cross-correlation is applied between the masked pre-
cipitation fields (Fig. 7e). Similar to the advection estimate
method described in Sect. 3.2, the offsets in the x and y di-
rections between the time frames that have the maximum
2D cross-correlation are the movements of the MCS PFs.
An optional median filter can be applied to the time series
of movement estimates to remove occasional spurious val-
ues. This method generally provides smoother MCS move-
ment speed and direction estimates than using the centroid
difference method, as the latter is prone to the changes in
MCS shapes that could result in large fluctuations. The MCS
movement variables are added to the robust MCS track statis-
tics netCDF file from step 7, which is the final MCS track
statistics output file using the Tb+PF method.

An example sequence of MCS tracking applied to a
WRF simulation with 4 km horizontal grid spacing over
South America is shown in Fig. 9. The simulation uses
ERA5 reanalysis (Hersbach et al., 2020) as lateral bound-
ary conditions and is run continuously from 1 June 2018
to 31 May 2019. No cumulus parameterization or spectral
nudging was used in the simulation. For more details of the
experimental setup, see Liu et al. (2023). The simulation
provided hourly OLR and precipitation, which are used to
track MCSs. The example was produced using both the MCS
pixel-level tracking outputs at native data resolution (Tb, pre-
cipitation, MCS masks) and the MCS track statistics output
that provides track locations, duration, and PF statistics (e.g.,
size and centroid).

4.4 Performance considerations

Similar to the general workflow described in Sect. 2.2, the
time-consuming steps for MCS tracking that involve work-
ing with native pixel-level data have parallel processing op-

tions using Dask (steps 6, 8, and 9 in Fig. 7). The paral-
lel options improve run time by scaling approximately with
the number of processors for most parallel steps, enabling
PyFLEXTRKR to process a large amount of data (e.g., global
data) relatively quickly using systems ranging from a desktop
computer up to a full HPC installation. As an example, run-
ning PyFLEXTRKR using 16 processors (parallel) to track
MCSs over South America (Fig. 9) for a 1-month period re-
sults in a∼ 10× speed up compared to using a single proces-
sor (serial), cutting down the processing time from ∼ 30 min
(serial) to ∼ 3 min (parallel). In addition, many of the codes
split the data processing into individual (or a pair of) pixel-
level files or use optimized SciPy tools, which limits mem-
ory usage and allows highly parallel tasks with continuous
tracking for a long period. For example, PyFLEXTRKR is
capable of tracking MCSs nearly globally using hourly satel-
lite Tb and precipitation data at ∼ 10 km resolution continu-
ously for 1 year. The data volume per year is approximately
37.8 billion pixels (3600×1200 pixels× 8760 time frames),
and the number of tracked objects exceeds 2 million. The
HPC system used to run this task has 64 processors (AMD
EPYC CPU) and 256 GB memory on a single node. It is pos-
sible to run continuous global MCS tracking for even longer
periods (e.g., multiple years), but system memory and HPC
wall-clock constrain may negate such a benefit, as tracking of
individual years can be run in simultaneous jobs on an HPC
system and completed in much shorter wall-clock time.

In addition, important statistics that are used to identify
MCSs including CCS area, duration (produced in step 4),
and various PF characteristics (produced in step 6) that re-
quire time-consuming calculations from pixel-level data are
saved in a single summary netCDF file. This design allows
for alterations of various parameters (e.g., area, duration, and
intensity) that are used to identify MCSs to be quickly tested,
as only a certain step that is relatively fast (e.g., step 5 or 7)
needs to be rerun. Therefore, testing the sensitivity of MCS
identification to parameter selections is greatly simplified.

4.5 Quality control on the input dataset

The accuracy of convective cloud tracking could be affected
by various issues in the input dataset, such as missing data
and various data artifacts (bad data or calibration error, etc.)
often found in observations. Thus, data quality control is an
important factor to consider before applying feature tracking
to observations. While advanced data quality control is be-
yond the scope of PyFLEXTRKR, a few procedures have
been developed for tracking DCSs using satellite Tb data.
For example, a median filter (using the scipy.signal.medfilt2d
function) with a user-defined window size is applied to the
Tb images to fill in pixels with missing Tb data that can oc-
cur with bad scan lines from satellite imagers. An accept-
able range of Tb data can be defined by the user to filter out
unphysical data (e.g., Tb must be between 160 and 330 K).
These simple procedures help reduce cloud object identifi-
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Figure 9. Example of MCS tracking from a WRF simulation with 4 km grid spacing showing (a) IR Tb and (b) precipitation every 6 h. The
magenta contour in (a) and the color shadings behind large clusters of PFs in (b) denote MCS masks. The purple lines are MCS tracks, the
purple dots are MCS initiation locations, and the numbers are MCS track numbers. The magenta circles in (b) show the largest PF equivalent
diameter (multiplied by 2 for visibility) within an MCS. An animation with hourly resolution of this event is provided in the Supplement.
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cation errors due to satellite data quality issues. In addition,
satellite images with missing data larger than a fraction of
the domain (user defined) are skipped in PyFLEXTRKR,
and if the time gap of missing satellite images is larger than
a user-defined threshold (e.g., 3 h), tracking is stopped and
restarted from the next available Tb image to avoid erroneous
tracking. For convective cell tracking using radar reflectivity
data, no quality-control procedure is currently implemented
in PyFLEXTRKR. Users should perform quality control of
radar observations prior to applying PyFLEXTRKR to track
convective cells.

5 Visualization and analysis

The PyFLEXTRKR package provides tools for visualizing
the tracking output as well as post-processing analysis scripts
and Jupyter notebooks for statistical analysis. This section
highlights some examples that have been applied to both ob-
servations and model simulations to demonstrate how the
package facilitates their comparison.

5.1 Visualization

Both Python scripts and Jupyter notebooks are provided to
create the quick look plots that mark the tracked convec-
tive cells (Fig. 4) or MCSs (Fig. 9) on the native input
data. These visualizations help researchers quickly review
the tracking results, identify potentially interesting features
from the tracks, and/or perform tuning or sensitivity tests
from various tracking parameters. The Python scripts use
the same configuration files from the tracking that simplify
input/output specifications. The scripts also accept various
command line input arguments to customize the visualization
and have built in parallelization options to generate a large
number of figures quickly. For example, users can specify
plotting period, subset domain, aspect ratio, and output loca-
tion for the figures in human readable form. See Appendix A
for commands that are used to produce the two example fig-
ures (Figs. 4 and 9).

5.2 Statistical analysis

Several Python notebooks that perform various statistical
analyses are provided, along with example tracking data pro-
duced by PyFLEXTRKR. These notebooks demonstrate dif-
ferent types of analysis that facilitate the comparisons be-
tween observations and model outputs.

Figure 10 shows comparisons of various MCS char-
acteristics between satellite observations and WRF
simulations. All of these MCS characteristics are al-
ready calculated and included in the tracking statistics
netCDF file, such as time, location, lifetime (duration),
size (both cloud shield and precipitation area), movement,
and precipitation intensity and volume. The notebook
(plot_obs_wrf_robust_mcs_trackstats_jointpdf.ipynb) pro-

vides examples of selecting MCS tracks based on their
locations and seasons and computing statistics such as
kernel density estimates (KDEs) from given quantities for
comparisons. More advanced statistics such as joint KDEs
are also provided, which further show the relationships
between pairs of MCS characteristics and how well models
compare with observations. For example, the WRF simu-
lation can reproduce the distributions of MCS lifetime and
cloud shield area fairly well, while the simulated MCSs
move faster and their PF areas are smaller than observations
(Fig. 10a–d). Further, volumetric rainfall increases expo-
nentially with longer-lived MCSs, which is reproduced by
the simulation (Fig. 10e). However, the model achieved this
by compensating errors. The PF area is underestimated,
while the mean rainfall intensity is overestimated (Fig. 10f
and g). Moreover, for the same convective intensity (using
lifetime-averaged minimum Tb as a proxy), the simulated
convective rainfall volume is much higher. These results
suggest that the simulated MCS convective intensity (i.e.,
updrafts) and associated precipitation may be too strong,
while the stratiform cloud area and associated precipitation
that dominate PF area are weaker, though satellite observa-
tional estimates of precipitation also likely contain biases
(Cui et al., 2020; Li et al., 2022); therefore caution is needed
when interpreting the tracking results.

Figure 11 demonstrates two types of spatial maps as-
sociated with MCS statistics that can be produced. The
track density of MCSs (Fig. 11a–c) during a period can
be computed using the MCS track statistics files alone.
Each given MCS centroid over a specific grid (e.g., 1◦× 1◦)
is only counted once if the MCS stays within that grid
for multiple times. An example function is provided in
plot_obs_wrf_robust_mcs_tracks_map.ipynb. The track den-
sity map allows quick comparisons of MCS frequency be-
tween model and observations directly using PyFLEXTRKR
outputs.

The other type of spatial map is produced on the
native pixel-level grid of the input data. Figure 11d–f
shows the fraction of the annual total rainfall contributed
by MCSs. An example post-processing script to com-
pute monthly MCS precipitation amount and frequency
(calc_tbpf_mcs_monthly_rainmap.py) is provided. This cal-
culation uses the MCS masks and precipitation in the
pixel-level files produced in step 8 (Fig. 7d) to sepa-
rate precipitation produced by MCSs and non-MCSs with
saved monthly statistics in a netCDF file. The analy-
sis notebook (plot_obs_wrf_mcs_seasonal_rainmap.ipynb)
combines monthly data to further compute seasonal and an-
nual means and creates the plots in Fig. 11d–f. In this exam-
ple, the WRF simulation outputs have been pre-regridded to
match the observations, allowing their differences to be com-
puted directly on each grid (Fig. 11f). The results indicate
that the example WRF simulation can capture the spatial dis-
tribution and density of observed MCSs over much of conti-
nental South America. Simulated MCS numbers are slightly
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Figure 10. MCS statistics comparison between satellite observations and a 4 km grid spacing WRF simulation showing KDEs of (a) MCS
lifetime, (b) MCS movement speed, (c) MCS cold cloud shield equivalent diameter, and (d) MCS PF equivalent diameter. Joint KDEs of
(e) MCS lifetime and total volumetric rainfall, (f) MCS lifetime and maximum PF area, (g) MCS lifetime-mean rain rate and total volumetric
rainfall, and (h) MCS lifetime-mean minimum Tb and heavy rainfall (rain rate > 10 mm h−1) volume are also shown.

lower over northern Brazil and Columbia, the Atlantic In-
tertropical Convergence Zone, and the South Atlantic Con-
vergence Zone. As a result, the MCS precipitation fraction in
these respective regions are lower than that in the observa-
tions.

Figure 12 shows an example of an MCS precipi-
tation diurnal cycle analysis over the central Amazon
region (black box in Fig. 11d–f). An example post-
processing script to compute a monthly Hovmöller di-
agram of MCS precipitation over a user-defined region
(calc_tbpf_mcs_monthly_rainhov.py) is provided in the anal-
ysis directory of PyFLEXTRKR. The analysis notebook
(plot_obs_wrf_mcs_diurnal_hovmoller.ipynb) combines the
monthly Hovmöller diagram data to further compute diur-
nal cycle composites as a function of longitude and creates
the plots in Fig. 12. In this example, 50 %–60 % of the ob-
served nocturnal wet season (December to March) precipita-
tion in the Amazon is contributed by MCSs. This feature is
captured by the example WRF simulation, although the sim-
ulated nocturnal fraction is higher over the western Amazon.
In addition, a westward moving precipitation signal initiated
in the local afternoon that is largely associated with MCSs
can be seen near the mouth of the Amazon River (∼−45
to −50◦) and central (∼−55◦) and western (−70 to −65◦)
Amazon. The MCS precipitation diurnal cycle amplitudes
are enhanced correspondingly over these regions.

Lastly, we show an example of how the two methods of
MCS identification in PyFLEXTRKR affect the comparison
and interpretation of MCS frequency between satellite ob-
servations and a global model simulation from E3SM with
∼ 25 km grid spacing (Caldwell et al., 2019). Recall that
PyFLEXTRKR tracks CCSs associated with deep convection
(using infrared Tb or OLR) to identify MCSs based on the
area and duration of tracked CCSs in step 5 (Fig. 7a). Sub-
sequently, if collocated precipitation data are available and
used, additional criteria based on PF within the Tb-defined
MCSs are applied to further identify robust MCSs (i.e., long-
lived and large cloud systems that produce strong precipita-
tion) in step 7 (Tb+PF method; Fig. 7c). Figure 13 shows
that the distributions of global MCS frequency in observa-
tions as defined by the two methods have largely consis-
tent patterns in the tropics and differ slightly in magnitude
(Fig. 13a, c). In contrast, the model-simulated tropical MCS
frequency defined by the Tb+PF method is significantly
less than that defined by the Tb-only method (Fig. 13b, d).
This is likely due to the simulated precipitation being much
weaker than observations, a typical bias associated with cu-
mulus parameterizations in global models (e.g., Caldwell
et al., 2019, Fig. 12). In state-of-the-art global convection-
permitting models with kilometer-scale grid spacing, MCS
precipitation is generally much better simulated, although
challenges remain in faithfully representing the observed
spectrum of deep convective systems (Feng et al., 2023). In
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Figure 11. Annual MCS track density from (a) observations and (b) WRF with (c) differences (WRF− observations). Annual mean fraction
of MCS precipitation to total precipitation from (d) observations and (e) WRF with (f) differences (WRF− observations). The black box in
(d)–(f) shows the region used for the diurnal cycle analysis in Fig. 12.

summary, the conclusions on the model skill in simulating
global observed MCS frequency could be drastically differ-
ent depending on what quantities and metrics are used to
identify MCSs. The results in Fig. 13 show that while the
model overproduces large and long-lived cloud clusters that
resemble MCSs, many of them fail to meet the PF thresh-
olds. The example highlights the MCS identification meth-
ods available in PyFLEXTRKR that provide different per-
spectives in evaluating model skills in simulating MCSs.

6 Summary

This paper documented the algorithm and workflow of
PyFLEXTRKR, a Python-based flexible atmospheric feature
tracking software package with specific capabilities to track
convective clouds from a variety of observations and model
simulations. PyFLEXTRKR can track any 2D objects and

handle merging and splitting explicitly, allowing it to work
on a variety of weather and climate datasets. The software
has a collection of multi-object identification algorithms,
while the modular design of the package makes it adaptable
to track different types of features with easy maintenance,
updating, and testing of different parts of the software. The
package has scalable parallelization options that can be run
on laptops or high-performance computers and has been op-
timized to work on large datasets such as global satellite ob-
servations and high-resolution regional or global model sim-
ulations.

We demonstrated the applications of PyFLEXTRKR on
tracking deep convective cells and MCSs from model simu-
lations and observations across a range of scales from large-
eddy resolving (∼ 100s m) to mesoscale (∼ 10s km). The
current version of PyFLEXTRKR can identify and track con-
vective cells using 3D radar reflectivity from observations or
high-resolution simulations with resolution < 5 km and deep
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Figure 12. Diurnal cycle of precipitation as a function of longitude during December–March for (a, b) total precipitation, (c, d) MCS
precipitation, and (e, f) fraction of MCS precipitation. Precipitation is averaged in the latitude dimension over the central Amazon region
(10◦ S–2◦ N; see Fig. 11). Orange lines (a–d) and black lines (e, f) show the first harmonic of the diurnal cycle composite amplitude along
each longitude.

convective systems including MCSs using satellite IR Tb (or
model simulated OLR) along with optional surface precipi-
tation with resolutions from a few kilometers to 50 km. All
user-definable parameters are specified in a configuration file
that contains detailed explanations for ease of use. Additional
features of interest can be implemented without much coding
due to the modular framework design.

Various visualization, post processing, and statistical anal-
ysis examples are included as part of PyFLEXTRKR, fa-
cilitating statistical comparisons between observations and
model simulations and assisting in interpretation and sci-
entific discovery of the datasets. For example, tracking of
convective cells in large-eddy simulations along with post-
processing tools to extract important but difficult to observe
cell properties (e.g., updraft/downdraft characteristics, mi-
crophysical processes, near-cloud environmental conditions)
can help facilitate studies to improve our understanding of
primary processes that control the evolution of convective
clouds. As global models are now run with convection-
permitting resolutions (Satoh et al., 2019; Stevens et al.,
2019) and multi-decade regional climate simulations with a

few kilometer grid spacing are a reality (Liu et al., 2017;
Prein et al., 2017), open-source feature tracking software
such as PyFLEXTRKR that is adaptable, easy to use, and
computationally efficient should be a valuable tool for the
research community to explore these ever-growing large
datasets with contributions to model evaluation and devel-
opment efforts.

We are currently working on implementing additional ca-
pability to calculate multi-tile advection from convective fea-
tures to allow tracking of convective cells in large domains
and convective systems with smaller spatial scales. In addi-
tion, we are adding the ability to use 3D radar reflectivity data
in conjunction with Tb to identify MCSs following our pre-
vious works (Feng et al., 2019, 2018). We welcome commu-
nity contributions to the continued development of PyFLEX-
TRKR.
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Figure 13. Example maps of 20-year mean MCS density during June–July–August for observations and E3SM model outputs as defined
by using (a, b) only infrared brightness temperature (IR Tb) and (c, d) both IR Tb and precipitation feature (PF). Gray contours in the
background is topography higher than 1000 m a.s.l.

Appendix A

The two example figures (Figs. 4 and 9) are generated by the
following commands, respectively:

Cell tracking.

> python plot_subset_cell_tracks_demo.py -s START-
DATE -e ENDDATE -c CONFIG.yml −−radar_lat LAT
−−radar_lon LON.

MCS tracking.
> python plot_subset_tbpf_mcs_tracks_demo.py -s

STARTDATE -e ENDDATE -c CONFIG.yml -o horizontal.
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STARTDATE/ENDDATE format: yyyy-mm-
ddThh:mm:ss (e.g., 2019-01-20T03:00:00).

Optional arguments:
-p 0 (serial), 1 (parallel)
−−extent lonmin lonmax latmin latmax (subset domain

boundary)
−−figsize width height (figure size in inches)
−−output output_directory (output figure directory).
The sequence of snapshot images can be combined to pro-

duce animations using the command line tool ffmpeg (https:
//ffmpeg.org/, last access: 8 November 2022). For example,

> ffmpeg -framerate 2 -pattern_type glob -i “*.png” -c:v
libx264 -r 10 -crf 20 -pix_fmt yuv420p -y output.mp4.

Code and data availability. The open-source software described
in this paper is available for use under the BSD3 license.
The latest version of the software can be obtained from
GitHub at https://github.com/FlexTRKR/PyFLEXTRKR (last ac-
cess: 17 May 2023). The version of the code used in this pa-
per is available at https://doi.org/10.5281/zenodo.7429446 (Feng,
2022b). Datasets used in the paper can be downloaded from
https://doi.org/10.5281/zenodo.7236445 (Feng, 2022c).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-16-2753-2023-supplement.
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