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Abstract. This paper describes GCAM-USA
v5.3_water_dispatch, an open-source model that repre-
sents key interactions across economic, energy, water,
and land systems in a consistent global framework with
subnational detail in the United States. GCAM-USA divides
the world into 31 geopolitical regions outside the United
States (US) and represents the US economy and energy
systems in 51 state-level regions (50 states plus the District
of Columbia). The model also includes 235 water basins and
384 land use regions, and 23 of each fall at least partially
within the United States. GCAM-USA offers a level of
process and temporal resolution rare for models of its class
and scope, including detailed subnational representation of
US water demands and supplies and sub-annual operations
(day and night for each month) in the US electric power
sector. GCAM-USA can be used to explore how changes
in socioeconomic drivers, technological progress, or policy
impact demands for (and production of) energy, water,
and crops at a subnational level in the United States while
maintaining consistency with broader national and inter-
national conditions. This paper describes GCAM-USA’s
structure, inputs, and outputs, with emphasis on new model
features. Four illustrative scenarios encompassing varying
socioeconomic and energy system futures are used to
explore subnational changes in energy, water, and land use
outcomes. We conclude with information about how public
users can access the model.

1 Introduction

Modern societies depend on a complex set of interacting and
co-evolving human and natural systems, including economic,
energy, water, land, agriculture, and climate systems. Study-
ing these systems in an integrated fashion is important be-
cause of the potential for changes in one system, region, or
sector to impact others. However, representing these interac-
tions comprehensively and robustly is challenging because
human and Earth systems are complex and nonlinear (Baker
et al., 2018; Clarke et al., 2018b), with processes and feed-
backs that span a wide range of geographic (subnational to
global) and temporal (seconds to decades) scales. Because
the behavior and co-evolution of these interconnected sys-
tems is important at global, national, and subnational spatial
scales (Clarke et al., 2018b; Moss et al., 2016; Oppenheimer
et al., 2014; Wilbanks and Fernandez, 2013), modelers must
account for complex regional and subnational factors that af-
fect these systems and their interactions while maintaining
consistency with broader national and global processes and
conditions.

Traditionally, multi-sector models have been used to study
human–Earth system interactions at coarse geographic and
temporal scales, dividing the world into one to three dozen
geopolitical regions and running in half-decade increments
(Calvin and Bond-Lamberty, 2018). In response to the need
for understanding human–Earth system interactions at finer
spatial and temporal scales, previous modeling efforts have
begun to incorporate more detail into such models (Iyer et
al., 2017a, b; Khan et al., 2021) and in some cases, stud-
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ies have employed model coupling and downscaling ap-
proaches (e.g., coupling multi-sector models with more de-
tailed sector-specific models) (Cohen and Caron, 2018; Fei-
joo et al., 2018; Hejazi et al., 2015; Iyer et al., 2019; Kraucu-
nas et al., 2014; O’Connell et al., 2019; Yuan et al., 2021).

This paper introduces the latest version of GCAM-USA, a
version of the Global Change Analysis Model (GCAM) with
subnational detail in the United States. The newest version
of GCAM-USA consolidates past efforts to incorporate spa-
tial and temporal detail in GCAM and includes subnational
detail for economic, energy, water, and land systems in the
United States (US). Specifically, GCAM-USA represents the
economic and energy systems in 50 states and the District of
Columbia (DC). The model also includes subnational repre-
sentations of water demands (at the state level) and supplies
(at the Hydrologic Unit Code 2, HUC-2, river-basin level);
activity in the land system is represented in land use regions
(also corresponding to river basins), of which there are 23 in
the US. Furthermore, while GCAM-USA runs in 5-year time
intervals from 2015 (final calibration year) to 2100, the lat-
est version includes a new electric power sector module that
separates multi-decadal decisions about capacity investments
from operational decisions about deploying capacity to meet
electricity demands at sub-annual timescales (day and night
for each month). Finally, GCAM-USA is housed within the
global version of GCAM (Calvin et al., 2019) and includes
the representations of economy–energy–water–land systems
in 31 geopolitical regions outside of the US. Thus, subna-
tional outcomes within the US are consistent with interna-
tional conditions.

This level of spatial and temporal detail in GCAM-
USA v5.3_water_dispatch extends the boundary compared
to other global multi-sector models. Specifically, the latest
version of GCAM-USA can be used to answer a variety of
science questions related to the impacts of short-term and
long-term stressors on co-evolving human and natural sys-
tems at spatial scales ranging from states, basins, and multi-
state regions to national, continental, and global scales. The
improved temporal detail in the power sector of GCAM-USA
also opens the door to a variety of questions related to the im-
pacts of short-term stressors such as climate variability and
fuel price shocks on the electric grid. Finally, the latest model
lays the foundation for improved coupling with finer scale
and sector-specific tools.

Using GCAM-USA v5.3_water_dispatch, we explore four
scenarios which encapsulate varying assumptions about fu-
ture socioeconomic drivers and energy system pathways.
While a large range of future scenarios can be explored us-
ing this new capability, these four scenarios are meant to be
an illustrative sample of those explored in the literature to
demonstrate the model’s capabilities. Detailed exploration of
other scenarios is reserved for future work.

The remainder of the paper proceeds as follows. Section 2
provides a high-level overview of GCAM and GCAM-USA.
(A detailed description of the GCAM framework, within

which GCAM-USA is embedded, is available in Calvin et
al., 2019.) Section 3 describes new model features in GCAM-
USA v5.3_water_dispatch (relative to GCAM-USA v5.2).
A qualitative description of key sectors in the GCAM-USA
Reference scenario is provided in Sect. 4. Section 5 presents
four scenario simulations to demonstrate the model’s capa-
bilities and new features; Sect. 6 presents the energy, wa-
ter, and land outcomes at various scales from these simula-
tions. Discussions and conclusions follow in Sect. 7; the final
section provides information about how to access the model.
More detailed documentation of the GCAM model is avail-
able online at http://jgcri.github.io/gcam-doc (last access:
22 October 2021); the GCAM-USA documentation page
can be accessed at http://jgcri.github.io/gcam-doc/gcam-usa.
html (last access: 22 October 2021).

2 Model overview

2.1 Overview of GCAM

The Global Change Analysis Model is an open-source model
developed and maintained by the Pacific Northwest Na-
tional Laboratory. GCAM is a dynamic recursive, partial
equilibrium model which captures key interactions between
global economic, energy, water, land, and climate systems
by simultaneously solving for equilibrium (prices where de-
mand equals supply) in energy, water, agriculture, and emis-
sions markets. The model is myopic (not forward looking)
and produces cost-effective solutions by clearing markets,
although it does not optimize around any target function.
GCAM divides the world into 32 geopolitical regions (the
scale at which energy and economy are represented), 235 wa-
ter basins, and 384 land use regions; the model solves for
the equilibrium prices and quantities for all energy, wa-
ter, agricultural, and emissions markets in 5-year intervals
from 2015 to 2100. The climate system is represented by
the open-source simple climate model Hector 2.5.0, which
translates greenhouse gas (GHG) emissions from the en-
ergy and land systems into GHG concentrations, global mean
radiative forcing, global mean temperature, and other key
Earth system variables (Hartin et al., 2015) (https://github.
com/JGCRI/hector, last access: 22 October 2021). GCAM
is an object-oriented program developed in C++ (Kim et
al., 2006); an R data package, gcamdata, is used to pre-
pare the model input data (Ben Bond-Lamberty et al., 2019)
(https://github.com/JGCRI/gcamdata, last access: 22 Octo-
ber 2021). Key model inputs include assumptions about so-
cioeconomic drivers (population and economic growth), re-
source endowments (potentials and extraction costs), tech-
nologies (costs and efficiencies), and policies.

GCAM simultaneously solves for equilibrium in energy,
water, agriculture, and emissions markets. After market equi-
librium is reached, computations are performed to evaluate
the state of the climate system. These systems are directly
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linked in the computer code; their interaction and coevolu-
tion are captured dynamically within the model. For instance,
Calvin et al. (2019) provides a detailed description of bioen-
ergy as an example of the coupled nature of complex systems
in GCAM. Bioenergy is demanded, transformed, and con-
sumed in the energy system, where it competes with other
fuels to provide end-use energy services; demand for these
services is influenced by the size of the population and econ-
omy. Bioenergy is supplied by the land system, where pro-
duction depends on the price and cost of growing bioen-
ergy crops compared to those of other land uses; bioenergy
production requires fertilizer (produced by the energy sys-
tem) and water inputs, the prices of which are determined by
supply costs and influenced by demand for alternative uses
of these resources. The model solves for the market clear-
ing price (where supply equals demand) of bioenergy and
all other energy, water, land, and emissions markets simul-
taneously. This integrated, multi-sectoral framework allows
users to analyze the interdependencies, feedbacks, and co-
evolution of such coupled systems under alternate futures.

2.2 Overview of GCAM-USA

GCAM-USA is a version of GCAM with subnational detail
in the USA (Binsted et al., 2020; Feijoo et al., 2018; Iyer
et al., 2017a, 2019). The model remains global in scope but
contains 51 state-level regions (50 states plus the District of
Columbia) that represent the US economic and energy sys-
tems. These state-level regions contain detailed and hetero-
geneous representations of socioeconomic drivers, resource
endowments, energy transformation sectors, and final en-
ergy services; agriculture and land use activity and water re-
sources are represented at the HUC-2 river-basin level, while
fossil resource extraction and livestock are represented at the
national level. State-level regions are connected to the rest of
the world through global markets for primary energy carri-
ers, and the USA is linked to the rest of the world via agri-
cultural markets. Thus, subnational outcomes in the US are
consistent with international conditions. GCAM-USA is in-
cluded in the regular GCAM model release packages (https:
//github.com/JGCRI/gcam-core/releases, last access: 22 Oc-
tober 2021); gcamdata includes all the additional input data
and data processing routines needed for GCAM-USA. Below
is a short description of the four broad systems – socioeco-
nomics, energy, water, and land – in GCAM-USA.

2.2.1 Socioeconomics

GCAM-USA contains heterogeneous state-level assump-
tions about population and economic growth (labor produc-
tivity) that set the scale for activity in the energy system. The
“sum-of-states” population and GDP from GCAM-USA dif-
fer from the default USA population and GDP in GCAM,
although GCAM-USA’s socioeconomic assumptions are still
broadly consistent with the “middle-of-the-road” Shared So-

cioeconomic Pathway 2 (SSP2) assumptions (O’Neill et
al., 2017) that are utilized for the other 31 regions in the
GCAM-USA Reference scenario.

State-level populations are based on historical values from
the U.S. Census Bureau through 2018. Beyond 2018, popu-
lation growth is based on downscaled projections from the
SSP2 (Shared Socioeconomic Pathways 2) scenario devel-
oped by Jiang et al. (2018). The data includes state-level
population projections from 2010 to 2100 in 10-year inter-
vals. To avoid inconsistencies between the more recent his-
torical data and the SSP projections, population growth rates
are linearly transitioned from historical trends (2010–2018)
to those derived from Jiang et al. (2018) (for the period 2020–
2030) in 2030. Beyond 2030, we apply growth rates directly
from the Jiang et al. (2018) downscaled SSP2 projections.

Similarly, state-level GDP is based on historical data
through 2018. Future labor productivity growth assumptions
are developed in two stages. In the near-to-medium term, to
maintain heterogenous growth patterns, we harmonize with
U.S. Census Division level per-capita GDP growth rates from
the U.S. EIA’s Annual Energy Outlook (AEO) 2019 (U.S.
Energy Information Administration, 2019) by transitioning
linearly from historical labor productivity growth rates to
near-term census division growth rates in 2030 and then di-
rectly applying growth rates from AEO 2019 from 2030 to
2050 (assuming uniform growth rates for all states within a
census region). Beyond 2050, we linearly interpolate growth
rates from state-level 2050 values to the US SSP2 labor pro-
ductivity growth rate in 2100, such that all states converge to
a common rate of economic growth by the end of the cen-
tury. This reflects the fact that projecting state-level differ-
ences in economic growth becomes more difficult for more
distant decades. The GCAM-USA Reference scenario popu-
lation and GDP assumptions are provided in Table S2 in the
Supplement.

2.2.2 Energy

GCAM-USA features a detailed energy system coordinating
multi-scale energy supply, transformation, and demand. Pri-
mary energy supply of depletable resources (coal, oil, nat-
ural gas, uranium) is represented at the national level, with
resource supply curves containing extraction prices and re-
source availability. Renewable energy resources (solar, wind,
geothermal, and hydropower) are represented at the state-
level, with resource supply curves for all but hydropower (for
which production is exogenously prescribed). GCAM-USA
also represents key energy transformation processes at the
state-level (electricity generation, refining, fertilizer produc-
tion) with a few sectors still modeled at the national level
(gas processing, hydrogen production). The electricity sector
in GCAM-USA is particularly detailed; long-term decisions
about capacity expansion are separated from operational de-
cisions about deploying capacity to meet electricity demands
for 25 sub-annual time segments. A more detailed discussion
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of the new GCAM-USA electric power sector is provided in
Sect. 3.3.

These transformation sectors produce energy carriers that
are consumed and ultimately translated into energy service
in the building, transportation, and industry end-use sec-
tors. Inter-state electricity trade (see Sect. 1 in the Supple-
ment for additional information) and regionally differenti-
ated fuel prices for key energy carriers (electricity, refined
liquids, natural gas, and coal) are captured in the model.
Some end-use sectors are also more detailed in GCAM-USA.
For instance, the GCAM-USA industry sector includes a vin-
tage structure that reflects the long-lived nature of industrial
capital. GCAM-USA also includes expanded technological
and energy service detail in the buildings sector (relative to
GCAM). In addition to space heating and cooling, both the
residential and commercial building sectors include services
such as lighting and water heating and various appliances
(refrigerator, dishwasher, oven and range, clothes washer,
clothes dryer, etc.) (Zhou et al., 2014). Each of these services
contains a set of technologies that compete for market share;
among these technologies are low- and high-efficiency op-
tions that are powered by both secondary fuels (such as elec-
tricity) and primary fuels (such as gas and biomass). Tech-
nology costs and efficiencies are taken from the inputs to the
EIA’s National Energy Modeling System (NEMS) and are
consistent with the 2016 Annual Energy Outlook (see Iyer et
al., 2017a, for detailed technology assumptions).

Demands for final energy services are represented at the
state-level in GCAM-USA utilizing the same demand func-
tions as GCAM. Final demands include residential and com-
mercial building floor space and service outputs (space heat-
ing, space cooling, lighting, water heating, and various appli-
ances), generic industrial energy service, use of energy car-
riers as feedstocks in industry, cement production (million
tonnes), fertilizer production (million tonnes), passenger-
kilometers traveled (split between domestic travel and in-
ternational aviation), and freight-tonne-kilometers shipped
(split between domestic freight and international shipping).
Within the building sector, service demands are a function
of building floor space and service demands per unit of floor
space. Building floor space varies with population, income
(per-capita GDP), and energy service prices, with exogenous
satiation levels prescribing an upper-limit on per-capita floor
space. Building service demands per unit of floor space de-
pend on climate (for space heating and cooling), building
envelope efficiency, service prices, and exogenous satiation
(for a more detailed discussion, see Clarke et al., 2018a).
Within industry, demand for nitrogen fertilizer is dictated by
the agriculture sector, where technologies with low and high
levels of fertilizer application compete for production shares
of each crop. Demand for cement is driven by economic
growth and modulated by price and income elasticities. Ag-
gregate industry output is represented in generic terms as a
function of income and the price of generic energy service
and feedstock use. Fuels compete on costs for share of to-

tal energy with a low elasticity of substitution. Transporta-
tion service demands depend on income and services prices.
Service prices among competing passenger transportation
modes consider the value of time traveled, which is calcu-
lated from the wage rate (per-capita GDP divided by the
number of working hours in a year), the mode’s (exogenous)
speed of travel, and an exogenous time value multiplier for
each mode reflecting the valuation of people’s time in trans-
port and waiting times associated within each mode.

2.2.3 Water

The water system is a key new development for GCAM-USA
and is described in detail in Sect. 3.2. For more detail on wa-
ter demands in GCAM, see Calvin et al. (2019). For a de-
scription of water supplies and water market mechanisms in
GCAM, see Kim et al. (2016) and Turner et al. (2019). Both
features are also thoroughly described in the GCAM doc-
umentation at http://jgcri.github.io/gcam-doc/supply_water.
html (last access: 3 January 2022) and http://jgcri.github.io/
gcam-doc/demand_water.html (last access: 3 January 2022).

2.2.4 Land

The agriculture and land system in GCAM-USA is largely
unchanged from its representation in the core (32-region)
GCAM. The fundamental geographic unit for the land sys-
tem in GCAM-USA is still the GCAM land use regions (wa-
ter basins intersected with 32 core GCAM regions), 23 of
which lie in the United States. While the interconnections
between agriculture and other systems in GCAM-USA often
involve the state regions (for instance, fertilizer production is
represented at the state level; agricultural water demands are
tracked at the state level), agricultural activity is not tracked
at the state level or directly impacted by policies, technolo-
gies, or other drivers at the state-level. A detailed description
of the GCAM land system is available in Calvin et al. (2019).

3 Major changes from GCAM-USA v5.2

3.1 Model base year updated to 2015

As of GCAM v5.3 (June 2020), the final calibration year
(model base year) for GCAM and GCAM-USA was updated
from 2010 to 2015. This encapsulates updates to the data
used to calibrate GCAM’s socioeconomic, energy, agricul-
tural, and water systems. This means that, relative to other
recent GCAM-USA studies (Binsted et al., 2020; Feijoo et
al., 2018; Iyer et al., 2019), GCAM-USA’s 2015 results re-
flect historical outcomes rather than model simulations, and
future results based on model calibration of more recent data.
A comparison of GCAM-USA’s Reference scenario to his-
torical data and other future scenarios is included in Sect. 6.5.
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Figure 1. Conceptual diagram of GCAM-USA water market structure.

3.2 Introduction of water markets behavior (supply
and demand)

3.2.1 Water supplies

GCAM-USA now includes endogenous representation of
water supplies and demands at a subnational scale. Fig-
ure 1 presents a conceptual diagram outlining how (and
at what scale) water demands and supplies are represented
in GCAM-USA. The model represents water supplies from
three distinct freshwater sources: renewable water (surface
and ground), non-renewable (or fossil) groundwater, and de-
salinated saltwater. Additionally, saltwater is available for
cooling of thermal power plants (and treated as an unlimited
resource) in coastal states only. These water resources are
represented at the HUC-2 river basin level and include ex-
traction costs and availability limits for each resource type,
such that water prices escalate as demand increases. The
USA’s water is supplied by 23 water basins, some of which
are shared with neighboring regions (Canada, Mexico, and
the Caribbean). GCAM’s water supply system is described
in detail in Kim et al. (2016) and Turner et al. (2019); a high-
level overview is provided below.

Renewable water is the least expensive source of water
in GCAM and includes direct extraction of surface water as
well as pumping of recharged groundwater. A global hydrol-
ogy model, Xanthos (Li et al., 2017; Vernon et al., 2019),
is used to calculate long-term average annual streamflow for
each water basin by routing gridded runoff at 0.5◦ spatial res-
olution. A total of 10 % of this average annual flow is allo-
cated to environmental flow requirements and thus unavail-

able; the remaining portion represents the maximum renew-
able water supply. A fraction of this renewable water supply
is considered currently accessible at low cost via existing in-
frastructure for capturing, storing, and delivering; this frac-
tion is adjusted to reflect the amount available even in dry
years (henceforth referred to as “accessible volume”) (Kim
et al., 2016). For most basins, this accessible volume is de-
rived from Xanthos simulations of base flows and storage
reservoirs (utilizing the Global Reservoir and Dams inven-
tory) (Kim et al., 2016); in some basins where estimates of
groundwater depletion are available, the accessible portion
of renewable water is derived as the historical difference be-
tween total water withdrawals and fossil groundwater pump-
ing (Turner et al., 2019). In model simulations, basins can
withdraw greater fractions of the total renewable water sup-
ply (beyond the accessible volume) at significantly higher
costs, reflecting the potential costs of interventions such as
river rerouting, dam construction, or water transportation
(Kim et al., 2016; Turner et al., 2019).

Each water basin in GCAM also contains a volume of
potentially exploitable non-renewable groundwater, divided
into several grades of increasing price based on estimated
drilling and pumping costs. Total physically exploitable
groundwater reserves (without considering economic and en-
vironmental constraints) are estimated at a 50 km grid scale
for all major aquifers from data on aquifer areal extent,
porosity, thickness, permeability, and groundwater depth as
described in Turner et al. (2019) (Sect. 2.3). An extraction
cost model is used to simulate groundwater pumping for
each 50 km grid to estimate extraction costs including capital
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costs (a function of well depth and complexity), maintenance
costs, and operating costs (reflecting well depth, yields, and
country-specific electricity prices). Costs associated with wa-
ter treatment, conveyance, and storage are not included due
to lack of available data. These water quantity and cost data
points are then aggregated to the HUC-2 water basin level
and organized into grades of increasing cost. By default, only
25 % of physically exploitable groundwater is assumed to
be available for extraction to reflect environmental limits on
groundwater depletion (in the absence of a global data set fa-
cilitating basin-specific environmental factors in the model;
Turner et al., 2019).

As the maximum renewable water supply is approached,
non-renewable groundwater begins to become an econom-
ically competitive source of water withdrawals. However,
groundwater supplies are depleted as they are exploited; non-
renewable groundwater consumption leads to water price
increases as each marginal unit of groundwater entails in-
creased pumping costs. Desalinated seawater is also avail-
able in coastal basins and states (but not inland basins and
states) to meet water demands excluding irrigation demands,
although this is at a high price due to the energy intensity
of desalination. Water prices in GCAM are incurred directly
by water-consuming technologies and ultimately passed onto
end users in the costs of goods (e.g., crops) and services (e.g.,
electricity). Thus, increasing water prices can motivate shifts
to less water-intensive production methods such as rain-fed
agriculture or more water-efficient power plant cooling sys-
tems.

3.2.2 Water demands

In GCAM, water demands from all sectors – primary energy
(mining), agriculture (irrigation), livestock, electric power,
manufacturing, and municipal – are tracked endogenously
in two forms. Water withdrawal represents the total vol-
ume of water extracted from the supply system, while wa-
ter consumption represents the fraction of withdrawals not
directly returned to the system for immediate re-use. Water
resource availability and demands (i.e., withdrawals) are en-
dogenously resolved through a water market pricing mecha-
nism at the river basin level.

In GCAM-USA, the drivers of water demands are mod-
eled at multiple scales. All water demands are endogenously
mapped to the state-level and resolved with water supplies
at the basin level. Several water demand sectors, includ-
ing electricity generation, manufacturing, and municipal wa-
ter use, are represented directly at the state level. U.S. Ge-
ological Survey (USGS) historical water withdrawal data
(https://water.usgs.gov/watuse/data/, last access: 1 October
2020) is used to calculate state-specific water demand coef-
ficients for the municipal and manufacturing sectors. Munic-
ipal water demands are driven by heterogeneous state level
socioeconomic trends (see Sect. 2.2.1). All states’ munic-
ipal water withdrawal-to-consumption ratio is assumed to

improve at a constant rate over time. Manufacturing wa-
ter demands are calculated from state-level U.S. Energy In-
formation Administration (EIA) data for industrial energy
consumption for historical years (https://www.eia.gov/state/
seds/seds-data-complete.php, last access: 15 May 2020),
which is then matched with USGS water demand data to
obtain state-specific water demand coefficients. These coeffi-
cients are held constant through the end of the century; future
industrial water demands are purely a function of industrial
activity at the state-level, with a presumption of no structural
changes that would cause the water intensity of industry to
deviate from historical levels.

In the electric power sector, GCAM-USA includes an
endogenous competition between cooling systems for each
thermal electricity generation technology. Broadly, GCAM-
USA represents once-through, seawater (once-through), re-
circulating, cooling pond, dry cooling, and dry-hybrid cool-
ing systems. Not all systems are available for every fuel and
cooling technology (Table S5 specifies which fuel–cooling
system combinations are available in GCAM-USA). Wind
power is assumed to have no water demands (withdrawals
or consumption), while photovoltaic solar (PV) requires a
small amount of water for plant operations and maintenance.
Hydropower has no water withdrawals but some consump-
tion, due to evaporation losses associated with impoundment
reservoirs. All other generation technologies (including con-
centrated solar power, or CSP) require a cooling system.
Cooling system capital costs, along with the cost of providing
cooling water, influence decisions about which technologies
are deployed in future model periods (Liu et al., 2019); wa-
ter prices also impact power sector operation decisions (see
Sect. 3.3 for more detail).

Three other demand sectors – primary energy (mining),
agriculture (irrigation), and livestock – are not represented
at the state level in GCAM-USA. Water demands for these
sectors are driven by activity at the national level (primary
energy, livestock) or land use regions (irrigation; see Gra-
ham et al., 2021). Calvin et al. (2019) describes how water
demands for these three sectors are calculated. These de-
mands are then endogenously downscaled (mapped) to the
states using sector-specific historical demand shares based
on 0.5◦× 0.5◦ gridded water demand data from Huang et al.
(2018). Thus, although activities such as natural gas extrac-
tion are modeled at the national level, water demands associ-
ated with such activities are tracked at the state-level within
the model via endogenous downscaling of demands based on
historical shares.

Across all demand sectors, state-level water demands are
mapped to the basin level (where supplies and demands are
balanced). State-to-basin mappings are also conducted on the
basis of Huang et al. (2018). In short, state shares of histor-
ical water demands for a given basin and sector are calcu-
lated based on Huang et al. (2018). Note that a given state or
sector’s water demands can be supplied by multiple basins
and that multiple states’ water demands for a given sector
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can come from a single basin. State–basin shares are held
constant for future periods at their 2010 values; thus, future
competition between basins to supply water for a given sector
or state is pre-determined by the historical share of water de-
mands. There is also competition within coastal state–basin
combinations between natural fresh water (renewable or non-
renewable) and fresh water from desalination.

With this new water market structure in GCAM-USA,
users can track comprehensive water demands (withdrawals
and consumption) for each region and sector. The model
also outputs water supplies by water type (renewable, non-
renewable, desalinated) at the basin level.

3.3 Increased operational resolution in the electric
power sector

One of the most significant developments in GCAM-USA
v5.3_water_dispatch is the new electric power sector (dis-
patch) model (Fig. 2). This model now separates long-term
decisions about capacity expansion (Fig. 2a) and short-term
decisions about dispatching that capacity (Fig. 2b) to meet
electricity demands at sub-annual timescales (Fig. 2c). This
finer-scale operational detail provides more robust results
about the ability and timing of variable, or intermittent, en-
ergy sources to contribute to power supply, and requires new
approaches to capture the contribution of various technolo-
gies to reserve capacity. Each of these features is described
in detail below.

3.3.1 Electric power capacity investment and
retirement

Economic decisions in the power sector occur on different
time horizons. Capacity expansion – decisions about invest-
ing in new power plants – consider the profitability of these
plants over the course of their expected lifetime, usually sev-
eral decades. These decisions are in principle based on uncer-
tain information – future fuel and electricity prices cannot be
known at the time of investment. Thus, investment decisions
in the GCAM-USA power sector are made using a proba-
bilistic logit formulation that assumes a distribution of real-
ized costs and preferences due to heterogeneous real-world
conditions (Calvin et al., 2019; Clarke and Edmonds, 1993;
McFadden, 1980).

Investment decisions are made in four representative “load
segments” (base load electricity, intermediate electricity,
sub-peak electricity, and peak electricity; Fig. 2a) corre-
sponding to how the plant is expected to operate: for ex-
ample, nuclear technologies are available for investment in
the base load and intermediate segments, while gas combus-
tion turbine technologies are invested only in the sub-peak
and peak segments. Within each investment sector, various
fuels (subsectors) compete for share based on relative costs
using the logit choice model described above. Within subsec-
tors, different generation technologies (i.e., conventional coal

vs. integrated gasification combined cycle, IGCC, coal) com-
pete for share of generation within a given fuel type. Finally,
within each generation technology there is competition be-
tween alternate cooling systems (for thermal power plants).
See Sect. 3.2.2 for a description of which cooling systems are
represented in GCAM-USA.

Within the investment sectors (segments), each level of
competition is based on relative levelized costs of electricity
generation. These costs include power plant capital, cooling
system capital, fixed operations and maintenance (O&M),
variable O&M, resource inputs (fuel, water, etc.), policies
(portfolio standards, emissions penalties) in place at the time
of investment, and capacity credits (described in Sect. 3.3.3).
Technology costs are the same across investment segments,
but the capacity factors used to levelize technology costs vary
by segment, corresponding to different a priori assumptions
about how frequently plants in different investment segments
are expected to operate. The base load segment is assumed
to have the highest capacity factors and peak load the lowest
capacity factors. These capacity factors will not necessarily
match those which result from the capacity dispatch.

Investment decisions are made at the state level and ag-
gregated across the four investment segments. Power sector
investments are tracked by their original operating year and
available to be dispatched in subsequent model periods until
the end of their physical lifetimes (which vary by technology)
unless the capacity is substantially underutilized and pre-
maturely retired for economic reasons. Capacity investment
requirements are calculated to ensure sufficient capacity is
available to meet electricity demands across all dispatch seg-
ments in each model period, including a 15 % reserve margin.
New capacity requirements are allocated across the four in-
vestment segments by mapping each investment segment to
the dispatch segment whose load most closely matches the
average load of the investment segment and comparing the
variable cost of the marginal existing generator to the full
cost of investing in a new plant. The demand for new capac-
ity is processed in order from low to high load (base load
first, peak last) so that the model knows how much capacity
(including reserve margin) remains to be met by super peak
(the 10 highest load hours of the year per grid region).

Existing capacity that becomes consistently too expensive
to operate may be permanently retired before the end of its
physical lifetime. These retirements could be driven by poli-
cies like an emissions price, sustained high fuel or cool-
ing water input costs, or a plant being displaced by lower-
variable cost technologies in the dispatch curve. When mak-
ing investment decisions, the model compares the variable
cost of technologies not dispatched in each representative
dispatch segment to the price of the corresponding invest-
ment sector (including both fixed and variable costs) using a
simple smooth function. If a technology is more expensive to
operate than the costs of building and operating an average
new plant in the relevant investment segment, some of that
technology’s capacity will retire (a greater fraction will re-
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Figure 2. Conceptual diagram of new GCAM-USA electric power sector.

tire as that cost delta increases). These retirement decisions
are lagged by one model period; retirements each year are
based on the previous period’s dispatch.

3.3.2 Electric power dispatch

After new capacity investment decisions are made, all ca-
pacity (existing and newly invested) is gathered into a set of
technologies available for dispatch at the grid-region level.
At this point, there is no distinction among investment seg-
ments – a combined cycle gas plant is the same whether it
was invested with the assumption of operating as base load
or in sub-peak – although there is still a distinction among
technology vintages (year of investment) because plant ef-
ficiencies and O&M costs evolve over time. Each grid re-
gion contains 25 load segments corresponding to daytime
and nighttime loads for each month of the year, plus an an-
nual super-peak containing the top 10 load hours of the year.
Information on these sub-annual load profiles comes from
Federal Energy Regulatory Commission form no. 714.

For each of these 25 dispatch segments, the model sorts all
available capacity by variable cost (including fuel and water
costs, variable O&M costs, and policy costs tied to a unit
of energy or emissions production) and dispatches (operates)
them based on least variable cost. Each generation technol-
ogy is assigned a maximum production level for each seg-
ment, which is a function of (1) the number of hours in the
segment, (2) the amount of capacity available for that tech-
nology, and (3) a “segment capacity factor”. For dispatchable
technologies (nuclear, fossil fuels, biomass), the segment ca-
pacity factor is identical for each segment and reflects plant
availability considering downtime for maintenance, refuel-
ing, etc. The exception to this rule is the super-peak segment,
in which it is assumed that all dispatchable are available at
their full capacity. For intermittent (or variable) technolo-

gies, the segment capacity factor varies by segment and re-
flects heterogeneous resource availability. For example, so-
lar plants are only available during daytime segments and
wind availability tends to be higher in nighttime segments.
The model loops through each dispatch segment (S) and state
technology vintage (T), assigning each T its maximum level
of production to meet the demand in S until the full demand
is met, creating a dispatch curve for each dispatch segment
in the process.

The price of electricity is equal to an average of each seg-
ment’s marginal generator’s variable cost, plus the capacity
price. By default, the load profiles in GCAM-USA are fixed
over time – the distribution of annual load across the 25 sub-
annual dispatch segments is calibrated to historical data for
2015 (by grid region) and fixed across future model periods.
In contrast, Khan et al. (2021) utilized a version of GCAM-
USA with “detailed demand segments” where the electric-
ity load profile is distinguished by end-use sector (buildings,
industry, transportation) for each grid region, and electric-
ity from each load segment is explicitly consumed by each
end-use sector. In this “demand segments” configuration, the
annual load profile evolves endogenously within the model
as the relative share of consumption across end-use sectors
changes and as demands for thermal building services (heat-
ing and cooling, represented at the same monthly day and
night temporal resolution) evolve over time. This model fea-
ture is not included in the GCAM-USA v5.3_water_dispatch.

3.3.3 Capacity markets and capacity credits

Historically, regulators and regional transmission operations
have required that sufficient reserve capacity is available to
minimize the probability that a shortage occurs by imposing
a capacity reserve margin on electric utilities that prescribed
a percentage of capacity (often 15 %) to be maintained in ex-

Geosci. Model Dev., 15, 2533–2559, 2022 https://doi.org/10.5194/gmd-15-2533-2022



M. Binsted et al.: GCAM-USA v5.3_water_dispatch 2541

cess of expected peak demand. The additional cost of this re-
serve capacity was incorporated into the electricity rates paid
by consumers. Deregulated markets also have mechanisms
in place to ensure capacity reserve margin, called capacity
markets. In addition to the production and sale of electri-
cal energy in real time, capacity markets generate revenues
to maintain grid reliability by paying electricity generators
a premium for capacity beyond what is earned from supply-
ing electricity. Because all generators contribute to reliability,
each generator can receive revenue in the capacity market.
Revenues from capacity markets can be very important for
the financial viability of power plants, particularly for peak-
load plants that operate for a small percentage of hours per
year.

Historically, regulators and regional transmission opera-
tions have required that sufficient reserve capacity is avail-
able to minimize the probability that a shortage occurs by
imposing a capacity reserve margin on electric utilities that
prescribed a percentage of capacity (often 15 %) to be main-
tained in excess of expected peak demand. The additional
cost of this reserve capacity was incorporated into the elec-
tricity rates paid by consumers. Deregulated markets also
have mechanisms in place to ensure capacity reserve margin,
called capacity markets. In addition to the production and
sale of electrical energy in real time, capacity markets gen-
erate revenues to maintain grid reliability by paying electric-
ity generators a premium for capacity beyond what is earned
from supplying electricity. Because all generators contribute
to reliability, each generator can receive revenue in the ca-
pacity market. Revenues from capacity markets can be very
important for the financial viability of power plants, particu-
larly for peak-load plants that operate for a small percentage
of hours per year.

The GCAM-USA electricity dispatch model’s investment
segments represent demand and supply of capacity to meet
peak demand plus a reserve margin. It also represents the
economics of capacity markets. All generators are assumed
to contribute to reserve margin and receive payments for their
contributions. Dispatchable technologies can contribute their
full rated capacity toward reserve margins and hence receive
full payments, which assumed assumed to equal the lev-
elized capital cost of a gas combustion turbine power plant
(the least expensive dispatchable capacity to build), consis-
tent with results from optimization models (for example, see
Cole et al., 2017, Fig. 8). Due to their intermittency, renew-
ables can contribute only a fraction of their rated capacity. In
reality, this fraction – also known as the capacity credit or ca-
pacity value (CV) – is a function of the correlation between
the temporal generation pattern of the resource and the peak
load periods, as well as the fraction of intermittent generation
compared to total regional output. As wind or solar constitute
more of the system capacity, the variability of their peak-load
operation will have a decreasingly beneficial effect on system
reliability; hence, the capacity value of a renewable technol-
ogy decreases with its penetration. We model this decreasing

capacity credit as a function of renewable energy (VRE) ca-
pacity shares using a simple sigmoid function. Wind power
receives a 15 % capacity value, but this credit is largely unaf-
fected by the level of wind penetration; solar power receives
40 % of the capacity credit at low levels of penetration, but
this capacity value decreases to 5 % by the time solar consti-
tutes 20 % of overall capacity (Cole et al., 2017).

In addition to decreasing capacity credits, VRE technolo-
gies may also face decreasing capacity factors as deployment
increases because locations with the strongest resources (so-
lar insolation or wind speed) will tend to be utilized first,
and subsequent installations will be cited in locations with
marginally poorer resources. Section S2 describes how the
GCAM-USA electricity dispatch model captures these dy-
namics.

The new GCAM-USA electric power sector provides a
rich set of outputs for each scenario. Users can track electric
capacity by technology (both existing capacity and new in-
vestments); monthly day and night electricity load and elec-
tricity generation by technology; variable costs and electric-
ity dispatch order by monthly day and night electricity load
segment; dynamically evolving technology capacity factors
(as each technology-vintage’s operation evolves over time).
Most of these results are available at the state level, although
some of the decisions (e.g., electricity dispatch order) are
represented at the grid region level.

4 GCAM-USA Reference scenario storyline

Human–Earth system models simulate outcomes of dynamic
systems whose future evolution is highly uncertain. For this
reason, it is important to articulate a clear storyline, or “narra-
tive description. . . highlighting the main scenario character-
istics, relationships between key driving forces, and the dy-
namics of their evolution” (IPCC, 2014) (p. 1773), about the
evolution of the modeled system. This high-level description
of drivers and trends provides the basis for clearly document-
ing assumptions, including choices about model structures
and parameters, which may influence future model outcomes
(Binsted et al., 2020). The following section outlines the sto-
ryline for the GCAM-USA Reference scenario. Additional
description of the GCAM-USA Reference scenario storyline
is available in the online GCAM-USA model documentation
page (http://jgcri.github.io/gcam-doc/gcam-usa.html, last ac-
cess: 22 October 2022).

4.1 Socioeconomics and end-use energy demands

The GCAM-USA Reference scenario assumes a steadily
growing US economy and growing but gradually peaking
population through the end of the century. A detailed de-
scription of GCAM-USA’s default socioeconomic assump-
tions is provided in Sect. 2.2.1. This population and eco-
nomic growth translates to increasing service demands in
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all end-use sectors. The GCAM-USA Reference scenario as-
sumes a continuation but not an expansion or strengthening
of current energy efficiency policies (e.g., building efficiency
standards). In aggregate, total final energy demands increase
as efficiency improvements are slower than increases in de-
mand for end-use energy services (space heating and cooling,
passenger and freight transportation, industrial energy use,
etc.), although the balance between population and income
driven demand growth and service efficiency vary by sec-
tor. (Section S3 provides information on service and energy
growth by sector for the GCAM-USA Reference scenario.)
End-use sectors tend to become increasingly electrified over
time, with the trend strongest in buildings (where many new
energy demands come from electronic devices). Transporta-
tion remains reliant on liquid fossil fuels, although light-duty
vehicles (LDVs) electrify more rapidly than the sector as a
whole.

4.2 Electric power

In the GCAM-USA Reference scenario, electricity demand
grows slowly but steadily over the next 3 decades, reaching
approximately 5600 TWh in 2050. Load grows slightly faster
over the second half of the century, reaching 7700 TWh in
2100. This demand is driven by increased electrification in
buildings and industry, with modest growth in transportation
after 2050. The GCAM-USA Reference scenario does reflect
existing policies to incentivize battery electric vehicle (BEV)
deployment. This future load growth departs from recent his-
torical trends; USA electricity demand increased only 4 % in
the decade between 2009 and 2019 (EIA, 2020a).

In terms of electricity supply, rising electricity demand
is met by increasing generation from natural gas and re-
newables in the GCAM-USA Reference scenario. Growth in
gas generation dominates through 2050, with moderate in-
creases in wind and solar; post-2050, gas generation flattens
while wind and solar growth accelerate substantially. The
GCAM-USA Reference scenario assumes no new deploy-
ment of coal-fired power plants without carbon capture and
storage (CCS), based on the Clean Air Act Section 111 (b)
New Source Performance Standards (Environmental Protec-
tion Agency, 2015). Coal generation remains roughly flat
from 2020 to 2030 and remains a substantial portion of the
generation mix through 2040, until much of the capacity
reaches the end of its technical lifetime. New nuclear deploy-
ment does not occur in the GCAM-USA Reference scenario
until 2030, considering the long lead time for permitting and
construction and the dearth of nuclear plants currently under
construction in the USA (apart from Vogtle Units 3 and 4
in Georgia). A more detailed description of the GCAM-USA
Reference scenario storyline for the electricity sector is avail-
able in Binsted et al. (2020).

4.3 Water

At a national level, the GCAM-USA Reference scenario
entails modest declines in water withdrawals through mid-
century, with relatively flat water demands thereafter. The
decline in demand is driven by a reduction in power sector
cooling water. Despite growing electricity demand, the grad-
ual retirement of plants with once-through cooling systems
(which are assumed to be unavailable for installation in fu-
ture model periods) coupled with a shift towards less water-
intensive generation technologies (e.g., natural gas, renew-
ables) results in diminishing power sector water demands in
the GCAM-USA Reference scenario.

Declining power sector cooling water demands are par-
tially offset by increased withdrawals from the agriculture,
livestock, manufacturing, and municipal sectors; these de-
mands are largely driven by economic growth. Per-unit water
requirements for primary energy, livestock, and manufactur-
ing are assumed to be constant through the end of the cen-
tury, and thus the scale of those activities corresponds di-
rectly to water withdrawals. In the agricultural sector, there
is a competition between irrigated and rainfed crop man-
agement systems; however, in the US, most agriculture is
already irrigated, and the GCAM-USA Reference scenario
assumes no improvement in crop-specific per-unit irrigation
water requirements over time. Municipal water use does be-
come somewhat more efficient over time, but these efficiency
improvements are offset by population growth.

4.4 Land

Agricultural productivity increases gradually in the US in the
future, with crop-specific annual productivity growth rates
ranging from 0 %yr−1 to 0.67 %yr−1 between 2015 and
2100. These productivity gains represent exogenously spec-
ified technical change, which varies by crop, management
practice (irrigated vs. rainfed, high vs. low fertilizer applica-
tion), and year, reflecting factors like improved mechaniza-
tion, and crop breeding. Alternate fertilizer use and irrigation
practices are represented endogenously and respond dynami-
cally to economic forces (commodity prices, land values, in-
put costs, etc.) within the model; shifting management prac-
tices generate additional productivity changes beyond those
listed above.

Demand for agricultural commodities increases in the
GCAM-USA Reference scenario, driven by changes in pop-
ulation, income, and biofuels demand. Per capita food de-
mand is relatively flat in the US given its income level, with
staple demand decreasing slightly over the century and non-
staple demand increasing modestly (Edmonds et al., 2017).
Demand for liquid biofuels increases by 160 % between 2015
and 2050 in the reference scenario. The US is a net exporter
of crops, with∼ 21 % of all crops produced exported in 2015
and ∼ 25 % exported in 2050 in a reference scenario.
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Table 1. Scenario design

Scenario Socioeconomic drivers Energy system evolution

Ref Default (SSP2) Default (no explicit policy)
High Growth High growth (SSP5) Default
Transition Default Long-term economy-wide transition toward low-carbon technologies
High Growth+Transition High growth Long-term economy-wide transition toward low-carbon technologies

5 Scenarios

The following section presents results for four il-
lustrative scenarios constructed using GCAM-USA
v5.3_water_dispatch. The scenarios vary across the
following two dimensions: socioeconomic drivers and en-
ergy system evolution. These scenarios, outlined in Table 1,
are intentionally simple and designed to illustrate key model
behavior and capabilities across a range of potential futures;
they are not intended to reflect “likely” outcomes or detailed
narratives of future worlds.

The Ref scenario is the default GCAM-USA Reference
scenario based on the storyline described in Sect. 4. In this
scenario, population and GDP growth assumptions are con-
sistent with SSP2 (see Sect. 2.2.1 for more information on so-
cioeconomic assumptions in GCAM). The High Growth sce-
nario assumes faster population and economic growth con-
sistent with SSP5. Note that although the SSPs are global
scenario narratives, our High Growth scenario assumes that
only the US population and economy grows at the acceler-
ated SSP5 rates, in order to isolate the impact of economic
growth in the US on model outcomes.

The Transition scenario contains default (reference) so-
cioeconomic assumptions but reflects a transition towards a
lower-carbon energy system (reaching zero energy system
carbon dioxide emissions by 2090; see Fig. S1 in the Sup-
plement for scenario emissions pathways). The energy tran-
sition is implemented via a price on carbon dioxide emissions
from the energy system of roughly USD 22 per tCO2 (2015
USD values) beginning in 2025 and escalating at 5 %yr−1

thereafter. The Transition scenario does not include any new
or improved technology options that are not available in the
Ref scenario (only shifting technology deployment in re-
sponse to the carbon price); it also does not explicitly re-
flect any “lifestyle” changes that could impact future energy
demand (although end-use energy consumption responds en-
dogenously to changes in energy prices). Finally, the High
Growth+Transition scenario combines the higher growth
(SSP5) scenario element with the transition towards a lower-
carbon energy system.

In all scenarios, water availability is constrained to de-
fault levels of renewable and non-renewable groundwater
as described in Kim et al. (2016) and Turner et al. (2019).
The methods for constructing GCAM’s renewable water and
groundwater resource curves are described in Sect. 3.2.1 (wa-

ter supplies). In short, this entails a 10 % environmental flow
restriction on renewable water, renewable water availabil-
ity based on the stable volume of long-term average annual
flow (i.e., not reflecting potential impacts of future climate
change on water availability), and a 25 % limit on physi-
cally exploitable groundwater extraction reflecting environ-
mental limits on groundwater depletion. Renewable water
and groundwater resource curves by river basin are included
in Fig. S4. Water prices will thus vary by basin; basins in
which renewable water supplies exceed water demand will
have negligible water prices, but as demands rise in the fu-
ture across scenarios, some basins may need to utilize and
non-renewable groundwater (and possibly desalinated wa-
ter), raising the price of water and motivating a shift towards
less water-intensive technologies.

6 Results

This section presents results for the four GCAM-USA sce-
narios described above, focusing on model outputs for en-
ergy consumption (Sect. 6.1), electric power (Sect. 6.2), wa-
ter (Sect. 6.3), and land use (Sect. 6.4). Each system will be-
gin with a description of high-level national-aggregate trends
but focus mainly on subnational detail within the model. The
section concludes with a brief comparison to historical data
and other future scenarios (Sect. 6.5).

6.1 Energy consumption

The four GCAM-USA scenarios presented in this paper en-
tail vastly different future energy trends (Fig. 3). In the Ref
scenario, total primary energy for the USA grows steadily
throughout the century, with the energy mix dominated by
fossil fuels. Oil consumption is relatively flat from 2015 to
2100; coal demand dwindles past 2050, while natural gas be-
comes the largest source of primary energy, with consump-
tion nearly doubling in 2100 (relative to 2015 levels). The
fuel trends are similar in the High Growth scenario, but total
primary energy more than doubles in 2100 (relative to 2015),
compared to only 38 % growth in the Ref scenario over the
same period.

In the Transition scenario, the decline of coal happens
sooner (mostly eliminated by 2035), while oil consumption is
roughly flat through 2040 before declining in the second half
of the century. Gas consumption grows over the next several
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Figure 3. US primary energy consumption (national total) by fuel and scenario. Columns reflect alternate assumptions about socioeconomic
drivers; rows represent alternate assumptions about energy system evolution.

Figure 4. Electricity share of final energy by state, scenario, and end-use sector (building, industry, passenger vehicles) in 2100. Note
that because electric drivetrains are more energy efficient than internal combustion engines, the share of passenger transportation service
provided by electricity (BEVs) in the scenarios will exceed the energy consumption shares shown in this figure. A plot of passenger vehicle
electrification by share of transportation service (passenger miles traveled) is provided as Fig. S2.

decades but peaks by 2050. Bioenergy, wind, and solar con-
sumption grow relatively slowly through 2050 and rapidly
thereafter; by 2100, these three fuels constitute nearly two-
thirds of total US primary energy consumption. The Transi-
tion+High Growth scenario has similar trends, but primary
energy demands are more than 50 % greater in 2100.

Beneath these national-level results is significant hetero-
geneity in outcomes across states and sectors. Figure 4 shows
the electrification rate (electricity share of final energy) by
sector for each scenario in 2100. Across all scenarios, the
building sector tends to be the most electrified, although there
is significant regional variation. In the Ref scenario, build-
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ing sector electrification ranges from 36 % (Vermont) to 90 %
(Florida) in 2100; electrification rates are similar in the High
Growth scenario, although they tend to be slightly higher.
The wide range of building electrification rates is driven by
several factors. Differences in the energy service profile of
the buildings sector vary by region; for example, southern
states require more air conditioning (powered by electricity)
and little heating, while northern states require little cooling
but substantial space heating (often provided by gas, heating
oil, or biomass, as well as some electricity). Historically esti-
mated differences in fuel preferences for different services
(e.g., electricity vs. gas (or other fuels) for space heating,
water heating, cooking) by state are carried forward and in-
fluence future technology choices (GCAM-USA’s calibration
routine is discussed in Sect. 6.5.), as do regionally differenti-
ated fuel prices (oil, gas, coal, and electricity prices all vary
by grid region).

This range in building electrification tightens substantially
in the Transition scenario. Electrification of end-use sectors
is a key emission-reduction strategy in response to the carbon
price in the Transition scenario; buildings, the most electri-
fied sector in the Ref scenario, tends towards the upper end of
electrification, with electricity accounting for 79 % of build-
ing energy consumption in New York and 97 % in Florida.
With fossil fuel technologies facing a substantial price on
the CO2 emissions they generate in the Transition scenario
and electric options available for every building service, deep
electrification of the buildings sector occurs across states by
2100, although some differences remain due to variations in
regional preferences, fuel prices, and turnover rates of exist-
ing equipment stock.

Industry electrification rates are similarly diverse. In the
Ref scenario, electricity accounts for between 2 % (Alaska)
and 50 % (Nevada) of industrial energy use. Again, these
rates are similar in the High Growth scenario, although the
magnitudes of this electricity consumption are vastly differ-
ent. For example, Ohio’s industry sector has a 31 % electric-
ity share in Ref and a 32 % share in High Growth, but the
sector consumes 95.3 TWh in Ref compared to 158.3 TWh
in High Growth. As with the building sector, industry elec-
trifies quite substantially in the Transition scenario, although
there is more heterogeneity in these outcomes. For example,
Alaska has only a 22 % industrial electrification rate in 2100,
while Alabama has an 86 % electrification rate (Transition
scenario). GCAM-USA’s industry sector is represented at a
more aggregate level than buildings, but the same basic fac-
tors – state-specific fuel preferences, capital stock accumula-
tion, and regionally differentiated fuel prices – drive differ-
ences in industrial fuel mix across the states. Additionally,
some states, such as those with large petrochemical sectors
(e.g., Louisiana, Texas), use much of the energy in industry
as feedstocks, which lowers the share of electricity in their
industrial energy mix.

Electrification of passenger transportation is much more
regionally homogenous than other sectors. In the Ref sce-

nario, between 11 % (Texas) and 14 % (Hawaii) of states’
passenger transport energy consumption comes from elec-
tricity. These rates are virtually identical in the High Growth
scenario. In the Transition and Transition+High Growth
scenarios, these electrification rates range from 33 % to 40 %.
This represents a significant increase in electrification rel-
ative to the Ref and High Growth scenarios, although the
range of outcomes is fairly small. There are several rea-
sons for this. First, because electric vehicle (EV) penetra-
tion is very low in the historical period (2015), the model
has little information about varying regional preferences for
EVs around which to calibrate. Second, since these con-
sumer preferences for EVs begin from a similar place (near
zero deployment), these preferences tend to evolve homoge-
nously over time in the model. Third, vehicle costs and
emission costs are the same in every state in these sce-
narios; the scenarios do not represent existing state-level
zero-emissions vehicle (ZEV) mandates. Finally, although
GCAM-USA does capture regional differences in fuel prices
(for both traditional liquid fuels and electricity), fuel prices
tend to represent a small percentage of total vehicle owner-
ship costs; thus, these fuel price differences do not impact
transportation results as much as they may in other sectors.
Additional information about the reference transportation as-
sumptions in GCAM-USA v5.3_water_dispatch, as well as
how alternate assumptions of state-level policy or consumer
preferences could be implemented, is provided in Note 4 in
the Supplement.

6.2 Electric power

GCAM-USA now explicitly tracks both electricity genera-
tion and generation capacity by technology and cooling sys-
tem. Figure 5 presents both electricity generation and capac-
ity for our four GCAM-USA scenarios. Electricity genera-
tion in the Ref scenario grows 85 % over the course of the
century (relative to 2015) to nearly 7700 TWh, while capac-
ity grows more than 250 % to over 2800 GW in 2100. Fossil
fuels dominate the generation mix in the near- to medium-
term, with coal generation gradually declining and gas gen-
eration steadily growing. By 2060, fossil fuels account for
just over 50 % of total US power generation, with wind
and solar the next most significant generation sources (be-
hind natural gas). Hydropower is exogenously specified in
GCAM-USA and fixed at 2019 levels for all historical pe-
riods. Nuclear power represents a significant portion of the
generation mix through about 2035, then dwindles for several
decades (driven by an assumption of 60-year operational life-
times) before growing again beginning around 2070. Capac-
ity trends by fuel are similar, although wind and solar make
up a larger share of capacity than generation due to their rel-
atively low capacity factors (compared to other technologies
like gas combined cycle and nuclear). The increasing pene-
tration of wind and solar is one reason that the national fleet’s
annual average capacity factor declines steadily from 45 % in

https://doi.org/10.5194/gmd-15-2533-2022 Geosci. Model Dev., 15, 2533–2559, 2022



2546 M. Binsted et al.: GCAM-USA v5.3_water_dispatch

Figure 5. USA electricity generation (a) and capacity (b) by technology and scenario. Lines on capacity plots (b) represent national fleet
average annual capacity factor and correspond to the secondary (right) y axis.

2015 to 31 % in 2100. Wind and solar constitute greater than
50 % of power sector capacity by 2055, but do not account
for 50 % of electricity generation until 2080.

Fuel mix trends, in both generation and capacity, are sim-
ilar in the High Growth scenario. However, electricity de-
mand in the High Growth scenario is 57 % higher than in Ref,
with electricity in generation in 2100 exceeding 12 000 TWh
(290 % higher than 2015 levels). Capacity growth, outpac-
ing generation, approaches 4800 GW, more than quadruple
2015 levels. The Transition scenario, with middle-of-the-
road population and economic growth but strong incentives
to electrify end-use sectors to reduce their carbon intensity,
sees even higher electricity growth, with generation reach-
ing 12 900 TWh in 2100 and capacity reaching 6140 GW. In
this scenario, coal phases out even more quickly, while gas
peaks in 2035 and declines steadily thereafter (although gas

continues to provide nearly 10 % of electricity generation in
2100, most of which is in combination with carbon capture in
storage, CCS). Wind and solar constitute 50 % of total elec-
tricity generation by 2050 in the transition scenario and over
75 % in 2100, while nuclear power also contributes about
5 % of total generation in 2100. Again, the fuel mix in the
High Growth+Transition scenario is similar to that of High
Growth, but total electricity generation is 50 % higher in the
former (nearly 20 000 TWh in High Growth+Transition vs.
12 900 TWh in High Growth), with total power sector capac-
ity exceeding 9700 GW in 2100.

The new electricity dispatch model in GCAM-USA also
allows us to explore changes in the operation of power plants
at the state-level. Figure 6 shows the endogenous capacity
factors for four key technologies (coal without CCS, gas
combined cycle (gas CC), photovoltaic solar (PV), and on-
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Figure 6. USA power sector capacity factor by scenario for select technologies in 2050. Note that color scales differ between technologies.
No shading (white) indicates zero capacity in that state, period, and scenario.

shore wind) at the state level across all four scenarios in
2050. Note that the color scales differ between technolo-
gies. These results highlight the state-level heterogeneity in
GCAM-USA – technology capacity factors (utilization rates)
span a relatively wide range across states. In the Ref sce-
nario, coal (without CCS) capacity factors range from 66 %

to 85 %, although 23 state-level regions have no coal capacity
in 2050. Gas CC capacity factors in the Ref scenario range
from 21 % (Missouri) to 66 % (Washington) in 2050, with
a national average of 49 %. PV capacity factors range from
just 5 % (Alaska) to 31 % (Arizona) (22 % national average),
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while wind capacity factors range from 14 % (Hawaii) to
44 % (Kansas) (36 % national average).

As observed with other rate variables, these endogenous
technology capacity factors tend to be quite similar in the
High Growth and Ref scenarios, particularly in 2050 when
deployment of intermittent technologies is still more limited.
Coal plant utilization is nearly identical in the High Growth
and Ref scenarios, although a handful of Midwest and Great
Plains states have slightly diminished (1 %–10 %) coal ca-
pacity factors as wind deployment increases. Gas CC plants
are operated between 2 % more frequently (Montana) and
5 % less frequently (Washington) in the High Growth sce-
nario (compared to Ref) in 2050. PV and onshore wind ca-
pacity factors are consistently lower in the High Growth sce-
nario (compared to Ref), but the differences do not exceed
1.3 % in 2050. By 2100, however, PV and onshore wind ca-
pacity factors in the High Growth scenario diverge more and
are noticeably lower than in Ref. PV capacity factors are up
to 7.6 % lower (New Mexico, 10.4 % vs. 17 %) in 2100, with
the national average PV capacity factor about 1.4 % lower.
Similarly, onshore wind capacity factors are up to 5 % lower
in 2100 (New Jersey), with the national average 1.4 % lower
in High Growth (compared to Ref). These declines occur be-
cause the highest quality sites for variable energy (wind and
PV) are utilized first. Deployment of these technologies is
significantly higher in the High Growth scenario in 2100;
these additional wind and PV installations are built in in-
creasingly marginal areas with diminishing capacity factors.

A similar and indeed exaggerated result is observed in
the Transition and High Growth+Transition scenarios. PV
capacity factors in the Transition scenario range from 4 %
(Alaska) to 27 % (Utah) in 2050 – between 0 % and 20 %
lower than those in the Ref scenario. The national aver-
age PV capacity factor is about 2.2 % lower in Transition
(19.6 %) compared to Ref (21.8 %) in 2050. Interestingly,
PV capacity factors are not further degraded in the High
Growth+Transition scenario, still ranging between 4 % and
27 %.

Onshore wind capacity factors in the Transition scenario
(2050) range from 14 % (Hawaii) to 43 % (Alaska) with a
national average of 36 %. These capacity factors are again
lower than those observed in the Ref scenario; greater de-
ployment reduces the national average onshore wind capacity
factor in the Transition by an additional 0.5 % relative to the
High Growth scenario. Contrary to PV, combining the high
socioeconomic growth and energy system transition assump-
tions leads to further degradation of onshore wind capacity
factors, which are between 0 % and 2.6 % lower in the High
Growth+Transition scenario (relative to Transition).

Gas CC capacity factors drop in the Transition and High
Growth+Transition scenarios (relative to Ref) because the
emissions price used to incentivize a shift towards a lower-
carbon economy makes operating gas CC plants relatively
more expensive. At the national level, gas CC (without CCS)
capacity factors drop from roughly 49 % in 2050 (Ref) to

32 % (Transition); at the state level, these differences range
from 2 % higher in the Transition scenario (Mississippi) to
44 % lower (Washington) relative to Ref. Coal power plant
operations are even more strongly impacted because they
are more carbon intensive; in the Transition scenario only
six states have remaining coal capacity (without CCS) by
2040, and all coal capacity without CCS is retired by 2050.

An interesting regional pattern which emerges is that
gas CC capacity factors tend to be higher in the south-
eastern states, especially in the Transition and High
Growth+Transition scenarios. The southeast has relatively
poor wind resources, as indicated by the low capacity fac-
tors for onshore wind. For example, in 2050 wind accounts
for just 2.1 % of total capacity (1.1 % of generation) in Geor-
gia in the Ref scenario; in the Transition scenario, this in-
creases to only 5.0 % of capacity and 3.2 % of generation. At
night, with no solar generation and a dearth of wind genera-
tion (which tends to be stronger at night), the southeast must
rely on other technologies – often gas CC – to support night-
time loads. This keeps gas CC capacity factors high in the
southeast compared to other regions.

Broadly, national average electric capacity factors de-
crease across all scenarios (Fig. 5), driven by greater pene-
tration of intermittent renewable technologies (wind and so-
lar), which have lower maximum availability rates. The com-
petition for investment in new generation capacity is based
on levelized generation costs (including capital, operations
and maintenance, fuel costs, and emissions penalties). De-
spite their lower capacity factors, wind and solar account
for a large share of new installations in all scenarios due
to their low operating costs, lack of emissions (and associ-
ated costs), and rapidly improving capital cost. Wind and
solar are especially economical in the Transition and High
Growth+Transition scenarios where fossil fuel technologies
face a carbon price on their CO2 emissions.

Wind and solar capacity factors themselves decline a bit
over time across all scenarios (Fig. S3 presents national av-
erage electric technology capacity factors for all scenarios
and model periods); this reduction is a bit more pronounced
in the Transition and High Growth+Transition scenarios
(where wind and solar deployment is greatest). This is be-
cause wind and solar resource bases are finite and hetero-
geneous in quality; GCAM-USA assumes that the highest
quality (highest capacity factor) resources are utilized first,
and thus increased deployment over time entails exploiting
lower-quality resources and thus diminished capacity factors
(Note 2 in the Supplement explains this dynamic in greater
detail). The overall (national average) reduction in capacity
factor is small (2.2 % and 1.9 % reduction in PV and onshore
wind capacity factors in 2050 for the Transition scenario, rel-
ative to Ref), although some states see larger reductions.

Capacity factors for fossil fuel (coal and gas) technolo-
gies without CCS also decrease in the Transition and High
Growth+Transition scenarios because the price associated
with their CO2 emissions makes them less economical to
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Figure 7. USA water withdrawals by sector and scenario. Columns reflect alternate assumptions about socioeconomic drivers; rows represent
alternate assumptions about energy system evolution.

operate (as noted above). In the new GCAM-USA electric-
ity dispatch model structure, capacity is operated in order
of least variable (operating) cost, including variable O&M,
input (fuel and water) prices, and emissions penalties. How-
ever, not all technologies experience a reduction in capac-
ity factor in the Transition scenario (Fig. S3). Bioenergy
with CCS capacity factors are stable in the Transition sce-
nario; nuclear capacity factors decline through mid-century
as intermittent renewable capacity increases (nuclear has fuel
costs and variable O&M costs that exceed those for solar
and wind) but stabilizes from 2050 onward. Fossil technolo-
gies with CCS see steadily declining capacity factors over
the course of the century as renewable penetration grows and
carbon prices steadily increase (making these as fossil plants
with CCS more costly to operate, as these technologies still
produce some residual CO2 emissions that escape capture).

6.3 Water

GCAM-USA now provides a comprehensive accounting of
water use (withdrawals and consumption) at the state level.
Figure 7 presents a time series of water withdrawals by sec-
tor for each scenario. In 2015, cooling water for electric-
ity generation is the largest source of water withdrawals at
the national level, followed closely by agricultural irriga-
tion. Together these sectors account for more than 290 km3

of water withdrawals, or more than three-quarters of na-
tional withdrawals in 2015. However, while electricity sec-
tor withdrawals remain relatively flat through 2030 before
declining rapidly to under 20 km3 by 2060 in all scenarios
(and remaining low thereafter), irrigation water withdrawals
grow steadily over the century across all scenarios, reaching

210 km3 in 2100 in the Ref scenario (a 49 % increase over
2015).

Growth in agricultural water withdrawals in the Ref sce-
nario is driven primarily by cropland expansion (Fig. 10) to
meet increasing food demand caused by growing population
and GDP. Nationally, cropland irrigation shares (the percent-
age of cropland that is irrigated as opposed to rainfed) for
food and feed crops increase marginally over time across sce-
narios (16.4 % in 2015, 17.4 %–19.6 % in 2100), albeit with
substantial variation across basins and crop types. Irrigation
water demands are influenced by several factors, including
agricultural land area (driven by food demand and modu-
lated by competition between cropland and alternate land
uses), competition between different crop types (which have
different profit rates and water requirements), and competi-
tion among production strategies (irrigated vs. rainfed and
high vs. low fertilizer application) based on their costs (in-
cluding water and fertilizer prices), yields, and profitabil-
ity (crop prices). Irrigated agriculture entails higher costs
(equipment+water costs) but achieves higher yields.

In the High Growth scenario, agricultural water with-
drawals grow more rapidly to 240 km3 in 2100. In the Tran-
sition and High Growth+Transition scenarios, agricultural
withdrawals reach 271 and 295 km3 in 2100, respectively.
This increase in demand for irrigation water is largely driven
by increased demand for bioenergy crops by the energy sys-
tem. Bioenergy crops can be produced with the same four
production strategies (combinations of irrigated vs. rainfed
and high vs. low fertilizer application) as other crops. Irriga-
tion shares are generally lower for bioenergy crops than they
are for traditional (food and feed) crops (between 8 %–11 %
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Figure 8. Water withdrawals by state and scenario in 2100. Fill color represents the sector with the largest water withdrawals in each state.
Shading (transparency) corresponds to the magnitude of total withdrawals (sum of all sectors) by state. Columns reflect alternate assumptions
about socioeconomic drivers; rows represent alternate assumptions about energy system evolution.

across scenarios and model periods), but bioenergy cropland
expands tremendously in the Transition scenario, while tra-
ditional cropland grows minimally, as described in Sect. 6.1.
As a result, about 71 % of the increase in irrigation water
withdrawals in 2100 (relative to 2015) are attributable to
bioenergy crops rather than food and feed crops.

Municipalities are the third largest water user in terms
of withdrawals, both historically and throughout the century
across all four GCAM-USA scenarios. Municipal water de-
mands grow steadily with socioeconomic growth, as do de-
mands from manufacturing, the fourth-largest source of wa-
ter withdrawals nationally. Water demands for the mining
(primary energy) and livestock sectors are relatively small
from a national perspective across all scenarios. In total, na-
tional water withdrawals decline slightly to mid-century in
the Ref scenario and are relatively flat thereafter, with end-of-
century withdrawals about 10 % lower than historical (2015)
levels. In the High Growth scenario, the decline in electric
power water withdrawals is more rapidly offset by increas-
ing demands from agriculture and municipalities, with total
USA withdrawals reaching 440 km3 in 2100 (nearly 20 %
higher than 2015 levels). Although irrigation water with-
drawals grow even more rapidly in the Transition scenario (as
highlighted above), municipal and manufacturing demands
remain close to Ref levels; in turn, total water withdrawals

are slightly lower by end-of-century in the Transition sce-
nario (relative to High Growth) at just about 390 km3 in 2100.
The High Growth+Transition scenario has by far the largest
water withdrawals in 2100 (at 486 km3), although total with-
drawals in 2050 are only 3 % higher than the Ref scenario;
in the near-to-medium term, growth in irrigation and munic-
ipal withdrawals (driven by increased demand for bioenergy
crops and socioeconomic growth, receptively) is offset by
faster declines in power sector water withdrawals due to less
frequent operation of fossil fuel power plants (particularly
coal, which requires substantial cooling water) and greater
investment and generation from wind and PV (which have
no cooling requirements).

However, as observed in the energy and electricity results,
significant regional heterogeneity undergirds these national
trends. Figure 8 presents water withdrawals by state and sce-
nario in 2100; the map is color-coded according to which
sector is the largest water user (in terms of withdrawals) in
each respective state, while the shading of that color is scaled
to total water demands (across all sectors) in the state; states
with the highest water withdrawals appear most saturated.
Irrigation accounts for the most water withdrawals nation-
ally in 2100 and is also the largest water user in 22 states
(mostly across the Great Plains and western US). Municipal-
ities are the largest water users in 21 states (mainly along
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the eastern seaboard and Great Lakes), while manufacturing
accounts for the most water withdrawals in six states. The
regional distribution of water demands by sector is similar
in the High Growth scenario, although municipal water use
becomes larger than irrigation in Florida, and demands are
generally higher across the board. Similar outcomes are ob-
served in the Transition and High Growth+Transition sce-
narios, with water withdrawals increasing in volume but the
sectoral distribution by state (in terms of highest consuming
sector) remaining relatively stable.

In addition to water use (withdrawals and consumption),
GCAM-USA also reports water supplies by source by water
basin. Figure 9 presents the percentage of total water with-
drawals supplied by groundwater (top panel) and desalinated
water (bottom panel) in 2100 (the remaining withdrawals
come from runoff, which is not included in the figure). In
the Ref scenario, groundwater accounts for less than 10 %
of water withdrawals in most (15 of 20) water basins, al-
though groundwater supplies between 25 %–40 % of water
withdrawals for the Arkansas White Red, California River,
and Mexico Northwest Coast basins, while the Rio Grande
and Lower Colorado basins rely on groundwater for nearly
50 % of their total withdrawals. The shadow prices of wa-
ter for each river basin and scenario are included in Fig. S5;
broadly, we observe increasing water prices in basins and
scenarios with high reliance on groundwater extraction or de-
salination. Note that GCAM-USA’s water prices represent a
shadow price on water (Bierkens et al., 2019) – the intention
is not to predict real-world consumer prices, but to reflect
water scarcity and provide a price signal to water-consuming
sectors when basins face water scarcity and marginal water
demand must be met by expensive ground water extraction or
desalination (where available). Results are generally consis-
tent in the High Growth scenario; the groundwater reliant re-
gions from the Ref scenario become slightly more groundwa-
ter reliant, and the Lower Mississippi River, Missouri River,
and Texas Gulf Coast basins approach or exceed 20 % of
withdrawals from groundwater. The most notable change in
this scenario, however, is the California River basin, which
has virtually no groundwater extraction in 2100. This is a re-
sult of over-extraction in previous model periods; by 2100,
remaining groundwater is limited and is expensive to access.
The California River basin thus becomes more reliant on de-
salination in the High Growth scenario, with nearly 30 % of
water withdrawals provided by desalination (no other basin
exceeds 1 %, and most do not utilize desalinated water at all).
The Transition and High Growth+Transition scenarios have
similar spatial patterns of water stress; the southwestern US
becomes even more reliant on groundwater in these scenar-
ios, with the Lower Colorado River and Rio Grande basins
both relying on groundwater for roughly three-quarters of
their withdrawals in 2100 across both scenarios. This result
is tied to an expansion of agriculture in the region, discussed
further in the next section.

6.4 Land

GCAM-USA tracks land allocation in the USA across more
than a dozen crop categories (corn, wheat, rice, other grains,
fiber, root, sugar, and oil crops), two types of dedicated
energy crops (trees and shrubs), managed and unmanaged
forests, grasslands, shrublands, pasture lands, and several
other land types. Figure 10 presents USA land allocation by
aggregate land type for each scenario. In the Ref scenario,
cropland expands gradually throughout the century, reaching
1.33 million square kilometers in 2100 (about 20 % higher
than 2015 levels). Cropland expands less rapidly than irri-
gation water withdrawals, implying a shift to more water-
intensive crops over time (the national share of irrigated
agriculture is roughly constant throughout the scenario). A
small amount of dedicated bioenergy cropland is also in-
troduced throughout the century. This additional cropland
comes mainly from pasture and other arable land; forest land
expands marginally (2 % higher in 2100) in the Ref scenario.
Cropland expansion is more significant in the High Growth
scenario, with cropland reaching 1.43 million square kilo-
meters in 2100. This additional cropland results in less allo-
cation to most other land types, including energy crops, al-
though the biggest differences (in absolute magnitude) are in
other arable land and forests.

The Transition and High Growth+Transition scenarios,
by contrast, entail initial cropland expansion followed by a
contraction in the second half of the country, as traditional
cropland is gradually replaced by energy cropland. Crop-
land in the Transition scenario is just 1.13 million square
kilometers in 2100, just 1 % higher than 2015 levels; in
the High Growth+Transition scenario, traditional cropland
accounts for 1.21 million square kilometers in 2100, as a
larger population demands more food. Thus, the Transi-
tion scenario has the largest energy cropland allocation at
814 000 km2 in 2100 (42 % of total cropland), with the High
Growth+Transition scenario next largest at 759 000 km2

(39 %). It should be noted that this large bioenergy crop-
land expansion is driven by the fact that bioenergy is con-
sidered to be carbon-neutral in the energy system; the Tran-
sition and High Growth+Transition scenarios entail a long-
term transition towards a lower-carbon energy system but do
not include efforts to value or incentivize the sequestration
of carbon in the land system. Both the Transition and High
Growth+Transition scenarios entail lower forest, grassland,
shrubland, pasture, and other arable land than the Ref and
High Growth scenarios.

As with other systems, the way these national trends un-
fold varies by region. Figure 11 presents the percentage
change in cropland (excluding dedicated energy crops) in
2100 relative to 2015 by land region for each scenario.
Bioenergy crops are excluded from Fig. 11 to emphasize the
way food production shifts across basins within the scenar-
ios. There is no dedicated bioenergy cropland in 2015 (the
model base year and base year for the percentage changes in
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Figure 9. Percentage of total water withdrawals met by groundwater extraction (top row) and desalination (bottom row) by water basin and
scenario in 2100.

Figure 10. USA land allocation by aggregate land type and scenario. Columns reflect alternate assumptions about socioeconomic drivers;
rows represent alternate assumptions about energy system evolution.

Fig. 11). Figure S6 presents absolute and percentage changes
in traditional (food+ feed) cropland, dedicated bioenergy
cropland, and total cropland. In the discussion below, crop-
land refers to traditional (food+ feed) cropland, excluding
dedicated energy crops.

In the Ref scenario, every region (besides the Nelson River
basin) has more cropland in 2100 than in 2015, with cropland
increases ranging between 3 % to 113 % (national average:
18 %). The largest relative increases are in the southwestern

US, with the Great Basin, Upper Colorado River, and Rio
Grande basins all more than doubling cropland in 2100 (rel-
ative to 2015), although these basins currently have a rel-
atively small amount of cropland (about 18 000 km2 com-
bined in 2015). The largest absolute increase by far occurs
in the Missouri River basin, which adds nearly 70 000 km2 of
cropland over the century. These spatial trends are similar but
larger in the High Growth scenario, with every basin increas-
ing cropland and the Great Basin, Upper Colorado River, and
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Figure 11. Percentage change in cropland allocation in 2100 rel-
ative to 2015 by water basin and scenario. Red shades indicate a
reduction in cropland allocation, while blue shades indicate an in-
crease in cropland.

Rio Grande basins seeing 132 %, 140 %, and 150 % increases
in cropland in 2100 (relative to 2015), respectively.

The Transition and High Growth+Transition scenarios
entail both increasing and decreasing cropland across basins.
In the Transition scenario, 9 of 20 basins finish the century
with less cropland than the final historical year; the biggest
decrease is 29 000 km2 in the Nelson River basin. The Mis-
souri River basin again sees the largest increase in total crop-
land with 60 000 km2 of cropland added by 2100; the largest
relative increases are again in the Great Basin, Colorado
River (Upper and Lower), and Rio Grande River basins. Fi-
nally, as mentioned above, while the Transition and High
Growth+Transition scenarios both have less cropland than
their reference energy system counterparts (due to increased
demand for bioenergy crops), the High Growth+Transition
scenario has more cropland because of greater population
and corresponding total food demand. Thus, only 5 of 20
basins in this scenario experience net cropland contraction
over the course of the century (and each is smaller than the
corresponding reduction in the Transition scenario).

6.5 Comparison to historical data and other future
scenarios

This section compares GCAM-USA v5.3_water_dispatch re-
sults to historical data and other future projections. Historical
results for GCAM-USA are compared to inventory data for
four metrics at the state level for the model’s final historical
year (2015). The four historical metrics are total final energy
consumption (across all fuels and end-use sectors), total elec-
tricity generation (across all fuels), total water withdrawals
(across all sectors), and energy system CO2 emissions (ex-
cluding emissions from the land system). State-level final
energy consumption comes from the Energy Information Ad-

ministration’s (EIA) State Energy Data System (SEDS) “All
consumption estimates” data set (https://www.eia.gov/state/
seds/sep_use/total/csv/use_all_btu.csv, last access: 1 Octo-
ber 2020). Historical data for electricity generation comes
from the EIA’s Electricity Data Browser (EIA, 2020a; https:
//www.eia.gov/electricity/data/browser/, last access: 22 Jan-
uary 2021). Data on state-level water withdrawals comes
from the U.S. Geological Survey (USGS) (https://water.
usgs.gov/watuse/data/, last access: 15 May 2020.), and data
on historical CO2 emissions by state is taken from EIA’s
Energy-Related CO2 Emission Data Tables (https://www.eia.
gov/environment/emissions/state/excel/table2.xlsx, last ac-
cess: 22 January 2021).

GCAM-USA is initialized over five historical periods
(1975, 1990, 2005, 2010, 2015) and calibrated (by estimating
logit share weight parameter values) to match historical data
(calibration is discussed in more detail below). For energy
flows, land allocation, and agricultural production, an exact
match is enforced in the historical period. Water use and CO2
emissions are determined by coefficients calculated from his-
torical data, but not forced to match observations. Historical
observations are read into the model, which replicates these
outcomes while maintaining GCAM’s market equilibrium re-
quirement that supplies and demands of all markets balance
in each model period. Several data sets are used to provide
historical calibration information for the model. At the global
level, the IEA Energy Balances (IEA, 2019) is the primary
data set used to calibrate historical energy flows, including
energy production, transformation, and consumption. Fossil
fuel production and consumption data are scaled globally to
eliminate statistical differences and net stock changes and en-
sure supply–demand balance; electricity is similarly scaled
for each GCAM region to remove inter-regional trade and
statistical differences.

To ensure that global energy remains balanced, GCAM-
USA downscales this processed IEA energy production,
transformation, and consumption data for the USA using
state-level shares derived from the EIA’s State Energy Data
System. Some sectors are disaggregated beyond the level of
detail in core GCAM; for instance, the building sector in-
cludes additional building services and technological detail
and utilizes the EIA’s Residential Energy Consumption Sur-
vey (RECS) and Commercial Building Energy Consumption
Survey (CBECS) to further disaggregate building energy. A
full list of input data sets is included as Table S6; all model
input data (except for the proprietary IEA Energy Balances
data set) are available with the model or in the separate gcam-
data package (https://github.com/JGCRI/gcamdata/, last ac-
cess: 22 October 2021).

Within GCAM, each sector contains at least one subsec-
tor, which in turn contains at least one technology. Subsec-
tors (often corresponding to competing fuels) compete for
share of the sector’s total output; technologies within a given
subsector compete for share of the subsector’s output. This
competition occurs on the basis of relative costs using a prob-
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abilistic logit choice function, which assumes a distribution
of realized costs due to heterogeneous real-world conditions
and allocates market share on the probability that a tech-
nology has the lowest cost compared to competing options.
GCAM’s logit choice formulation is described in detail in
Calvin et al. (2019). In short, technology shares within a nest
are a function of the technology’s cost, its share weight, the
logit exponent, and the costs and share weights of other com-
peting technologies in the nest. The exogenous logit expo-
nent regulates the extent to which cost (or profit) dictates
share; larger absolute logit exponent values lead to greater
shares for the lowest cost (most profitable) technology when
all else is equal. Technology costs in the logit equation in-
clude exogenous non-energy cost inputs, endogenous energy
and water prices (combined with exogenous conversion ef-
ficiencies), and emissions or other policy costs; non-energy
cost and efficiency assumptions reflect exogenous technolog-
ical improvement for most technologies and sectors.

During the calibration routine, GCAM uses the cost of
each subsector or technology to estimate the (unobserved)
logit share weight parameters, ensuring that historically ob-
served outcomes are reproduced (Calvin et al., 2019). Tech-
nology shares are derived from the historical (calibration)
data, leaving share weights as the unknown parameter in the
logit equation that is solved for. The share weight parameters
capture unobserved factors, including preferences, which im-
pact economic choice but are not explicitly represented in the
model’s choice indicator (cost). Share weights are typically
held constant at their final (2015) calibration values or grad-
ually converged to a common value in some future model
period. Thus, the preferences captured by GCAM’s calibra-
tion routine influence model decisions in future model peri-
ods (most strongly in initial model years). Table S7 provides
an overview of how the calibrated share weights parameters
for key sectors are applied in future model periods.

Figure 12 presents a comparison of historical (2015) state-
level results from GCAM-USA and the historical inventory
data (described above) as a scatterplot, with historical data on
the horizontal axis and GCAM-USA results on the vertical
axis. The line in each figure is a one-to-one line indicating an
exact match between historical data and model outcomes. As
indicated by the tight grouping of data points along this one-
to-one line, GCAM-USA results compare well to historical
data for final energy consumption, electricity generation, and
energy system CO2 emissions.

Results for water withdrawals deviate more from the his-
torical inventory data. This occurs for a couple of reasons.
First, as discussed in Sect. 3.2.2, agriculture and land use is
modeled at the land region level rather than the state level;
water consumption from this sector is mapped to state level
based on a 5-year running average share of withdrawals for
each state-basin combination. The Huang et al. (2018) data
used for this mapping runs only through 2010, and thus
2015 results are allocated to the states assuming 2010 shares.
GCAM-USA also applies USA average irrigation efficiency

values from Rohwer et al. (2007) to each land region; these
values are likely to differ spatially, contributing to differ-
ences in state-level results compared to USGS data. A sim-
ilar dynamic occurs with electric power sector withdrawals.
Historical cooling system shares by state are based on data
from 2012. While states are differentiated by the composi-
tion of cooling systems for each generation technology, water
withdrawal (and consumption) demand coefficients for each
power plant and cooling system combination are based on US
national averages. Mining and livestock water withdrawals
by state also diverge from USGS data somewhat, while mu-
nicipal and manufacturing demands match historical data ex-
actly.

Figure 13 compares the GCAM-USA Ref scenario to
nine scenarios from the EIA’s 2020 Annual Energy Outlook
(AEO)1. The AEO was chosen as the point of comparison
for future results because it is one of the most cited projec-
tions of the future US energy system. The National Energy
Modeling System (NEMS) is used to create the AEO projec-
tions. NEMS’ geographic scope is limited to the USA; AEO
results are mostly reported at the national level. Thus, the
comparison in Fig. 13 focuses on national aggregate results,
rather than subnational ones. Additionally, NEMS has strong
detail in the energy system but does not represent the land
and water systems; thus, the metrics compared in Fig. 13 –
total primary energy consumption (across fuels), total energy
system CO2 emissions, total electricity generation, and total
electricity capacity – focus on results from the energy sys-
tem. Results are provided for the full future time horizon of
each scenario (2020 through 2050 for the AEO and through
2100 for GCAM-USA).

Broadly, the GCAM-USA Ref scenario results fall within
the range of AEO 2020 results for the scenarios shown
through 2050. In terms of primary energy consumption,
GCAM-USA’s results for 2020 are about 10 % lower than
AEO’s Reference case. This is in part because AEO is cal-
ibrated to 2019 outcomes, while GCAM-USA’s final histor-
ical year is 2015. By 2030, GCAM-USA is well within the
range of primary energy consumption for AEO scenarios and
remains there through 2050.

In terms of CO2 emissions, GCAM-USA’s simulated
emissions in 2020 are 2 % lower than the AEO 2020 Ref-
erence case. From there, the models diverge. The GCAM-
USA Reference scenario projects increasing CO2 emissions
through 2035, after which emissions decline for roughly 3
decades before rebounding to current (2020) levels in 2090.
In contrast, AEO’s scenarios generally project emissions de-
creasing to 2030 or 2040 before ticking up again there-
after. GCAM-USA’s emissions growth is driven by increased
emissions in the power sector, industry, and transport. Con-

1The specific AEO scenarios included are Reference case, High
economic growth, Low economic growth, High oil price, Low oil
price, High oil and gas supply, Low oil and gas supply, High renew-
able cost, and Low renewable cost.
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Figure 12. Comparison of state-level historical results (2015) from GCAM-USA to historical data for (a) final energy consumption, (b) elec-
tricity generation, (c) water withdrawals, and (d) energy system CO2 emissions. The line in each figure is a one-to-one line indicating an
exact match between historical data and model outcomes; the green band around this line corresponds to a ± 5 % deviation from historical
data. Individual state results are indicated by the position of the corresponding state abbreviation. Note that the units and axis scales vary by
panel.

Figure 13. Comparison of national energy system projections from GCAM-USA (red line) and nine scenarios from the EIA’s 2020 Annual
Energy Outlook (grey lines). Results for (a) primary energy consumption, (b) energy system CO2 emissions, (c) electricity generation, and
(d) electricity capacity.

versely, AEO projects decreasing emissions from electricity
and transport, at least in part because the AEO “generally as-
sumes that existing laws and regulations remain as enacted
throughout the projection period” (EIA, 2020b), while the
GCAM-USA Ref scenario does not explicitly include poli-
cies such as Corporate Average Fuel Economy (CAFE) stan-
dards or state-level renewable portfolio standards (RPS). By
2050, GCAM-USA Reference scenario CO2 emissions are

within the spread of AEO scenarios and almost identical to
the AEO 2020 Reference case.

For the electric power sector, GCAM-USA and AEO are
generally in good agreement about the size of the sector, both
in terms of capacity and total generation. GCAM-USA an-
ticipates higher electricity generation than the AEO 2020
Reference case over the next 4 decades, although it is al-
ways within the range of AEO 2020 cases. The GCAM-USA
Ref scenario simulates slightly lower capacity than the AEO
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2020 Reference case in the near-term, but falls right in the
middle of the AEO 2020 range in the longer-term.

7 Discussion and conclusions

GCAM-USA has been used by public (The White House,
2016) and private (Lempert; et al., 2019) sector decision-
makers and the research community (Feijoo et al., 2018; Iyer
et al., 2019) to understand interconnections and trade-offs be-
tween US economic, energy, agriculture, land, and water sys-
tems in a global context. The latest version of GCAM-USA,
described here, includes several important new features that
open the possibility for new avenues of research in subna-
tional energy–water–land interactions, such as the impact of
water constraints on electricity capacity expansion (e.g., Liu
et al., 2019); the impacts of agriculture and electricity pro-
duction on virtual water trade within the US (e.g., Graham
et al., 2020); implications for electricity and end-use sectors
of increasing deployment of variable renewable energy tech-
nologies; or energy–water–land implications of higher re-
newable fuel standard targets in the US. It also demonstrates
how subnational and sub-annual detail can be incorporated
in a global multi-sector modeling framework, serving as a
blueprint for other regionally detailed models like GCAM-
China (see, for example, Cui et al., 2021).

With models like GCAM-USA, there is a constant balanc-
ing act between global and sectoral coverage; regional, tem-
poral, and process resolution; and computational tractabil-
ity. While GCAM-USA has advanced significantly in recent
years, there are still many areas ripe for model development,
including the following examples.

1. State-level resource endowments and production, par-
ticularly for fossil resources (oil, gas, coal) but also hy-
dropower as state-level fossil resource endowments and
production would permit the accounting of associated
energy and emissions inputs at the state level and fa-
cilitate the exploration of changes in regional patterns
of resource production under alternate future scenar-
ios. While hydropower production is exogenously pre-
scribed for each state and model period (hydropower
capacity and capacity factors are fixed at 2019 levels
for all future periods), hydropower capacity and gener-
ation could vary in the future under different socioeco-
nomic, technology, policy, or water-availability scenar-
ios, which could play out differentially among the states
and impact the generation and final energy mix for a
given state and its electricity trade partners.

2. Improved representation of electricity storage, electric-
ity trade, and electrification potential of end uses (par-
ticularly industry and transportation).

3. Improved representation of infrastructure, including
electricity transmission lines, oil and gas pipelines, and
water conveyance network.

4. Increased detail in the industrial sector, representing
different industrial subsectors and their corresponding
technologies.

5. Improved representation of existing policies in the
GCAM-USA Reference scenario, including federal
policies (e.g., CAFE standards) and state-level policies
(e.g., Hultman et al., 2020).

6. Complete representation of non-CO2 emissions because
GCAM-USA currently does not represent non-CO2
emissions for energy activities modeled at the state-
level. Without emissions of these species in the USA,
the picture of radiative forcing agents in the atmo-
sphere is incomplete; thus, the Hector climate model
is disabled when running GCAM-USA, and climate
outcomes are not available for GCAM-USA scenar-
ios. Complete accounting of non-CO2 emissions (both
non-CO2 greenhouse gases and traditional air pollu-
tants) is an ongoing development priority for GCAM-
USA; studies have been published with research ver-
sions of the model containing such capabilities (Feijoo
et al., 2020; Ou et al., 2020; Shi et al., 2017).

7. State-level drivers for all activities because while de-
cisions and outcomes in the land system are modeled
at the subnational level, these decisions are driven by
national aggregate socioeconomic drivers which deter-
mine demands for food, fiber, and other agricultural
products, rather than heterogenous state-level demands,
preferences, and economic and policy contexts. Some
energy transformation processes (e.g., gas processing,
hydrogen production) also remain nationally resolved.

Ultimately, there are trade-offs between model detail on
the one hand and computational tractability on the other. As
presently configured, GCAM-USA requires balancing sup-
plies and demands for nearly 1700 markets simultaneously
and produces databases in excess of 2 GB per scenario (run
to 2100). The model can presently be run on a personal
computer with 8 GB of RAM; additional developments in-
evitably increase memory requirements, solution complexity,
and database size, although great effort is invested in making
the GCAM framework as computationally efficient as possi-
ble to strike a balance between cutting-edge scientific capa-
bility and user functionality.

Code and data availability. GCAM-USA is an open-source model
and is included in regular GCAM model release packages (https:
//github.com/JGCRI/gcam-core/releases, last access: 22 October
2021; JGCRI, 2021c). The version of GCAM-USA described
in this paper, including all code and input data, is archived
at https://doi.org/10.5281/zenodo.4898374 (Binsted et al., 2021).
GitHub issues are monitored and addressed by the GCAM team
and 100 broader user community members at https://github.com/
JGCRI/gcam-core/issues (last access: 22 October 2021; JGCRI,
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2021b). Model documentation is available at http://jgcri.github.io/
gcam-doc/toc.html (last access: 22 October 2021; JGCRI, 2021a),
including a user guide and documentation specific to GCAM-USA.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-15-2533-2022-supplement.
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