Articles | Volume 15, issue 6
https://doi.org/10.5194/gmd-15-2423-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-2423-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Flow-Py v1.0: a customizable, open-source simulation tool to estimate runout and intensity of gravitational mass flows
Christopher J. L. D'Amboise
CORRESPONDING AUTHOR
Department of Natural Hazards, Austrian Research Centre for Forests (BFW), 6020 Innsbruck, Austria
Michael Neuhauser
Department of Natural Hazards, Austrian Research Centre for Forests (BFW), 6020 Innsbruck, Austria
Michaela Teich
Department of Natural Hazards, Austrian Research Centre for Forests (BFW), 6020 Innsbruck, Austria
Andreas Huber
Unit of Hydraulic Engineering, Institute for Infrastructure Engineering, University of Innsbruck, 6020 Innsbruck, Austria
Andreas Kofler
in.ge.na. Associated technical office, 39100 Bozen, Italy
Frank Perzl
Department of Natural Hazards, Austrian Research Centre for Forests (BFW), 6020 Innsbruck, Austria
Reinhard Fromm
Department of Natural Hazards, Austrian Research Centre for Forests (BFW), 6020 Innsbruck, Austria
Karl Kleemayr
Department of Natural Hazards, Austrian Research Centre for Forests (BFW), 6020 Innsbruck, Austria
deceased, February 2021
Jan-Thomas Fischer
Department of Natural Hazards, Austrian Research Centre for Forests (BFW), 6020 Innsbruck, Austria
Related authors
No articles found.
Lotte de Vugt, Thomas Zieher, Barbara Schneider-Muntau, Frank Perzl, Marc Adams, and Martin Rutzinger
EGUsphere, https://doi.org/10.5194/egusphere-2025-2647, https://doi.org/10.5194/egusphere-2025-2647, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
We performed an analysis on semi-automatically mapped shallow landslide scarps and forest cover in the Sellrain valley, Tyrol (Austria), to investigate how the morphology and topographic profiles of landslides are affected by the forest. The results show that landslides located in dense forest cover occurred on steeper slopes and were deeper than others. The results also show that the use of forest stand density parameters, such as tree spacing, enhanced the found differences in the study area.
Kalin Markov, Andreas Huber, Momchil Panayotov, Christoph Hesselbach, Paula Spannring, Jan-Thomas Fischer, and Michaela Teich
EGUsphere, https://doi.org/10.5194/egusphere-2025-2143, https://doi.org/10.5194/egusphere-2025-2143, 2025
Short summary
Short summary
With growing demand for decision support in recreational and professional use of avalanche terrain, we applied machine learning for automated Avalanche Terrain Exposure Scale (AutoATES) mapping in Bulgaria. A Random Forest model, trained on expert-labelled data from the Pirin Mountains, accurately classifies avalanche terrain and reduces reliance on manual expert mapping, offering an effective and scalable solution for large-scale regional AutoATES applications.
Michael Neuhauser, Anselm Köhler, Anna Wirbel, Felix Oesterle, Wolfgang Fellin, Johannes Gerstmayr, Falko Dressler, and Jan-Thomas Fischer
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-164, https://doi.org/10.5194/nhess-2024-164, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
This study examines how particles move in snow avalanches. The researchers used AvaNodes, a sensor system that tracks particle movement, in combination with radar data and simulations from the open avalanche framework AvaFrame. By comparing measurements and simulations, particle velocity and avalanche front position were matched with high accuracy. The study illustrates how multiple parameter sets can yield appropriate results and highlights the complexity of avalanche simulation.
Matthias Tonnel, Anna Wirbel, Felix Oesterle, and Jan-Thomas Fischer
Geosci. Model Dev., 16, 7013–7035, https://doi.org/10.5194/gmd-16-7013-2023, https://doi.org/10.5194/gmd-16-7013-2023, 2023
Short summary
Short summary
Avaframe - the open avalanche framework - provides open-source tools to simulate and investigate snow avalanches. It is utilized for multiple purposes, the two main applications being hazard mapping and scientific research of snow processes. We present the theory, conversion to a computer model, and testing for one of the core modules used for simulations of a particular type of avalanche, the so-called dense-flow avalanches. Tests check and confirm the applicability of the utilized method.
Juha Lemmetyinen, Juval Cohen, Anna Kontu, Juho Vehviläinen, Henna-Reetta Hannula, Ioanna Merkouriadi, Stefan Scheiblauer, Helmut Rott, Thomas Nagler, Elisabeth Ripper, Kelly Elder, Hans-Peter Marshall, Reinhard Fromm, Marc Adams, Chris Derksen, Joshua King, Adriano Meta, Alex Coccia, Nick Rutter, Melody Sandells, Giovanni Macelloni, Emanuele Santi, Marion Leduc-Leballeur, Richard Essery, Cecile Menard, and Michael Kern
Earth Syst. Sci. Data, 14, 3915–3945, https://doi.org/10.5194/essd-14-3915-2022, https://doi.org/10.5194/essd-14-3915-2022, 2022
Short summary
Short summary
The manuscript describes airborne, dual-polarised X and Ku band synthetic aperture radar (SAR) data collected over several campaigns over snow-covered terrain in Finland, Austria and Canada. Colocated snow and meteorological observations are also presented. The data are meant for science users interested in investigating X/Ku band radar signatures from natural environments in winter conditions.
Cited articles
Ancey, C., Meunier, M., and Richard, D.: Inverse problem in avalanche dynamics
models, Water Resour. Res., 39, 1099, https://doi.org/10.1029/2002WR001749,
2003. a
Barbolini, M., Gruber, U., Keylock, C. J., Naaim, M., and Savi, F.:
Application of statistical and hydraulic-continuum dense-snow avalanche
models to five real European sites, Cold Reg. Sci. Technol., 31, 133–149, 2000. a
Brenning, A.: Spatial prediction models for landslide hazards: review,
comparison and evaluation, Nat. Hazards Earth Sys., 5,
853–862, 2005. a
Christen, M., Bartelt, P., and Gruber, U.: AVAL-1D: An avalanche dynamics
program for the practice, in: International Congress Interpraevent 2002 in the Pacific Rim – Matsumoto/Japan, Congress publication, 2,
715–725, 2002. a
Crozier, M. J. and Glade, T.: Landslide hazard and risk: issues, concepts and
approach, Landslide hazard and risk, chap. 1, 1–40, https://doi.org/10.1002/9780470012659.ch1, 2005. a
D'Amboise, C. J. L., Neuhauser, M., Teich, M., and Fischer, J.-T.:
Maverick-bfw/Flow_py_inputs_results: First releases (Version v1), Zenodo [data set], https://doi.org/10.5281/zenodo.5154787, 2021a. a, b
D’Amboise, C. J. L., Teich, M., Hormes, A., Steger, S., and Berger, F.: “Modeling Protective Forests for Gravitational Natural Hazards and How It Relates to Risk-Based Decision Support Tools”, in: Protective forests as Ecosystem-based solution for Disaster Risk Reduction (ECO-DRR), edited by: edited by: Teich, M., Accastello, C., Perzl, F., and Kleemayr, K., London: IntechOpen, https://www.intechopen.com/online-first/78979 (last access: 1 March 2022), 2021b. a, b, c, d
Dorren, L.: A review of rockfall mechanics and modelling approaches, Prog. Phys. Geog., 27, 69, https://doi.org/10.1191/0309133303pp359ra, 2003. a
Dorren, L.: Rockyfor3D (v4.1) revealed – Transparent description of the
complete 3D rockfall model, ecorisQ paper, https://www.ecorisq.org/ (last access: 1 June 2021), 2012. a
Dorren, L. K., Domaas, U., Kronholm, K., and Labiouse, V.: Methods for
predicting rockfall trajectories and runout zones, edited by: Lambert, S., Tech. Rep., John Wiley & Sons, ISTE Ltd, 143–173, ISBN 9781848212565, 2011. a
Eckert, N., Naaim, M., and Parent, E.: Long-term avalanche hazard assessment
with a Bayesian depth-averaged propagation model, J. Glaciol., 56,
563–586, 2010. a
Fell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E., Savage, W. Z.,
and the JTC-1 Joint Technical Committee on Landslides and Engineered Slopes: Guidelines for landslide susceptibility, hazard and risk zoning for
land-use planning, Eng. Geol., 102, 99–111, 2008. a
Fischer, J. T., Kofler, A., Fellin, W., Granig, M., and Kleemayr, K.:
Multivariate parameter optimization for computational snow avalanche
simulation, J. Glaciol., 61, 875–888,
https://doi.org/10.3189/2015JoG14J168, 2015. a
Fischer, J.-T., Kofler, A., Huber, A., Fellin, W., Mergili, M., and
Oberguggenberger, M.: Bayesian Inference in Snow Avalanche Simulation with
r. avaflow, Geosciences, 10, 191, https://doi.org/10.3390/geosciences10050191, 2020. a
Fressard, M., Thiery, Y., and Maquaire, O.: Which data for quantitative landslide susceptibility mapping at operational scale? Case study of the Pays d'Auge plateau hillslopes (Normandy, France), Nat. Hazards Earth Syst. Sci., 14, 569–588, https://doi.org/10.5194/nhess-14-569-2014, 2014. a
Fuchs, S., Thöni, M., McAlpin, M. C., Gruber, U., and Bründl, M.:
Avalanche hazard mitigation strategies assessed by cost effectiveness
analyses and cost benefit analyses – evidence from Davos, Switzerland,
Nat. Hazards, 41, 113–129, 2007. a
Guillard, C. and Zezere, J.: Landslide susceptibility assessment and validation
in the framework of municipal planning in Portugal: the case of Loures
Municipality, Environ. Manage., 50, 721–735, 2012. a
Huggel, C., Kääb, A., Haeberli, W., and Krummenacher, B.: Regional-scale GIS-models for assessment of hazards from glacier lake outbursts: evaluation and application in the Swiss Alps, Nat. Hazards Earth Syst. Sci., 3, 647–662, https://doi.org/10.5194/nhess-3-647-2003, 2003. a, b
Huggel, C., Caplan-Auerbach, J., Waythomas, C., and Wessels, R.: Monitoring
and modeling ice-rock avalanches from ice-capped vocanoes: A case study of
frequent large avalanches of Iliamna Volcano, Alaksa, J. Volcanol. Geoth. Res., 168, 114–136, 2007. a
Köhler, A., McElwaine, J., and Sovilla, B.: GEODAR data and the flow regimes
of snow avalanches, J. Geophys. Res.-Earth, 123, 1272–1294, 2018. a
Larsen, H., Sykes, J., Schauer, A., Hendrikx, J., Langford, R., Statham, G.,
Campbell, C., Neuhauser, M., and Fischer, J. T.: Development of automated avalanche
terrain exposure scale maps: current and future, in: Virtual Snow Science
Workshop, Fernie, Canada, 2020. a
Maggioni, M. and Gruber, U.: The influence of topographic parameters on
avalanche release dimension and frequency, Cold Reg. Sci. Technol., 37, 407–419, https://doi.org/10.1016/S0165-232X(03)00080-6, 2003. a
McClung, D. and Lied, K.: Statistical and geometrical definition of snow
avalanche runout, Cold Reg. Sci. Technol., 13, 107–119, 1987. a
Mergili, M., Krenn, J., and Chu, H.-J.: r.randomwalk v1, a multi-functional conceptual tool for mass movement routing, Geosci. Model Dev., 8, 4027–4043, https://doi.org/10.5194/gmd-8-4027-2015, 2015. a
Mergili, M., Fischer, J.-T., Krenn, J., and Pudasaini, S. P.: r.avaflow v1, an advanced open-source computational framework for the propagation and interaction of two-phase mass flows, Geosci. Model Dev., 10, 553–569, https://doi.org/10.5194/gmd-10-553-2017, 2017. a
Moos, C., Fehlmann, M., Trappmann, D., Stoffel, M., and Dorren, L.: Integrating
the mitigating effect of forests into quantitative rockfall risk
analysis–Two case studies in Switzerland, Int. J. Disast. Risk Re., 32, 55–74, 2018. a
Noetzli, J., Huggel, C., Hoelzle, M., and Haeberli, W.: GIS-based modelling of
rock-ice avalanches from Alpine permafrost areas, Computat. Geosci.,
10, 161–178, 2006. a
Okuda, S.: Rapid mass movements, Field Experiments and Measurement Programs in Geomorphology, edited by: Slaymaker, O., CRC Press, 61–105, ISBN 9789061919964, 1991. a
Pistocchi, A. and Notarnicola, C.: Data-driven mapping of avalanche release
areas: a case study in South Tyrol, Italy, Nat. Hazards, 65, 1313–1330,
2013. a
Plörer, M. and Stöhr, D.: Gries am Brenner/Vals Pilot Action Region: The Tyrolean Ski Tour Steering Concept – A Contribution to the Protection of Wildlife and Object Protective Forests in Best Practice Examples of Implementing Ecosystem-Based Natural Hazard Risk Management in the GreenRisk4ALPs Pilot Action Regions, edited by: Beguš, J., Berger, F., and Kleemayr, K., London, IntechOpen, https://doi.org/10.5772/intechopen.99011, 2021. a
Pudasaini, S. P. and Mergili, M.: A multi-phase mass flow model, J.
Geophys. Res.-Earth, 124, 2920–2942, 2019. a
Rauter, M., Kofler, A., Huber, A., and Fellin, W.: faSavageHutterFOAM 1.0: depth-integrated simulation of dense snow avalanches on natural terrain with OpenFOAM, Geosci. Model Dev., 11, 2923–2939, https://doi.org/10.5194/gmd-11-2923-2018, 2018. a
Sampl, P. and Granig, M.: Avalanche simulation with SAMOS-AT, in:
Proceedings of the International Snow Science Workshop, Montana State University Library, Davos, 27, 519–523, 2009. a
Sampl, P. and Zwinger, T.: Avalanche simulation with SAMOS, Ann. Glaciol., 38, 393–398, 2004. a
Sauermoser, S.: Avalanche hazard mapping – 30 years experience in Austria, in: Proceedings of the 2006 International Snow Science Workshop in Telluride,
Colorado, 1–6, Citeseer, 2006. a
Scheidl, C. and Rickenmann, D.: TopFlowDF - a simple GIS based model to
simulate debris-flow runout on the fan., in: Proceedings of the 5th
international Conference on Debris-Flow Hazards: Mitigation, Mechanics,
Prediction and Assessment, edited by: Genevois, R., Hamiltion, D., and
Prestininzi, A., 253–262, https://doi.org/10.4408/IJEGE.2011-03.B-030, 2011. a
Tarboton, D. G., Dash, P., and Sazib, N.: TauDEM 5.3: Guide to Using the TauDEM Command Line Functions, 2015. a
Teich, M. and Bebi, P.: Evaluating the benefit of avalanche protection forest
with GIS-based risk analyses – A case study in Switzerland, Forest Ecol. Manag., 257, 1910–1919, 2009. a
Van Rossum, G. and Drake, F. L.: Python 3 Reference Manual, CreateSpace, Scotts Valley, CA, ISBN 9781441412690, 2009. a
Van Westen, C., Van Asch, T. W., and Soeters, R.: Landslide hazard and risk
zonation—why is it still so difficult?, B. Eng. Geol. Environ., 65, 167–184, 2006. a
Van Westen, C. J., Castellanos, E., and Kuriakose, S. L.: Spatial data for
landslide susceptibility, hazard, and vulnerability assessment: An overview, Eng. Geol., 102, 112–131, 2008. a
Veitinger, J., Purves, R. S., and Sovilla, B.: Potential slab avalanche release area identification from estimated winter terrain: a multi-scale, fuzzy logic approach, Nat. Hazards Earth Syst. Sci., 16, 2211–2225, https://doi.org/10.5194/nhess-16-2211-2016, 2016. a
Voellmy, A.: Über die Zerstörungskraft von Lawinen, Schweizerische
Bauzeitung, Sonderdruck aus dem 73. Jahrgang, 1–25, 1955. a
Wichmann, V.: The Gravitational Process Path (GPP) model (v1.0) – a GIS-based simulation framework for gravitational processes, Geosci. Model Dev., 10, 3309–3327, https://doi.org/10.5194/gmd-10-3309-2017, 2017. a, b
Wirbel, A., Oesterle, F., Tonnel, M., and Fischer, J.-T.: avaframe/AvaFrame:
Version 0.5, Zenodo [code], https://doi.org/10.5281/zenodo.5094509, 2021. a, b, c
Short summary
The term gravitational mass flow (GMF) covers various natural hazard processes such as snow avalanches, rockfall, landslides, and debris flows. Here we present the open-source GMF simulation tool Flow-Py. The model equations are based on simple geometrical relations in three-dimensional terrain. We show that Flow-Py is an educational, innovative GMF simulation tool with three computational experiments: 1. validation of implementation, 2. performance, and 3. expandability.
The term gravitational mass flow (GMF) covers various natural hazard processes such as snow...