Articles | Volume 15, issue 6
https://doi.org/10.5194/gmd-15-2533-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-2533-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
GCAM-USA v5.3_water_dispatch: integrated modeling of subnational US energy, water, and land systems within a global framework
Joint Global Change Research Institute (Pacific Northwest National Laboratory and University of Maryland), 5825 University Research Court, Suite 3500, College Park, MD 20740, USA
Gokul Iyer
Joint Global Change Research Institute (Pacific Northwest National Laboratory and University of Maryland), 5825 University Research Court, Suite 3500, College Park, MD 20740, USA
Pralit Patel
Joint Global Change Research Institute (Pacific Northwest National Laboratory and University of Maryland), 5825 University Research Court, Suite 3500, College Park, MD 20740, USA
Neal T. Graham
Joint Global Change Research Institute (Pacific Northwest National Laboratory and University of Maryland), 5825 University Research Court, Suite 3500, College Park, MD 20740, USA
Joint Global Change Research Institute (Pacific Northwest National Laboratory and University of Maryland), 5825 University Research Court, Suite 3500, College Park, MD 20740, USA
Zarrar Khan
Joint Global Change Research Institute (Pacific Northwest National Laboratory and University of Maryland), 5825 University Research Court, Suite 3500, College Park, MD 20740, USA
Nazar Kholod
Joint Global Change Research Institute (Pacific Northwest National Laboratory and University of Maryland), 5825 University Research Court, Suite 3500, College Park, MD 20740, USA
Kanishka Narayan
Joint Global Change Research Institute (Pacific Northwest National Laboratory and University of Maryland), 5825 University Research Court, Suite 3500, College Park, MD 20740, USA
Mohamad Hejazi
Joint Global Change Research Institute (Pacific Northwest National Laboratory and University of Maryland), 5825 University Research Court, Suite 3500, College Park, MD 20740, USA
Joint Global Change Research Institute (Pacific Northwest National Laboratory and University of Maryland), 5825 University Research Court, Suite 3500, College Park, MD 20740, USA
Katherine Calvin
Joint Global Change Research Institute (Pacific Northwest National Laboratory and University of Maryland), 5825 University Research Court, Suite 3500, College Park, MD 20740, USA
Marshall Wise
Joint Global Change Research Institute (Pacific Northwest National Laboratory and University of Maryland), 5825 University Research Court, Suite 3500, College Park, MD 20740, USA
Related authors
Mengqi Zhao, Thomas B. Wild, Neal T. Graham, Son H. Kim, Matthew Binsted, A. F. M. Kamal Chowdhury, Siwa Msangi, Pralit L. Patel, Chris R. Vernon, Hassan Niazi, Hong-Yi Li, and Guta W. Abeshu
Geosci. Model Dev., 17, 5587–5617, https://doi.org/10.5194/gmd-17-5587-2024, https://doi.org/10.5194/gmd-17-5587-2024, 2024
Short summary
Short summary
The Global Change Analysis Model (GCAM) simulates the world’s climate–land–energy–water system interactions , but its reservoir representation is limited. We developed the GLObal Reservoir Yield (GLORY) model to provide GCAM with information on the cost of supplying water based on reservoir construction costs, climate and demand conditions, and reservoir expansion potential. GLORY enhances our understanding of future reservoir capacity needs to meet human demands in a changing climate.
Felix Jäger, Jonas Schwaab, Yann Quilcaille, Michael Windisch, Jonathan Doelman, Stefan Frank, Mykola Gusti, Petr Havlik, Florian Humpenöder, Andrey Lessa Derci Augustynczik, Christoph Müller, Kanishka Balu Narayan, Ryan Sebastian Padrón, Alexander Popp, Detlef van Vuuren, Michael Wögerer, and Sonia Isabelle Seneviratne
Earth Syst. Dynam., 15, 1055–1071, https://doi.org/10.5194/esd-15-1055-2024, https://doi.org/10.5194/esd-15-1055-2024, 2024
Short summary
Short summary
Climate change mitigation strategies developed with socioeconomic models rely on the widespread (re)planting of trees to limit global warming below 2°. However, most of these models neglect climate-driven shifts in forest damage like fires. By assessing existing mitigation scenarios, we show the exposure of projected forestation areas to fire-promoting weather conditions. Our study highlights the problem of ignoring climate-driven shifts in forest damage and ways to address it.
Mengqi Zhao, Thomas B. Wild, Neal T. Graham, Son H. Kim, Matthew Binsted, A. F. M. Kamal Chowdhury, Siwa Msangi, Pralit L. Patel, Chris R. Vernon, Hassan Niazi, Hong-Yi Li, and Guta W. Abeshu
Geosci. Model Dev., 17, 5587–5617, https://doi.org/10.5194/gmd-17-5587-2024, https://doi.org/10.5194/gmd-17-5587-2024, 2024
Short summary
Short summary
The Global Change Analysis Model (GCAM) simulates the world’s climate–land–energy–water system interactions , but its reservoir representation is limited. We developed the GLObal Reservoir Yield (GLORY) model to provide GCAM with information on the cost of supplying water based on reservoir construction costs, climate and demand conditions, and reservoir expansion potential. GLORY enhances our understanding of future reservoir capacity needs to meet human demands in a changing climate.
Kanishka B. Narayan, Brian C. O'Neill, Stephanie Waldhoff, and Claudia Tebaldi
Earth Syst. Sci. Data, 16, 2333–2349, https://doi.org/10.5194/essd-16-2333-2024, https://doi.org/10.5194/essd-16-2333-2024, 2024
Short summary
Short summary
Here, we present a consistent dataset of income distributions across 190 countries from 1958 to 2015 measured in terms of net income. We complement the observed values in this dataset with values imputed from a summary measure of the income distribution, specifically the Gini coefficient. We also present another version of this dataset aggregated from the country level to 32 geographical regions.
Hassan Niazi, Stephen B. Ferencz, Neal T. Graham, Jim Yoon, Thomas B. Wild, Mohamad Hejazi, David J. Watson, and Chris R. Vernon
EGUsphere, https://doi.org/10.5194/egusphere-2024-799, https://doi.org/10.5194/egusphere-2024-799, 2024
Short summary
Short summary
Superwell is a physics-based hydro-economic model that helps understand the costs and availability of groundwater worldwide. It calculates how much groundwater can be extracted and at what cost, using detailed maps and data of the Earth's below-ground properties. Through these estimates, and by using them with other models, Superwell facilitates exploration of coupled human-environmental systems challenges, such as future water supply sustainability or multi-sectoral energy-water-land feedbacks.
Guta Wakbulcho Abeshu, Fuqiang Tian, Thomas Wild, Mengqi Zhao, Sean Turner, A. F. M. Kamal Chowdhury, Chris R. Vernon, Hongchang Hu, Yuan Zhuang, Mohamad Hejazi, and Hong-Yi Li
Geosci. Model Dev., 16, 5449–5472, https://doi.org/10.5194/gmd-16-5449-2023, https://doi.org/10.5194/gmd-16-5449-2023, 2023
Short summary
Short summary
Most existing global hydrologic models do not explicitly represent hydropower reservoirs. We are introducing a new water management module to Xanthos that distinguishes between the operational characteristics of irrigation, hydropower, and flood control reservoirs. We show that this explicit representation of hydropower reservoirs can lead to a significantly more realistic simulation of reservoir storage and releases in over 44 % of the hydropower reservoirs included in this study.
Kanishka B. Narayan, Alan V. Di Vittorio, Evan Margiotta, Seth A. Spawn-Lee, and Holly K. Gibbs
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-251, https://doi.org/10.5194/essd-2023-251, 2023
Manuscript not accepted for further review
Short summary
Short summary
In this paper we present a new dataset of grid cell level spatially explicit carbon harmonized with land types in a global Multisector Dynamics Model. This dataset can be used to define an initial condition of terrestrial carbon in MSD models. Our harmonized dataset presents carbon values for 3 pools (topsoil, above ground biomass and below ground biomass) for six statistical states across land use types. Our dataset is available at a pixel level (5 arcmin) and aggregated to 699 land regions.
Katherine V. Calvin, Abigail Snyder, Xin Zhao, and Marshall Wise
Geosci. Model Dev., 15, 429–447, https://doi.org/10.5194/gmd-15-429-2022, https://doi.org/10.5194/gmd-15-429-2022, 2022
Short summary
Short summary
Future changes in land use and cover have important implications for agriculture, energy, water use, and climate. In this study, we demonstrate a more systematic and empirically based approach to estimating a few key parameters for an economic model of land use and land cover change, gcamland. We identify parameter combinations that best replicate historical land use in the United States.
Eva Sinha, Kate Calvin, Ben Bond-Lamberty, Beth Drewniak, Dan Ricciuto, Khachik Sargsyan, Yanyan Cheng, Carl Bernacchi, and Caitlin Moore
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-244, https://doi.org/10.5194/gmd-2021-244, 2021
Preprint withdrawn
Short summary
Short summary
Perennial bioenergy crops are not well represented in global land models, despite projected increase in their production. Our study expands Energy Exascale Earth System Model (E3SM) Land Model (ELM) to include perennial bioenergy crops and calibrates the model for miscanthus and switchgrass. The calibrated model captures the seasonality and magnitude of carbon and energy fluxes. This study provides the foundation for future research examining the impact of perennial bioenergy crop expansion.
Jinshi Jian, Rodrigo Vargas, Kristina Anderson-Teixeira, Emma Stell, Valentine Herrmann, Mercedes Horn, Nazar Kholod, Jason Manzon, Rebecca Marchesi, Darlin Paredes, and Ben Bond-Lamberty
Earth Syst. Sci. Data, 13, 255–267, https://doi.org/10.5194/essd-13-255-2021, https://doi.org/10.5194/essd-13-255-2021, 2021
Short summary
Short summary
Field soil-to-atmosphere CO2 flux (soil respiration, Rs) observations were compiled into a global database (SRDB) a decade ago. Here, we restructured and updated the database to the fifth version, SRDB-V5, with data published through 2017 included. SRDB-V5 aims to be a data framework for the scientific community to share seasonal to annual field Rs measurements, and it provides opportunities for the scientific community to better understand the spatial and temporal variability of Rs.
George C. Hurtt, Louise Chini, Ritvik Sahajpal, Steve Frolking, Benjamin L. Bodirsky, Katherine Calvin, Jonathan C. Doelman, Justin Fisk, Shinichiro Fujimori, Kees Klein Goldewijk, Tomoko Hasegawa, Peter Havlik, Andreas Heinimann, Florian Humpenöder, Johan Jungclaus, Jed O. Kaplan, Jennifer Kennedy, Tamás Krisztin, David Lawrence, Peter Lawrence, Lei Ma, Ole Mertz, Julia Pongratz, Alexander Popp, Benjamin Poulter, Keywan Riahi, Elena Shevliakova, Elke Stehfest, Peter Thornton, Francesco N. Tubiello, Detlef P. van Vuuren, and Xin Zhang
Geosci. Model Dev., 13, 5425–5464, https://doi.org/10.5194/gmd-13-5425-2020, https://doi.org/10.5194/gmd-13-5425-2020, 2020
Short summary
Short summary
To estimate the effects of human land use activities on the carbon–climate system, a new set of global gridded land use forcing datasets was developed to link historical land use data to eight future scenarios in a standard format required by climate models. This new generation of land use harmonization (LUH2) includes updated inputs, higher spatial resolution, more detailed land use transitions, and the addition of important agricultural management layers; it will be used for CMIP6 simulations.
Adriano Vinca, Simon Parkinson, Edward Byers, Peter Burek, Zarrar Khan, Volker Krey, Fabio A. Diuana, Yaoping Wang, Ansir Ilyas, Alexandre C. Köberle, Iain Staffell, Stefan Pfenninger, Abubakr Muhammad, Andrew Rowe, Roberto Schaeffer, Narasimha D. Rao, Yoshihide Wada, Ned Djilali, and Keywan Riahi
Geosci. Model Dev., 13, 1095–1121, https://doi.org/10.5194/gmd-13-1095-2020, https://doi.org/10.5194/gmd-13-1095-2020, 2020
Short summary
Short summary
This article describes a newly developed numerical model that can assess impacts of long-term policies for the energy, water and land (WEL) sectors at the scale of a river basin. We show the importance of having an integrated method when jointly considering multiple policies as opposed to conventional sectoral analysis. This model can be useful for studying river basins, such as the Indus basin, that are exposed to challenges over WEL sectors, like water scarcity or food and energy access.
Min Chen, Chris R. Vernon, Maoyi Huang, Katherine V. Calvin, and Ian P. Kraucunas
Geosci. Model Dev., 12, 1753–1764, https://doi.org/10.5194/gmd-12-1753-2019, https://doi.org/10.5194/gmd-12-1753-2019, 2019
Short summary
Short summary
Demeter is a community spatial downscaling model that disaggregates land use and land cover changes projected by integrated human–Earth system models. However, Demeter has not been intensively calibrated, and we still lack good knowledge about its sensitivity to key parameters and parameter uncertainties. This paper aims to solve this problem.
Matthew J. Gidden, Keywan Riahi, Steven J. Smith, Shinichiro Fujimori, Gunnar Luderer, Elmar Kriegler, Detlef P. van Vuuren, Maarten van den Berg, Leyang Feng, David Klein, Katherine Calvin, Jonathan C. Doelman, Stefan Frank, Oliver Fricko, Mathijs Harmsen, Tomoko Hasegawa, Petr Havlik, Jérôme Hilaire, Rachel Hoesly, Jill Horing, Alexander Popp, Elke Stehfest, and Kiyoshi Takahashi
Geosci. Model Dev., 12, 1443–1475, https://doi.org/10.5194/gmd-12-1443-2019, https://doi.org/10.5194/gmd-12-1443-2019, 2019
Short summary
Short summary
We present a suite of nine scenarios of future emissions trajectories of anthropogenic sources for use in CMIP6. Integrated assessment model results are provided for each scenario with consistent transitions from the historical data to future trajectories. We find that the set of scenarios enables the exploration of a variety of warming pathways. A wide range of scenario data products are provided for the CMIP6 scientific community including global, regional, and gridded emissions datasets.
Abigail Snyder, Katherine V. Calvin, Meridel Phillips, and Alex C. Ruane
Geosci. Model Dev., 12, 1319–1350, https://doi.org/10.5194/gmd-12-1319-2019, https://doi.org/10.5194/gmd-12-1319-2019, 2019
Short summary
Short summary
Future changes in Earth system state will impact agricultural yields and therefore the global economy. Global gridded crop models estimate the influence of these Earth system changes on future crop yields, but are often too computationally intensive to dynamically couple into global multi-sector economic models, such as GCAM and other similar-in-scale models. This work describes a new crop yield change emulator, Persephone, that can capture yield changes in a computationally efficient way.
Katherine Calvin, Pralit Patel, Leon Clarke, Ghassem Asrar, Ben Bond-Lamberty, Ryna Yiyun Cui, Alan Di Vittorio, Kalyn Dorheim, Jae Edmonds, Corinne Hartin, Mohamad Hejazi, Russell Horowitz, Gokul Iyer, Page Kyle, Sonny Kim, Robert Link, Haewon McJeon, Steven J. Smith, Abigail Snyder, Stephanie Waldhoff, and Marshall Wise
Geosci. Model Dev., 12, 677–698, https://doi.org/10.5194/gmd-12-677-2019, https://doi.org/10.5194/gmd-12-677-2019, 2019
Short summary
Short summary
This paper describes GCAM v5.1, an open source model that represents the linkages between energy, water, land, climate, and economic systems. GCAM examines the future evolution of these systems through the end of the 21st century. It can be used to examine, for example, how changes in population, income, or technology cost might alter crop production, energy demand, or water withdrawals, or how changes in one region’s demand for energy affect energy, water, and land in other regions.
Rachel M. Hoesly, Steven J. Smith, Leyang Feng, Zbigniew Klimont, Greet Janssens-Maenhout, Tyler Pitkanen, Jonathan J. Seibert, Linh Vu, Robert J. Andres, Ryan M. Bolt, Tami C. Bond, Laura Dawidowski, Nazar Kholod, June-ichi Kurokawa, Meng Li, Liang Liu, Zifeng Lu, Maria Cecilia P. Moura, Patrick R. O'Rourke, and Qiang Zhang
Geosci. Model Dev., 11, 369–408, https://doi.org/10.5194/gmd-11-369-2018, https://doi.org/10.5194/gmd-11-369-2018, 2018
Short summary
Short summary
Historical emission trends are key inputs to Earth systems and atmospheric chemistry models. We present a new data set of historical (1750–2014) anthropogenic gases (CO, CH4, NH3, NOx, SO2, NMVOCs, BC, OC, and CO2) developed with the Community Emissions Data System (CEDS). This improves on existing inventories as it uses consistent methods and data across emissions species, has annual resolution for a longer and more recent time series, and is designed to be transparent and reproducible.
Abigail C. Snyder, Robert P. Link, and Katherine V. Calvin
Geosci. Model Dev., 10, 4307–4319, https://doi.org/10.5194/gmd-10-4307-2017, https://doi.org/10.5194/gmd-10-4307-2017, 2017
Short summary
Short summary
Experiments conducting a model forecast for a period in which observational data are available are rarely undertaken in the integrated assessment model (IAM) community. When undertaken, results are often evaluated using global aggregates that mask deficiencies. Comparing land allocation simulations in GCAM with FAO observational data from 1990 to 2010, we find quantitative evidence that global aggregates alone are not sufficient for evaluating IAMs with global supply constraints similar to GCAM.
Nazar Kholod, Meredydd Evans, and Teresa Kuklinski
Atmos. Chem. Phys., 16, 11267–11281, https://doi.org/10.5194/acp-16-11267-2016, https://doi.org/10.5194/acp-16-11267-2016, 2016
Short summary
Short summary
The paper presents an inventory of black carbon (BC) emissions from diesel sources in Russia. On-road diesel vehicles emitted 21 Gg of BC in 2014; heavy-duty trucks accounted for 60 % of the on-road BC; and cars represent only 5 %. Superemitters emitted 33 % of all on-road BC. BC emissions from off-road diesel engines estimated at 28 Gg. While consuming 68 % of the diesel fuel in the country, on-road vehicles produced only 42 % of BC emissions due to introduction of emission standards.
David M. Lawrence, George C. Hurtt, Almut Arneth, Victor Brovkin, Kate V. Calvin, Andrew D. Jones, Chris D. Jones, Peter J. Lawrence, Nathalie de Noblet-Ducoudré, Julia Pongratz, Sonia I. Seneviratne, and Elena Shevliakova
Geosci. Model Dev., 9, 2973–2998, https://doi.org/10.5194/gmd-9-2973-2016, https://doi.org/10.5194/gmd-9-2973-2016, 2016
Short summary
Short summary
Human land-use activities have resulted in large changes to the Earth's surface, with resulting implications for climate. In the future, land-use activities are likely to expand and intensify further to meet growing demands for food, fiber, and energy. The goal of LUMIP is to take the next steps in land-use change science, and enable, coordinate, and ultimately address the most important land-use science questions in more depth and sophistication than possible in a multi-model context to date.
Corinne A. Hartin, Benjamin Bond-Lamberty, Pralit Patel, and Anupriya Mundra
Biogeosciences, 13, 4329–4342, https://doi.org/10.5194/bg-13-4329-2016, https://doi.org/10.5194/bg-13-4329-2016, 2016
M. Evans, N. Kholod, V. Malyshev, S. Tretyakova, E. Gusev, S. Yu, and A. Barinov
Atmos. Chem. Phys., 15, 8349–8359, https://doi.org/10.5194/acp-15-8349-2015, https://doi.org/10.5194/acp-15-8349-2015, 2015
Short summary
Short summary
We estimated BC emissions from diesel sources in Murmansk Region and Murmansk City, the largest city in the Arctic. We developed a detailed inventory including on-road vehicles, off-road transport (mining, locomotives, construction and agriculture), fishing and diesel generators. We conducted several surveys to understand the vehicle fleet and driving patterns. BC emissions in Murmansk Region were 0.40 Gg in 2012. Total BC emissions from diesel sources in Russia estimated at 50.8 Gg in 2010.
W. D. Collins, A. P. Craig, J. E. Truesdale, A. V. Di Vittorio, A. D. Jones, B. Bond-Lamberty, K. V. Calvin, J. A. Edmonds, S. H. Kim, A. M. Thomson, P. Patel, Y. Zhou, J. Mao, X. Shi, P. E. Thornton, L. P. Chini, and G. C. Hurtt
Geosci. Model Dev., 8, 2203–2219, https://doi.org/10.5194/gmd-8-2203-2015, https://doi.org/10.5194/gmd-8-2203-2015, 2015
Short summary
Short summary
The integrated Earth system model (iESM) has been developed as a
new tool for projecting the joint human-climate system. The
iESM is based upon coupling an integrated assessment model (IAM)
and an Earth system model (ESM) into a common modeling
infrastructure. By introducing heretofore-omitted
feedbacks between natural and societal drivers in iESM, we can improve
scientific understanding of the human-Earth system
dynamics.
A. V. Di Vittorio, L. P. Chini, B. Bond-Lamberty, J. Mao, X. Shi, J. Truesdale, A. Craig, K. Calvin, A. Jones, W. D. Collins, J. Edmonds, G. C. Hurtt, P. Thornton, and A. Thomson
Biogeosciences, 11, 6435–6450, https://doi.org/10.5194/bg-11-6435-2014, https://doi.org/10.5194/bg-11-6435-2014, 2014
Short summary
Short summary
Economic models provide scenarios of land use and greenhouse gas emissions to earth system models to project global change. We found, and partially addressed, inconsistencies in land cover between an economic and an earth system model that effectively alter a prescribed scenario, causing significant differences in projected terrestrial carbon and atmospheric CO2 between prescribed and altered scenarios. We outline a solution to this current problem in scenario-based global change projections.
B. Bond-Lamberty, K. Calvin, A. D. Jones, J. Mao, P. Patel, X. Y. Shi, A. Thomson, P. Thornton, and Y. Zhou
Geosci. Model Dev., 7, 2545–2555, https://doi.org/10.5194/gmd-7-2545-2014, https://doi.org/10.5194/gmd-7-2545-2014, 2014
M. I. Hejazi, J. Edmonds, L. Clarke, P. Kyle, E. Davies, V. Chaturvedi, M. Wise, P. Patel, J. Eom, and K. Calvin
Hydrol. Earth Syst. Sci., 18, 2859–2883, https://doi.org/10.5194/hess-18-2859-2014, https://doi.org/10.5194/hess-18-2859-2014, 2014
M. I. Hejazi, J. Edmonds, L. Clarke, P. Kyle, E. Davies, V. Chaturvedi, J. Eom, M. Wise, P. Patel, and K. Calvin
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-3383-2013, https://doi.org/10.5194/hessd-10-3383-2013, 2013
Revised manuscript has not been submitted
Related subject area
Integrated assessment modeling
MESSAGEix-Materials v1.1.0: representation of material flows and stocks in an integrated assessment model
GCAM–GLORY v1.0: representing global reservoir water storage in a multi-sector human–Earth system model
Long-term Hydro-economic Analysis Tool for Evaluating Global Groundwater Cost and Supply: Superwell v1.0
pathways-ensemble-analysis v1.0.0: an open-source library for systematic and robust analysis of pathways ensembles
CLASH – Climate-responsive Land Allocation model with carbon Storage and Harvests
Carbon Monitor Power-Simulators (CMP-SIM v1.0) across countries: a data-driven approach to simulate daily power generation
Intercomparison of multiple two-way coupled meteorology and air quality models (WRF v4.1.1–CMAQ v5.3.1, WRF–Chem v4.1.1, and WRF v3.7.1–CHIMERE v2020r1) in eastern China
MESSAGEix-GLOBIOM nexus module: integrating water sector and climate impacts
Minimum-variance-based outlier detection method using forward-search model error in geodetic networks
Modelling long-term industry energy demand and CO2 emissions in the system context using REMIND (version 3.1.0)
Bidirectional coupling of the long-term integrated assessment model REgional Model of INvestments and Development (REMIND) v3.0.0 with the hourly power sector model Dispatch and Investment Evaluation Tool with Endogenous Renewables (DIETER) v1.0.2
GCAM-CDR v1.0: enhancing the representation of carbon dioxide removal technologies and policies in an integrated assessment model
The IPCC Sixth Assessment Report WGIII climate assessment of mitigation pathways: from emissions to global temperatures
Cyclone generation Algorithm including a THERmodynamic module for Integrated National damage Assessment (CATHERINA 1.0) compatible with Coupled Model Intercomparison Project (CMIP) climate data
A tool for air pollution scenarios (TAPS v1.0) to enable global, long-term, and flexible study of climate and air quality policies
Improved CASA model based on satellite remote sensing data: simulating net primary productivity of Qinghai Lake basin alpine grassland
Pixel-level parameter optimization of a terrestrial biosphere model for improving estimation of carbon fluxes with an efficient model–data fusion method and satellite-derived LAI and GPP data
Climate Services Toolbox (CSTools) v4.0: from climate forecasts to climate forecast information
TIM: modelling pathways to meet Ireland's long-term energy system challenges with the TIMES-Ireland Model (v1.0)
ANEMI_Yangtze v1.0: a coupled human–natural systems model for the Yangtze Economic Belt – model description
Nested leave-two-out cross-validation for the optimal crop yield model selection
GOBLIN version 1.0: a land balance model to identify national agriculture and land use pathways to climate neutrality via backcasting
Globally consistent assessment of economic impacts of wildfires in CLIMADA v2.2
REMIND2.1: transformation and innovation dynamics of the energy-economic system within climate and sustainability limits
Parallel gridded simulation framework for DSSAT-CSM (version 4.7.5.21) using MPI and NetCDF
Estimating global land system impacts of timber plantations using MAgPIE 4.3.5
Gamze Ünlü, Florian Maczek, Jihoon Min, Stefan Frank, Fridolin Glatter, Paul Natsuo Kishimoto, Jan Streeck, Nina Eisenmenger, Dominik Wiedenhofer, and Volker Krey
Geosci. Model Dev., 17, 8321–8352, https://doi.org/10.5194/gmd-17-8321-2024, https://doi.org/10.5194/gmd-17-8321-2024, 2024
Short summary
Short summary
Extraction and processing of raw materials constitute a significant source of CO2 emissions in industry and so are contributors to climate change. We develop an open-source tool to assess different industry decarbonization pathways in integrated assessment models (IAMs) with a representation of material flows and stocks. We highlight the importance of expanding the scope of climate change mitigation options to include circular-economy and material efficiency measures in IAM scenario analysis.
Mengqi Zhao, Thomas B. Wild, Neal T. Graham, Son H. Kim, Matthew Binsted, A. F. M. Kamal Chowdhury, Siwa Msangi, Pralit L. Patel, Chris R. Vernon, Hassan Niazi, Hong-Yi Li, and Guta W. Abeshu
Geosci. Model Dev., 17, 5587–5617, https://doi.org/10.5194/gmd-17-5587-2024, https://doi.org/10.5194/gmd-17-5587-2024, 2024
Short summary
Short summary
The Global Change Analysis Model (GCAM) simulates the world’s climate–land–energy–water system interactions , but its reservoir representation is limited. We developed the GLObal Reservoir Yield (GLORY) model to provide GCAM with information on the cost of supplying water based on reservoir construction costs, climate and demand conditions, and reservoir expansion potential. GLORY enhances our understanding of future reservoir capacity needs to meet human demands in a changing climate.
Hassan Niazi, Stephen B. Ferencz, Neal T. Graham, Jim Yoon, Thomas B. Wild, Mohamad Hejazi, David J. Watson, and Chris R. Vernon
EGUsphere, https://doi.org/10.5194/egusphere-2024-799, https://doi.org/10.5194/egusphere-2024-799, 2024
Short summary
Short summary
Superwell is a physics-based hydro-economic model that helps understand the costs and availability of groundwater worldwide. It calculates how much groundwater can be extracted and at what cost, using detailed maps and data of the Earth's below-ground properties. Through these estimates, and by using them with other models, Superwell facilitates exploration of coupled human-environmental systems challenges, such as future water supply sustainability or multi-sectoral energy-water-land feedbacks.
Lara Welder, Neil Grant, and Matthew J. Gidden
EGUsphere, https://doi.org/10.5194/egusphere-2024-761, https://doi.org/10.5194/egusphere-2024-761, 2024
Short summary
Short summary
Pathways investigating the link between emissions and global warming have been continuously used to inform climate policy. We have developed a tool that can facilitate the systematic and robust analysis of ensembles of such pathways. We describe the structure of this tool and then show an illustrative application of it. The application indicates the usefulness of the tool to the research community and shows how it can be used to establish best-practices.
Tommi Ekholm, Nadine-Cyra Freistetter, Aapo Rautiainen, and Laura Thölix
Geosci. Model Dev., 17, 3041–3062, https://doi.org/10.5194/gmd-17-3041-2024, https://doi.org/10.5194/gmd-17-3041-2024, 2024
Short summary
Short summary
CLASH is a numerical model that portrays land allocation between different uses, land carbon stocks, and agricultural and forestry production globally. CLASH can help in examining the role of land use in mitigating climate change, providing food and biogenic raw materials for the economy, and conserving primary ecosystems. Our demonstration with CLASH confirms that reduction of animal-based food, shifting croplands and storing carbon in forests are effective ways to mitigate climate change.
Léna Gurriaran, Yannig Goude, Katsumasa Tanaka, Biqing Zhu, Zhu Deng, Xuanren Song, and Philippe Ciais
Geosci. Model Dev., 17, 2663–2682, https://doi.org/10.5194/gmd-17-2663-2024, https://doi.org/10.5194/gmd-17-2663-2024, 2024
Short summary
Short summary
We developed a data-driven model simulating daily regional power demand based on climate and socioeconomic variables. Our model was applied to eight countries or regions (Australia, Brazil, China, EU, India, Russia, South Africa, US), identifying influential factors and their relationship with power demand. Our findings highlight the significance of economic indicators in addition to temperature, showcasing country-specific variations. This research aids energy planning and emission reduction.
Chao Gao, Xuelei Zhang, Aijun Xiu, Qingqing Tong, Hongmei Zhao, Shichun Zhang, Guangyi Yang, Mengduo Zhang, and Shengjin Xie
Geosci. Model Dev., 17, 2471–2492, https://doi.org/10.5194/gmd-17-2471-2024, https://doi.org/10.5194/gmd-17-2471-2024, 2024
Short summary
Short summary
A comprehensive comparison study is conducted targeting the performances of three two-way coupled meteorology and air quality models (WRF-CMAQ, WRF-Chem, and WRF-CHIMERE) for eastern China during 2017. The impacts of aerosol–radiation–cloud interactions on these models’ results are evaluated against satellite and surface observations. Further improvements to the calculation of aerosol–cloud interactions in these models are crucial to ensure more accurate and timely air quality forecasts.
Muhammad Awais, Adriano Vinca, Edward Byers, Stefan Frank, Oliver Fricko, Esther Boere, Peter Burek, Miguel Poblete Cazenave, Paul Natsuo Kishimoto, Alessio Mastrucci, Yusuke Satoh, Amanda Palazzo, Madeleine McPherson, Keywan Riahi, and Volker Krey
Geosci. Model Dev., 17, 2447–2469, https://doi.org/10.5194/gmd-17-2447-2024, https://doi.org/10.5194/gmd-17-2447-2024, 2024
Short summary
Short summary
Climate change, population growth, and depletion of natural resources all pose complex and interconnected challenges. Our research offers a novel model that can help in understanding the interplay of these aspects, providing policymakers with a more robust tool for making informed future decisions. The study highlights the significance of incorporating climate impacts within large-scale global integrated assessments, which can help us in generating more climate-resilient scenarios.
Utkan M. Durdağ
Geosci. Model Dev., 17, 2187–2196, https://doi.org/10.5194/gmd-17-2187-2024, https://doi.org/10.5194/gmd-17-2187-2024, 2024
Short summary
Short summary
This study introduces a novel approach to outlier detection in geodetic networks, challenging conventional and robust methods. By treating outliers as unknown parameters within the Gauss–Markov model and exploring numerous outlier combinations, this approach prioritizes minimal variance and eliminates iteration dependencies. The mean success rate (MSR) comparisons highlight its effectiveness, improving the MSR by 40–45 % for multiple outliers.
Michaja Pehl, Felix Schreyer, and Gunnar Luderer
Geosci. Model Dev., 17, 2015–2038, https://doi.org/10.5194/gmd-17-2015-2024, https://doi.org/10.5194/gmd-17-2015-2024, 2024
Short summary
Short summary
We extend the REMIND model (used to investigate climate mitigation strategies) by an industry module that represents cement, chemical, steel, and other industries. We also present a method for deriving scenarios of industry subsector activity and energy demand, consistent with established socioeconomic scenarios, allowing us to investigate the different climate change mitigation challenges and strategies in industry subsectors in the context of the entire energy–economy–climate system.
Chen Chris Gong, Falko Ueckerdt, Robert Pietzcker, Adrian Odenweller, Wolf-Peter Schill, Martin Kittel, and Gunnar Luderer
Geosci. Model Dev., 16, 4977–5033, https://doi.org/10.5194/gmd-16-4977-2023, https://doi.org/10.5194/gmd-16-4977-2023, 2023
Short summary
Short summary
To mitigate climate change, the global economy must drastically reduce its greenhouse gas emissions, for which the power sector plays a key role. Until now, long-term models which simulate this transformation cannot always accurately depict the power sector due to a lack of resolution. Our work bridges this gap by linking a long-term model to an hourly model. The result is an almost full harmonization of the models in generating a power sector mix until 2100 with hourly resolution.
David R. Morrow, Raphael Apeaning, and Garrett Guard
Geosci. Model Dev., 16, 1105–1118, https://doi.org/10.5194/gmd-16-1105-2023, https://doi.org/10.5194/gmd-16-1105-2023, 2023
Short summary
Short summary
GCAM-CDR is a variant of the Global Change Analysis Model that makes it easier to study the roles that carbon dioxide removal (CDR) might play in climate policy. Building on GCAM 5.4, GCAM-CDR adds several extra technologies to permanently remove carbon dioxide from the air and enables users to simulate a wider range of CDR-related policies and controls.
Jarmo S. Kikstra, Zebedee R. J. Nicholls, Christopher J. Smith, Jared Lewis, Robin D. Lamboll, Edward Byers, Marit Sandstad, Malte Meinshausen, Matthew J. Gidden, Joeri Rogelj, Elmar Kriegler, Glen P. Peters, Jan S. Fuglestvedt, Ragnhild B. Skeie, Bjørn H. Samset, Laura Wienpahl, Detlef P. van Vuuren, Kaj-Ivar van der Wijst, Alaa Al Khourdajie, Piers M. Forster, Andy Reisinger, Roberto Schaeffer, and Keywan Riahi
Geosci. Model Dev., 15, 9075–9109, https://doi.org/10.5194/gmd-15-9075-2022, https://doi.org/10.5194/gmd-15-9075-2022, 2022
Short summary
Short summary
Assessing hundreds or thousands of emission scenarios in terms of their global mean temperature implications requires standardised procedures of infilling, harmonisation, and probabilistic temperature assessments. We here present the open-source
climate-assessmentworkflow that was used in the IPCC AR6 Working Group III report. The paper provides key insight for anyone wishing to understand the assessment of climate outcomes of mitigation pathways in the context of the Paris Agreement.
Théo Le Guenedal, Philippe Drobinski, and Peter Tankov
Geosci. Model Dev., 15, 8001–8039, https://doi.org/10.5194/gmd-15-8001-2022, https://doi.org/10.5194/gmd-15-8001-2022, 2022
Short summary
Short summary
The CATHERINA model produces simulations of cyclone-related annualized damage costs at a country level from climate data and open-source socioeconomic indicators. The framework couples statistical and physical modeling of tropical cyclones to bridge the gap between general circulation and integrated assessment models providing a precise description of tropical-cyclone-related damages.
William Atkinson, Sebastian D. Eastham, Y.-H. Henry Chen, Jennifer Morris, Sergey Paltsev, C. Adam Schlosser, and Noelle E. Selin
Geosci. Model Dev., 15, 7767–7789, https://doi.org/10.5194/gmd-15-7767-2022, https://doi.org/10.5194/gmd-15-7767-2022, 2022
Short summary
Short summary
Understanding policy effects on human-caused air pollutant emissions is key for assessing related health impacts. We develop a flexible scenario tool that combines updated emissions data sets, long-term economic modeling, and comprehensive technology pathways to clarify the impacts of climate and air quality policies. Results show the importance of both policy levers in the future to prevent long-term emission increases from offsetting near-term air quality improvements from existing policies.
Chengyong Wu, Kelong Chen, Chongyi E, Xiaoni You, Dongcai He, Liangbai Hu, Baokang Liu, Runke Wang, Yaya Shi, Chengxiu Li, and Fumei Liu
Geosci. Model Dev., 15, 6919–6933, https://doi.org/10.5194/gmd-15-6919-2022, https://doi.org/10.5194/gmd-15-6919-2022, 2022
Short summary
Short summary
The traditional Carnegie–Ames–Stanford Approach (CASA) model driven by multisource data such as meteorology, soil, and remote sensing (RS) has notable disadvantages. We drove the CASA using RS data and conducted a case study of the Qinghai Lake basin alpine grassland. The simulated result is similar to published and measured net primary productivity (NPP). It may provide a reference for simulating vegetation NPP to satisfy the requirements of accounting carbon stocks and other applications.
Rui Ma, Jingfeng Xiao, Shunlin Liang, Han Ma, Tao He, Da Guo, Xiaobang Liu, and Haibo Lu
Geosci. Model Dev., 15, 6637–6657, https://doi.org/10.5194/gmd-15-6637-2022, https://doi.org/10.5194/gmd-15-6637-2022, 2022
Short summary
Short summary
Parameter optimization can improve the accuracy of modeled carbon fluxes. Few studies conducted pixel-level parameterization because it requires a high computational cost. Our paper used high-quality spatial products to optimize parameters at the pixel level, and also used the machine learning method to improve the speed of optimization. The results showed that there was significant spatial variability of parameters and we also improved the spatial pattern of carbon fluxes.
Núria Pérez-Zanón, Louis-Philippe Caron, Silvia Terzago, Bert Van Schaeybroeck, Llorenç Lledó, Nicolau Manubens, Emmanuel Roulin, M. Carmen Alvarez-Castro, Lauriane Batté, Pierre-Antoine Bretonnière, Susana Corti, Carlos Delgado-Torres, Marta Domínguez, Federico Fabiano, Ignazio Giuntoli, Jost von Hardenberg, Eroteida Sánchez-García, Verónica Torralba, and Deborah Verfaillie
Geosci. Model Dev., 15, 6115–6142, https://doi.org/10.5194/gmd-15-6115-2022, https://doi.org/10.5194/gmd-15-6115-2022, 2022
Short summary
Short summary
CSTools (short for Climate Service Tools) is an R package that contains process-based methods for climate forecast calibration, bias correction, statistical and stochastic downscaling, optimal forecast combination, and multivariate verification, as well as basic and advanced tools to obtain tailored products. In addition to describing the structure and methods in the package, we also present three use cases to illustrate the seasonal climate forecast post-processing for specific purposes.
Olexandr Balyk, James Glynn, Vahid Aryanpur, Ankita Gaur, Jason McGuire, Andrew Smith, Xiufeng Yue, and Hannah Daly
Geosci. Model Dev., 15, 4991–5019, https://doi.org/10.5194/gmd-15-4991-2022, https://doi.org/10.5194/gmd-15-4991-2022, 2022
Short summary
Short summary
Ireland has significantly increased its climate mitigation ambition, with a recent commitment to reduce greenhouse gases by an average of 7 % yr-1 in the period to 2030 and a net-zero target for 2050. This article describes the TIMES-Ireland model (TIM) developed to inform Ireland's energy system decarbonisation challenge. The paper also outlines a priority list of future model developments to better meet the challenge, taking into account equity, cost-effectiveness, and technical feasibility.
Haiyan Jiang, Slobodan P. Simonovic, and Zhongbo Yu
Geosci. Model Dev., 15, 4503–4528, https://doi.org/10.5194/gmd-15-4503-2022, https://doi.org/10.5194/gmd-15-4503-2022, 2022
Short summary
Short summary
The Yangtze Economic Belt is one of the most dynamic regions of China. The fast urbanization and strong economic growth in the region pose severe challenges for its sustainable development. To improve our understanding of the interactions among coupled human–natural systems in the Belt and to provide the foundation for science-based policy-making for the sustainable development of the Belt, we developed an integrated system-dynamics-based simulation model (ANEMI_Yangtze) for the Belt.
Thi Lan Anh Dinh and Filipe Aires
Geosci. Model Dev., 15, 3519–3535, https://doi.org/10.5194/gmd-15-3519-2022, https://doi.org/10.5194/gmd-15-3519-2022, 2022
Short summary
Short summary
We proposed the leave-two-out method (i.e. one particular implementation of the nested cross-validation) to determine the optimal statistical crop model (using the validation dataset) and estimate its true generalization ability (using the testing dataset). This approach is applied to two examples (robusta coffee in Cu M'gar and grain maize in France). The results suggested that the simple models are more suitable in crop modelling where a limited number of samples is available.
Colm Duffy, Remi Prudhomme, Brian Duffy, James Gibbons, Cathal O'Donoghue, Mary Ryan, and David Styles
Geosci. Model Dev., 15, 2239–2264, https://doi.org/10.5194/gmd-15-2239-2022, https://doi.org/10.5194/gmd-15-2239-2022, 2022
Short summary
Short summary
The GOBLIN (General Overview for a Backcasting approach of Livestock INtensification) model is a new high-resolution integrated
bottom-upbiophysical land use model capable of identifying broad pathways towards climate neutrality in the agriculture, forestry, and other land use (AFOLU) sector. The model is intended to bridge the gap between hindsight representations of national emissions and much larger globally integrated assessment models.
Samuel Lüthi, Gabriela Aznar-Siguan, Christopher Fairless, and David N. Bresch
Geosci. Model Dev., 14, 7175–7187, https://doi.org/10.5194/gmd-14-7175-2021, https://doi.org/10.5194/gmd-14-7175-2021, 2021
Short summary
Short summary
In light of the dramatic increase in economic impacts due to wildfires, the need for modelling impacts of wildfire damage is ever increasing. Insurance companies, households, humanitarian organisations and governmental authorities are worried by climate risks. In this study we present an approach to modelling wildfire impacts using the open-source modelling platform CLIMADA. All input data are free, public and globally available, ensuring applicability in data-scarce regions of the Global South.
Lavinia Baumstark, Nico Bauer, Falk Benke, Christoph Bertram, Stephen Bi, Chen Chris Gong, Jan Philipp Dietrich, Alois Dirnaichner, Anastasis Giannousakis, Jérôme Hilaire, David Klein, Johannes Koch, Marian Leimbach, Antoine Levesque, Silvia Madeddu, Aman Malik, Anne Merfort, Leon Merfort, Adrian Odenweller, Michaja Pehl, Robert C. Pietzcker, Franziska Piontek, Sebastian Rauner, Renato Rodrigues, Marianna Rottoli, Felix Schreyer, Anselm Schultes, Bjoern Soergel, Dominika Soergel, Jessica Strefler, Falko Ueckerdt, Elmar Kriegler, and Gunnar Luderer
Geosci. Model Dev., 14, 6571–6603, https://doi.org/10.5194/gmd-14-6571-2021, https://doi.org/10.5194/gmd-14-6571-2021, 2021
Short summary
Short summary
This paper presents the new and open-source version 2.1 of the REgional Model of INvestments and Development (REMIND) with the aim of improving code documentation and transparency. REMIND is an integrated assessment model (IAM) of the energy-economic system. By answering questions like
Can the world keep global warming below 2 °C?and, if so,
Under what socio-economic conditions and applying what technological options?, it is the goal of REMIND to explore consistent transformation pathways.
Phillip D. Alderman
Geosci. Model Dev., 14, 6541–6569, https://doi.org/10.5194/gmd-14-6541-2021, https://doi.org/10.5194/gmd-14-6541-2021, 2021
Short summary
Short summary
This paper documents a framework for accessing crop model input data directly from spatially referenced file formats and running simulations in parallel across a geographic region using the Decision Support System for Agrotechnology Transfer Cropping Systems Model (a widely used crop model system). The framework greatly reduced the execution time when compared to running the standard version of the model.
Abhijeet Mishra, Florian Humpenöder, Jan Philipp Dietrich, Benjamin Leon Bodirsky, Brent Sohngen, Christopher P. O. Reyer, Hermann Lotze-Campen, and Alexander Popp
Geosci. Model Dev., 14, 6467–6494, https://doi.org/10.5194/gmd-14-6467-2021, https://doi.org/10.5194/gmd-14-6467-2021, 2021
Short summary
Short summary
Timber plantations are an increasingly important source of roundwood production, next to harvest from natural forests. However, timber plantations are currently underrepresented in global land-use models. Here, we include timber production and plantations in the MAgPIE modeling framework. This allows one to capture the competition for land between agriculture and forestry. We show that increasing timber plantations in the coming decades partly compete with cropland for limited land resources.
Cited articles
Baker, J. S., Havlík, P., Beach, R., Leclère, D., Schmid, E., Valin, H., Cole, J., Creason, J., Ohrel, S., and McFarland, J.: Evaluating the effects of climate change on US agricultural systems: sensitivity to regional impact and trade expansion scenarios, Environ. Res. Lett., 13, 064019, https://doi.org/10.1088/1748-9326/aac1c2, 2018.
Bierkens, M. F. P., Reinhard, S., de Bruijn, J. A., Veninga, W., and Wada, Y.:
The Shadow Price of Irrigation Water in Major Groundwater-Depleting Countries,
Water Resour. Res.,
55, 4266–4287, 2019.
Binsted, M., Iyer, G., Cui, R., Zarrar Khan, Dorheim, K., and Clarke, L.:
Evaluating long-term model-based scenarios of the energy system,
Energy Strategy Reviews, 32, 100551, https://doi.org/10.1016/j.esr.2020.100551, 2020.
Binsted, M., Iyer, G., Patel, P., Graham, N., Ou, Y., Khan, Z., Kholod, N., Narayan, K., Hejazi, M., Kim, S., Calvin, K., and Wise, M.: GCAM-USA v5.3_water_dispatch, Zenodo [code], https://doi.org/10.5281/zenodo.4898374, 2021.
Bond-Lamberty, B., Dorheim, K., Cui, R., Horowitz, R., Snyder, A., Calvin, K., Feng, L., Hoesly, R., Horing, J., Kyle, G. P., Link, R., Patel, P., Roney, C., Staniszewski, A., Turner, S., Chen, M., Feijoo, F., Hartin, C., Hejazi, M., Iyer, G., Kim, S., Liu, Y., Lynch, C., McJeon, H., Smith, S., Waldhoff, S., Wise, M., and Clarke, L.:
gcamdata: An R Package for Preparation, Synthesis, and Tracking of Input Data for the GCAM Integrated Human-Earth Systems Model, Journal of Open Research Software, 7, 6, https://doi.org/10.5334/jors.232, 2019.
Calvin, K. and Bond-Lamberty, B.:
Integrated human-earth system modeling–state of the science and future directions, Environ. Res. Lett., 13, 063006, https://doi.org/10.1088/1748-9326/aac642, 2018.
Calvin, K., Patel, P., Clarke, L., Asrar, G., Bond-Lamberty, B., Cui, R. Y., Di Vittorio, A., Dorheim, K., Edmonds, J., Hartin, C., Hejazi, M., Horowitz, R., Iyer, G., Kyle, P., Kim, S., Link, R., McJeon, H., Smith, S. J., Snyder, A., Waldhoff, S., and Wise, M.: GCAM v5.1: representing the linkages between energy, water, land, climate, and economic systems, Geosci. Model Dev., 12, 677–698, https://doi.org/10.5194/gmd-12-677-2019, 2019.
Clarke, J. F. and Edmonds, J.:
Modelling energy technologies in a competitive market,
Energ. Econ.,
15, 123–129, 1993.
Clarke, L., Eom, J., Marten, E. H., Horowitz, R., Kyle, P., Link, R., Mignone, B. K., Mundra, A., and Zhou, Y.:
Effects of long-term climate change on global building energy expenditures,
Energ. Econ.,
72, 667–677, https://doi.org/10.1016/j.eneco.2018.01.003, 2018a.
Clarke, L., Nichols, L., Vallario, R., Hejazi, M., Horing, J., Janetos, A. C., Mach, K., Mastrandrea, M., Orr, M., Preston, B. L., Reed, P., Sands, R. D., and White, D. D.:
Sector Interactions, Multiple Stressors, and Complex Systems,
U.S. Global Change Research Program, Washington, DC, 638–668 pp., 2018b.
Cohen, S. M. and Caron, J.:
The economic impacts of high wind penetration scenarios in the United States,
Energ. Econ.,
76, 558–573, 2018.
Cole, W., Frew, B., Mai, T., Sun, Y., Bistline, J., Blanford, G., Young, D., Marcy, C., Namovicz, C., Edelman, R., Meroney, B., Sims, R., Stenhouse, J., and Donohoo-Vallett, P.:
Variable Renewable Energy in Long-Term Planning Models: A Multi-Model Perspective, “National Renewable Energy Laboratory”, Golden, CO, USA, NREL/TP-6A20-70528, 2017.
Cui, R. Y., Hultman, N., Cui, D., McJeon, H., Yu, S., Edwards, M. R., Sen, A., Song, K., Bowman, C., Clarke, L., Kang, J., Lou, J., Yang, F., Yuan, J., Zhang, W., and Zhu, M.:
A plant-by-plant strategy for high-ambition coal power phaseout in China,
Nat. Commun.,
12, 1468, https://doi.org/10.1038/s41467-021-21786-0, 2021.
Edmonds, J. A., Link, R., Waldhoff, S. T., and Cui, R.:
A Global Food Demand Model For The Assessment Of Complex Human-Earth Systems,
Climate Change Economics,
08, 1750012, https://doi.org/10.1142/S2010007817500129, 2017.
EIA:
Electricity Data Browser,
U.S. Energy Information Administration, Washington, DC, 2020a.
EIA: Annual Energy Outlook 2020: Case Descriptions, U.S. Energy Information Administration, Washington, DC, 2020b.
Environmental Protection Agency:
Standards of Performance for Greenhouse Gas Emissions from New, Modified, and Reconstructed Stationary Sources: Electric Utility Generating Units, 80 Federal Register 205 (23 October 2015) (40 CFR parts 60, 70, 71, and 98): 64513, 64546–64547, National Archives and Records Administration, Washington, DC, available at: https://www.gpo.gov/fdsys/pkg/FR-2015-10-23/pdf/2015-22837.pdf (last access: 16 December 2016), 2015.
Feijoo, F., Iyer, G. C., Avraam, C., Siddiqui, S. A., Clarke, L. E., Sankaranarayanan, S., Binsted, M. T., Patel, P. L., Prates, N. C., Torres-Alfaro, E., and Wise, M. A.:
The future of natural gas infrastructure development in the United states,
Appl. Energ.,
228, 149–166, 2018.
Feijoo, F., Iyer, G., Binsted, M., and Edmonds, J.:
US energy system transitions under cumulative emissions budgets,
Climatic Change, 162, 1947–1963, https://doi.org/10.1007/s10584-020-02670-0, 2020.
Graham, N. T., Hejazi, M. I., Kim, S. H., Davies, E. G. R., Edmonds, J. A., and Miralles-Wilhelm, F.:
Future changes in the trading of virtual water,
Nat. Commun.,
11, 3632, https://doi.org/10.1038/s41467-020-17400-4, 2020.
Graham, N. T., Iyer, G., Hejazi, M. I., Kim, S. H., Patel, P., and Binsted, M.:
Agricultural impacts of sustainable water use in the United States,
Sci. Rep.,
11, 17917, https://doi.org/10.1038/s41598-021-96243, 2021.
Hartin, C. A., Patel, P., Schwarber, A., Link, R. P., and Bond-Lamberty, B. P.: A simple object-oriented and open-source model for scientific and policy analyses of the global climate system – Hector v1.0, Geosci. Model Dev., 8, 939–955, https://doi.org/10.5194/gmd-8-939-2015, 2015.
Hejazi, M. I., Voisin, N., Liu, L., Bramer, L. M., Fortin, D. C., Hathaway, J. E., Huang, M., Kyle, P., Leung, L. R., Li, H. Y., Liu, Y., Patel, P. L., Pulsipher, T. C., Rice, J. S., Tesfa, T. K., Vernon, C. R., and Zhou, Y.:
21st century United States emissions mitigation could increase water stress more than the climate change it is mitigating,
P. Natl. Acad. Sci. USA,
112, 10635–10640, 2015.
Huang, Z., Hejazi, M., Li, X., Tang, Q., Vernon, C., Leng, G., Liu, Y., Döll, P., Eisner, S., Gerten, D., Hanasaki, N., and Wada, Y.: Reconstruction of global gridded monthly sectoral water withdrawals for 1971–2010 and analysis of their spatiotemporal patterns, Hydrol. Earth Syst. Sci., 22, 2117–2133, https://doi.org/10.5194/hess-22-2117-2018, 2018.
Hultman, N. E., Clarke, L., Frisch, C., Kennedy, K., McJeon, H., Cyrs, T., Hansel, P., Bodnar, P., Manion, M., Edwards, M. R., Cui, R., Bowman, C., Lund, J., Westphal, M. I., Clapper, A., Jaeger, J., Sen, A., Lou, J., Saha, D., Jaglom, W., Calhoun, K., Igusky, K., deWeese, J., Hammoud, K., Altimirano, J. C., Dennis, M., Henderson, C., Zwicker, G., and O'Neill, J.:
Fusing subnational with national climate action is central to decarbonization: the case of the United States, Nat. Commun., 11, 5255, https://doi.org/10.1038/s41467-020-18903-w, 2020.
IEA: World Energy Balances, International Energy Agency (Ed.), Paris, France, 2019.
IPCC: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2014.
Iyer, G., Ledna, C., Clarke, L., McJeon, H., Edmonds, J., and Wise, M.:
GCAM-USA Analysis of US Electric Power Sector Transitions,
Pacific Northwest National Laboratory, Richland, WA, USA, available at: http://www.pnnl.gov/main/publications/external/technical_reports/PNNL-26174.pdf (last access: 22 October 2021), 2017a.
Iyer, G., Ledna, C., Clarke, L. E., Edmonds, J., McJeon, H., Kyle, G. P., and Williams, J. A.:
Measuring Progress from Nationally Determined Contributions to Mid-Century Strategies,
Nat. Clim. Change,
7, 871–874, 2017b.
Iyer, G. C., Brown, M., Cohen, S. M., Macknick, J., Patel, P., Wise, M., Binsted, M., and Voisin, N.: Improving consistency among models of overlapping scope in multi-sector studies: The case of electricity capacity expansion scenarios, Renew. Sust. Energ. Rev., 116, 109416, https://doi.org/10.1016/j.rser.2019.109416, 2019.
JGCRI (Joint Global Change Research Institute): GCAM v5.4 Documentation: Table of Contents, GitHub, http://jgcri.github.io/gcam-doc/toc.html, last access: 22 October 2021a.
JGCRI (Joint Global Change Research Institute): Global Change Analysis Model – Issues, GitHub, https://github.com/JGCRI/gcam-core/issues, last access: 22 October 2021b.
JGCRI (Joint Global Change Research Institute): Global Change Analysis Model – Releases, GitHub [code], https://github.com/JGCRI/gcam-core/releases, last access: 22 October 2021c.
Jiang, L., Zoraghein, H., and O'Neill, B. C.: Population projections for US states under the Shared Socioeconomic Pathways based on global gridded population projections, National Center for Atmospheric Research, Boulder, CO, USA, NCAR/TN-542+STR, https://doi.org/10.5065/D6930RXZ, 2018.
Khan, Z., Iyer, G., Patel, P., Kim, S., Hejazi, M., Burleyson, C., and Wise, M.: Impacts of long-term temperature change and variability on electricity investments, Nat. Commun., 12, 1643, https://doi.org/10.1038/s41467-021-21785-1, 2021.
Kim, S., Edmonds, J., Lurz, J., Smith, S., and Wise, M.:
The ObjECTS framework for integrated assessment: hybrid modeling of transporation,
Energ. J.,
27, 63–91, 2006.
Kim, S. H., Hejazi, M., Liu, L., Calvin, K., Clarke, L., Edmonds, J., Kyle, P., Patel, P., Wise, M., and Davies, E.:
Balancing global water availability and use at basin scale in an integrated assessment model,
Climatic Change,
136, 217–231, 2016.
Kraucunas, I., Clarke, L., Dirks, J., Hathaway, J., Hejazi, M., Hibbard, K., Huang, M., Jin, C., Kintner-Meyer, M., van Dam, K. K., Leung, R., Li, H.-Y., Moss, R., Peterson, M., Rice, J., Scott, M., Thomson, A., Voisin, N., and West, T.: Investigating the nexus of climate, energy, water, and land at decision-relevant scales: the Platform for Regional Integrated Modeling and Analysis (PRIMA), Climatic Change, 129, 573–588, 2014.
Lempert, R., Preston, B. L., Edmonds, J., Clarke, L., Wild, T., Binsted, M., Diringer, E., and Townsend, B.:
Pathways to 2050: Alternative Scenarios for Decarbonizing the U. S. Economy,
Center for Climate and Energy Solutions (C2ES), Arlington, VA, USA, 2019.
Li, X., Vernon, C. R., Hejazi, M. I., Link, R., Feng, L., Liu, Y., and Rauchenstein, L. T.: Xanthos A Global Hydrologic Model, Journal of Open Research Software, 5, 21, https://doi.org/10.5334/jors.181, 2017.
Liu, L., Hejazi, M., Iyer, G., and Forman, B. A.: Implications of water constraints on electricity capacity expansion in the United States, Nature Sustainability, 2, 206–213, 2019.
McFadden, D.: Econometric models for probabilistic choice among products,
J. Bus., 53, S13-S29., 1980.
Moss, R., Fisher-Vanden, K., Delgado, A., Backhaus, S., Barrett, C., Bhaduri, B., Kraucunas, I. P., Reed, P. M., Rice, J. S., Sue Wing, I., and Tebaldi, C.: Understanding Dynamics and Resilience in Complex Interdependent Systems: Prospects for a Multi-Model Framework and Community of Practice, U.S. Global Change Research Program, Washington, DC, USA, 2016.
O'Connell, M., Voisin, N., Macknick, J., and Fu, T.: Sensitivity of Western U. S. power system dynamics to droughts compounded with fuel price variability, Appl. Energ., 247, 745–754, 2019.
O'Neill, B. C., Kriegler, E., Ebi, K. L., Kemp-Benedict, E., Riahi, K., Rothman, D. S., van Ruijven, B. J., van Vuuren, D. P., Birkmann, J., Kok, K., Levy, M., and Solecki, W.:
The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century, Global Environ. Chang., 42, 169–180, https://doi.org/10.1016/j.gloenvcha.2015.01.004, 2017. 2017.
Oppenheimer, M., Campos, M., Warren, R., Birkmann, J., Luber, G., O'Neill, B., and Takahashi, K.:
Emergent risks and key vulnerabilities,
in: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,
Cambridge University Press, Cambridge, UK and New York, NY, USA, 1039–1099, 2014.
Ou, Y., West, J. J., Smith, S. J., Nolte, C. G., and Loughlin, D. H.: Air pollution control strategies directly limiting national health damages in the US, Nat. Commun., 11, 957, https://doi.org/10.1038/s41467-020-14783-2, 2020.
Rohwer, J., Gerten, D., and Lucht, W.:
Development of Functional Irrigation Types for Improved Global Crop Modelling,
Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany, 2007.
Shi, W., Ou, Y., Smith, S. J., Ledna, C. M., Nolte, C. G., and Loughlin, D. H.:
Projecting state-level air pollutant emissions using an integrated assessment model: GCAM-USA,
Appl. Energ.,
208, 511–521, 2017.
The White House:
United States Mid-Century Strategy for Deep Decarbonization, Washington, DC, November 2016, available at: https://obamawhitehouse.archives.gov/sites/default/files/docs/mid_century_strategy_report-final.pdf (last access: 1 February 2017), 2016.
Turner, S. W. D., Hejazi, M., Yonkofski, C., Kim, S. H., and Kyle, P.:
Influence of Groundwater Extraction Costs and Resource Depletion Limits on Simulated Global Nonrenewable Water Withdrawals Over the Twenty-First Century,
Earths Future,
7, 123–135, 2019.
U.S. Energy Information Administration:
Annual Energy Outlook 2019 with projections to 2050,
U.S. Energy Information Administration, Washington, DC, 2019.
Vernon, C. R., Hejazi, M. I., Turner, S. W. D., Liu, Y., Braun, C. J., Li, X., and Link, R.:
A Global Hydrologic Framework to Accelerate Scientific Discovery,
Journal of Open Research Software, 1, 7, https://doi.org/10.5334/jors.245, 2019.
Wilbanks, T. J. and Fernandez, S.: Climate Change and Infrastructure, Urban Systems, and Vulnerabilities, Island Press, Washington, DC, USA, 2013.
Yuan, M., Tapia-Ahumada, K., and Reilly, J.: The role of cross-border electricity trade in transition to a low-carbon economy in the Northeastern U.S., Energ. Policy, 154, 112261, https://doi.org/10.1016/j.enpol.2021.112261, 2021.
Zhou, Y., Clarke, L., Eom, J., Kyle, P., Patel, P., Kim, S. H., Dirks, J., Jensen, E., Liu, Y., Rice, J., Schmidt, L., and Seiple, T.:
Modeling the effect of climate change on U. S. state-level buildings energy demands in an integrated assessment framework,
Appl. Energ.,
113, 1077–1088, 2014.
Short summary
GCAM-USA v5.3_water_dispatch is an open-source model that represents key interactions across economic, energy, water, and land systems in a global framework, with subnational detail in the United States. GCAM-USA can be used to explore future changes in demand for (and production of) energy, water, and crops at the state and regional level in the US. This paper describes GCAM-USA and provides four illustrative scenarios to demonstrate the model's capabilities and potential applications.
GCAM-USA v5.3_water_dispatch is an open-source model that represents key interactions across...