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Abstract. Models and simulation tools for gravitational mass
flows (GMFs) such as snow avalanches, rockfall, landslides,
and debris flows are important for research, education, and
practice. In addition to basic simulations and classic applica-
tions (e.g., hazard zone mapping), the importance and adapt-
ability of GMF simulation tools for new and advanced appli-
cations (e.g., automatic classification of terrain susceptible
for GMF initiation or identification of forests with a protec-
tive function) are currently driving model developments.

In principle, two types of modeling approaches exist:
process-based physically motivated and data-based empiri-
cally motivated models. The choice for one or the other mod-
eling approach depends on the addressed question, the avail-
ability of input data, the required accuracy of the simulation
output, and the applied spatial scale. Here we present the
computationally inexpensive open-source GMF simulation
tool Flow-Py. Flow-Py’s model equations are implemented
via the Python computer language and based on geometri-
cal relations motivated by the classical data-based runout an-
gle concepts and path routing in three-dimensional terrain.
That is, Flow-Py employs a data-based modeling approach to
identify process areas and corresponding intensities of GMFs
by combining models for routing and stopping, which de-
pend on local terrain and prior movement. The only required
input data are a digital elevation model, the positions of start-
ing zones, and a minimum of four model parameters.

In addition to the major advantage that the open-source
code is freely available for further model development, we

illustrate and discuss Flow-Py’s key advancements and sim-
ulation performance by means of three computational exper-
iments.

1. Implementation and validation. We provide a well-
organized and easily adaptable solver and present its ap-
plication to GMFs on generic topographies.

2. Performance. Flow-Py’s performance and low compu-
tation time are demonstrated by applying the simulation
tool to a case study of snow avalanche modeling on a
regional scale.

3. Modularity and expandability. The modular and adap-
tive Flow-Py development environment allows access to
spatial information easily and consistently, which en-
ables, e.g., back-tracking of GMF paths that interact
with obstacles to their starting zones.

The aim of this contribution is to enable the reader to re-
produce and understand the basic concepts of GMF modeling
at the level of (1) derivation of model equations and (2) their
implementation in the Flow-Py code. Therefore, Flow-Py is
an educational, innovative GMF simulation tool that can be
applied for basic simulations but also for more sophisticated
and custom applications such as identifying forests with a
protective function or quantifying effects of forests on snow
avalanches, rockfall, landslides, and debris flows.
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1 Introduction

The term gravitational mass flow (GMF) covers various natu-
ral hazard processes such as snow avalanches, rockfall, land-
slides, and debris flows. GMFs are characterized by (1) the
composition of their mass and (2) the behavior of their mo-
tion (Köhler et al., 2018; Okuda, 1991; Varnes, 1978). How-
ever, certain commonalities are shared between most GMFs
such as the fact that their motion is driven by the force of
gravity and that they are all processes acting on hillslopes
(Varnes, 1978).

GMF simulation tools are crucial for developing natural
hazard zoning maps and integrated natural hazard risk man-
agement (Corominas et al., 2014; Fressard et al., 2014; Guil-
lard and Zezere, 2012; Barbolini et al., 2011; Dorren et al.,
2011; Fell et al., 2008; Sauermoser, 2006; Van Westen et al.,
2006; Crozier and Glade, 2005; Dorren, 2003; Guzzetti et al.,
2002). To optimize risk mitigation measures, e.g., by in-
stalling technical protection measures or planning and imple-
menting nature-based solutions and avoidance strategies effi-
ciently, GMF runout models can be used in economic studies
(Moos et al., 2018; Teich and Bebi, 2009; Fuchs et al., 2007).

Many GMF-specific models exist, which provide estima-
tions of runout lengths for snow avalanches (Christen et al.,
2010; Sampl and Granig, 2009; Christen et al., 2002; Mc-
Clung and Lied, 1987; Bakkehøi et al., 1983; Lied and
Bakkehøi, 1980), landslides (Brenning, 2005), or rockfall
(Dorren, 2012; Guzzetti et al., 2002). More general GMF
models can be applied to various GMFs and are either
process-based physically (Wirbel et al., 2021; Mergili et al.,
2017; Christen et al., 2010; Sampl and Zwinger, 2004) or
data-based empirically motivated (Horton et al., 2013). The
main differences between these two types are the larger
number of input parameters and expensive computational
resources required for process-based physically motivated
GMF models (hereafter referred to as process-based models)
in contrast to data-based empirically motivated models (here-
after referred to as data-based models) that usually involve
fewer input parameters and are computationally inexpensive;
however, process-based models provide more detailed infor-
mation about a GMF process and its interactions with the
terrain and obstacles in the flow path. The choice for one or
the other modeling approach depends on the addressed ques-
tion, the availability of input data, the required accuracy of
the simulation output, and the applied spatial scale.

Depending on their application, one can choose between
those two types of modeling approaches: process-based mod-
els are suitable for most applications provided that their input
data requirements are met; however, obtaining detailed pa-
rameter sets over large areas is labor-intensive and often not
possible. Therefore, process-based models are best used on
smaller (hillslope) scales and in data-rich domains (Coromi-
nas et al., 2014; Van Westen et al., 2008), but methods to
overcome the lack of parameterizations have even been de-
veloped to tackle back calculations by solving the inverse

problem (Fischer et al., 2015; Eckert et al., 2010; Ancey
et al., 2003). In recent years, a number of data-based models,
which require fewer input parameters, have been developed
and applied to regional-scale case studies and for various
GMFs. For example, random-walk-based models have al-
ready been applied to debris flows and other GMFs (Mergili
et al., 2015; Gamma, 1999). Huggel et al. (2003) developed
a similar flow-routing model and used it to assess GMFs re-
lated to glacier lake outbursts, but their model can also be
applied to other GMF types such as ice–rock avalanches
(Huggel et al., 2007; Noetzli et al., 2006). Horton et al.
(2013) published the Flow-R simulation tool, which primar-
ily aims at regionally assessing debris flow susceptibilities,
but is also applicable to other processes and variable friction
relations. While data-based models mostly lack a physical
interpretation of their results, they are computationally inex-
pensive and require fewer input data. In addition, data-based
and process-based approaches can be combined in one model
(Barbolini et al., 2011; Scheidl and Rickenmann, 2011). Us-
ing a combination of observations, data-based models, and
process-based models for hazard zone mapping has been pro-
posed to overcome the lack of hard-to-measure parameteri-
zations for process-based models, especially for statistically
sensitive variables (Barbolini et al., 2000).

We present the innovative and educational Flow-Py simu-
lation tool, which employs a data-based motivated approach
to predict the magnitude, i.e., runout (spatial extent includ-
ing starting, transit, and runout zones) and intensity (effects
of a GMF at a specific location), of GMF processes. Flow-
Py builds on the ideas and algorithms from existing data-
based GMF models. The Flow-Py algorithm is based on a
flow path identification in three-dimensional terrain (routing)
and concepts for runout and intensity estimates along this
path (stopping). To determine the GMF’s runout and inten-
sity we utilized well-known runout (travel) angle concepts
(Heim, 1932) and derived corresponding geometrical quan-
tities to motivate the Flow-Py model equations. These geo-
metric relations serve further as a reference to validate the
Flow-Py implementation and results. In addition to runout
and intensity predictions, Flow-Py simulation results are also
a measure of how exposed a location in the flow path is re-
garding the number of starting zones and associated transit
zones, which route flux through that location.

This contribution is structured as follows: in Sect. 2 we
describe the motivation and implementation of our GMF
model, which is further explained in the code repository
(Neuhauser et al., 2021). A validation experiment is pre-
sented in Sect. 3, which shows simulation results from three
simple generic slopes. The performance of Flow-Py is tested
via a regional-scale simulation of snow avalanches in Sect. 4.
The customization of Flow-Py is described in Sect. 5 and
shows how flexible the simulation tool is and that it can be
easily adapted with extensions to specific modeling ques-
tions.
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With this contribution we enable the reader to reproduce
and understand the basic GMF model concepts and their im-
plementation in the Flow-Py code.

2 Model description

The main objectives of the Flow-Py simulation tool are to
compute the spatial extent (hereafter referred to as runout) of
GMFs, which consists of starting, transit, and runout zones,
and the intensity of the GMF. Flow-Py is based on data-
driven empirical modeling ideas (Heim, 1932) with auto-
mated path identification (Holmgren, 1994; Horton et al.,
2013; Huber et al., 2016; Wichmann, 2017) to solve the rout-
ing and stopping of GMFs in three-dimensional terrain. Data-
based models often require fewer input data as well as a
less complex parameterization and solution (e.g., no time-
dependent equations are usually solved), than process-based
models. The Flow-Py simulation tool has been designed as
a computationally inexpensive data-based model, which fa-
cilitates its application on regional scales, including a large
number of GMF paths. Simulations of single starting cells
take 1 to 10 s, whereas process-based, depth average simu-
lations usually operate on the order of minutes. This can be
attributed to the fact that no time-dependent equations, which
process-based models are built on, are solved in the underly-
ing model equations of Flow-Py. The Flow-Py code is writ-
ten in the Python computer language, taking advantage of
Python’s object-oriented class method. The well-structured
model implementation allows users to address GMF-specific
modeling questions by keeping the parameterization flexi-
ble and enabling inclusion of customized model extensions
and add-ons. Flow-Py has already been applied to dry snow
avalanches, rockfall, and shallow-seated landslides by adapt-
ing the parameterization. Experience from similar studies
also suggests that the model may also be suitable for other
GMFs such as debris flows and wet snow avalanches (Holm-
gren, 1994; Gamma, 1999).

The development philosophy to maximize the applicabil-
ity of Flow-Py builds on the following:

1. flexible yet minimal input data requirements,

2. simple parameterizations which can describe a range of
GMFs, and

3. a highly adaptable and customizable source code.

In the following sections the model motivation, implementa-
tion, input data and Flow-Py results, and underlying model
equations are explained in detail.

2.1 Model motivation

Flow-Py’s routing and flow path identification in three-
dimensional terrain were inspired by the gravitational pro-
cess path model CPP (Wichmann, 2017), which introduced

Figure 1. GMF path with altitude z(s), projected travel distance
s, and local slope angle ψ with starting point s0,z(s0) and runout
point sα,z(sα). The corresponding geometric quantities are directly
related to the runout angle α concept and include the local travel
angle γ , with corresponding total altitude change zγ and the process
intensity measure zδ with angle δ.

a weighting factor for the flow direction, and the program-
ming architecture and persistence equations of Flow-R (Hor-
ton et al., 2013), combined with an adapted version of the
flow direction algorithm (Holmgren, 1994), to appropriately
model movement in flat and uphill terrain. The routing is
based on local terrain and prior movement (flow direction
and process intensity), which determines the flow path from
starting to transit and runout zones and simultaneously de-
scribes the flow concentration, including lateral spreading.
To estimate the process intensity along the identified path and
the runout by introducing a stopping criterion we utilize the
well-known runout angle (α) concept (Heim, 1932; Lied and
Bakkehøi, 1980; Bakkehøi et al., 1983; Körner, 1980) and
derived corresponding geometrical quantities to motivate the
Flow-Py model equations. Figure 1 depicts the runout angle
along with the corresponding geometric relations in a two-
dimensional representation along a GMF path, building the
foundation for the underlying model equations.

The geometric relations are directly deduced from the
runout angle α and allow us to motivate the stopping and
intensity estimates. Additionally, the geometric solution, rep-
resented by the α line from starting (s0,z(s0)) to the runout
(sα,z(sα)) points, serves as a reference for a model valida-
tion. Important quantities include the local travel angle γ ,

tan(γ )=
z(s0)− z(s)

s− s0
, (1)

which, at the end of the GMF path, corresponds to the total
travel angle (i.e., the so-called runout angle α; Heim, 1932)
that can be expressed as

tan(α)=
z(s0)− z(sα)

sα − s0
. (2)

The local travel angle height zγ corresponds geometrically
to the total elevation drop zγ from the starting point s0 to the
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currently projected runout length s along the path:

zγ = tan(γ )(s− s0)

=
z(s0)− z(s)

s− s0
(s− s0)= z(s0)− z(s). (3)

The total elevation drop zγ splits into zα ,

zα = tan(α)(s− s0)

=
z(s0)− z(sα)

sα − s0
(s− s0), (4)

which is associated with the dissipation kinetic energy
height, and zδ ,

zδ = zγ − zα

= z(s0)− z(s)−
z(s0)− z(sα)

sα − s0
(s− s0), (5)

which is a measure of the process intensity corresponding
to the kinetic energy height (based on the principles of en-
ergy conservation, assuming a block movement with fric-
tional dissipation associated with a Coulomb friction; Heim,
1932).

2.2 Implementation

The Flow-Py simulation tool is implemented based on
object-oriented programming ideas, which allows for easy
model customization (Neuhauser et al., 2021). Flow-Py is
written in the freely available modern programming language
Python3 (Van Rossum and Drake, 2009), which is widely
used and supported by an active online community. The sim-
ulation tool is highly adaptable, and different routing and
stopping routines can be easily implemented, which enables
the user to adjust the parameterization, also for multi-model
runs and the equations that govern the movement of the mass
downslope as well as to implement Flow-Py in model chains.
Flow-Py can be run either by command line allowing it to be
called by external programs or in a BASH file, or with a sim-
ple GUI, which guides the user through choosing input files
and the parameterization.

A GMF usually has one or more starting zones that span
over a single cell or multiple starting cells. Flow-Py com-
putes the so-called path, which we define as the spatial extent
of the routing from each starting cell to the stopping cells.
Each starting zone is associated with its own unique path;
however, a certain location in the terrain can belong to many
paths. Flow-Py identifies the path with spatial iterations on
the cell level, starting with a single cell of a starting zone and
then transferring the final results of the cell and path levels
to the output raster level (see Fig. 2). To route on the three-
dimensional terrain operating on a quadrilateral grid, we im-
plemented the geometric concepts that have been introduced
in Sect. 2.1. That is, each path calculation starts with a start-
ing cell, operating on the cell level, requiring the definition

of parent, base, child, and other neighbor cells (see Fig. 2).
For the discretized model equations that operate on the cell
level we use capital letters to distinguish the variables from
the geometric motivation equations (see Sect. 2.1), with su-
perscripts for the specification and subscripts for the cell in-
dices.

The Python class object developed for Flow-Py is called
Flow-Class, which can store values and functions. A Flow-
Class is created for each cell that is part of one path when the
neighbor cell is recognized as a child cell and is then added
to the calculation queue. The Flow-Class saves information
about a single cell, such as location, its parent cell(s), the
output quantities, and other information needed for further
calculations or computing the output raster. The cells in the
calculation queue will be the base cell (center cell) for subse-
quent calculations. Information on the iteration step is tem-
porally stored to the respective cell’s Flow-Class. When the
path calculations are finished, values from each cell’s Flow-
Class are updated to their respective location in the result ar-
ray such that either a maximum value (e.g., Zδmax, the maxi-
mumZδ for a cell over all path calculations) or a running sum
(e.g., Zδsum, the sum of all Zδ values for a cell over all path
calculations) of all calculated paths that route flux through
that cell is stored. The Flow-Class can be extended to store
additional information that can be used to adjust stopping
and routing calculations; e.g., the runout angle α is saved in
the Flow-Class and could be adapted and scaled with Zδb to
account for an energy-dependent friction.

Using Python’s object-oriented class method is a major
advantage for advanced users since they can easily develop
custom extensions or add-ons. We present an example for a
back-tracking extension, which saves information of infras-
tructure located in GMF flow paths in the Flow-Class adapt-
ing the Flow-Py output in Sect. 5.

2.3 Input data

Flow-Py’s core function loads and handles all input data,
which are a digital elevation model (DEM) and a release
raster in .asc or .tiff format. The release raster shows ob-
served or potential GMF starting zones containing one or
several starting cells. The release raster can be created by
vector-to-raster conversion of polygon mappings by expert or
by onset-susceptibility modeling. Flow-Py employs parallel
processing for short model run times by splitting the release
raster and DEM into tiles. Each tile is solved independently
and sequentially in its own dedicated computer core and pro-
cessing threads. Multi-processing is set as the Flow-Py de-
fault; i.e., the number of free cores and the amount of RAM
are first checked before splitting the starting cells and spread-
ing runout calculations among the free computer cores, mak-
ing sure that the amount of RAM is not exceeded. The indi-
vidual calculations are merged by updating the result arrays,
which are transformed into an output raster.
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Figure 2. (a) The raster level summarizes the simulation results and output quantities for all GMF paths. The path level is the spatial level
that contains the spatial extent of a path associated with one starting cell. (b) Iterative routing is done on the cell level. During an iteration the
cells are defined as parent p, base b, child c, and all neighbor cells get two indices i and n. The angle θ is the deviation between the projected
incoming and outgoing directions, with the angle 6 pbn formed from the directions of parent p to base b and from base b to neighbor n cells.

The release raster shows potential GMF starting zones
containing one or several starting cells. The DEM and the
release raster must be in the same extent and resolution with
no resolution limit; however, 5 and 10 m raster resolutions
have been tested. The major differences between different
types of GMFs in regional runout modeling is the behavior
of the movement and its runout, which can be summarized
by the runout length and the convergence or divergence of
the spreading movement. These behaviors are controlled by
the parameterization of the stopping and routing routines in
Flow-Py.

2.4 Model equations and path identification

The Flow-Py model equations are formulated with respect to
an equidistant quadratic grid with the same resolution and
extent as the input raster.

During each spatial iteration, calculations are made on a
3× 3 cell subset of the raster, for which the flux across the
base cell (subscript b) is solved (see Fig. 2). The eight neigh-
bor cells to the base cell (subscript i and n) can be parent cells
(subscript p) during an iteration step acting as flux source
cells or child cells (subscript c) acting as flux sink cells.

The governing runout modeling question is broken down
into two subquestions.

1. Where does the GMF move to?

2. Where does the GMF stop?

These questions are addressed in two dedicated modeling
routines called the routing routine and the stopping routine.

2.4.1 Routing

The routing routine considers a terrain contribution Ti and a
contribution accounting for prior motion called persistence
Pi (Horton et al., 2013); the flux is solved from parent cells
through the base cell to child cells. Equation (6) is the basis
of the routing algorithm and shows how the terrain contribu-
tion Ti and the persistence contribution Pi are combined to

distribute the routing flux:

Ri =
TiPi∑8
n=1TnPn

Rb. (6)

Ri is the routing flux from the base cell to neighbor cell i and
Rb is the total routing flux into the base cell (for starting cells
Rb = Rstart = 1). To conserve Ri, the amount of Rb must be
equal toRi unless a stopping criterion is met (see Sect. 2.4.4).
To conserve flux, Ti and Pi to cell i are normalized across all
neighboring cells n. The normalized direction is then scaled
with Rb.

2.4.2 Terrain-based routing

The terrain-based routing accounts for the guiding effect of
the slope on the movement. To distribute the flux we utilize
the terrain-routing function:

Ti =
(tanφi)exp∑8
n=1(tanφn)

exp
∀

{
−90◦<φi<90◦

exp ∈ [1;+∞] ,
(7)

where Ti is the normalized terrain-based routing from the
base cell i and φi =

ψi+90◦
2 is the distribution angle with

the local slope angle ψi from the center point of the base
cell b to the center points of neighbor cells i where positive
slopes indicate a downhill direction. The distribution func-
tion tanψi is used as a weight to give preference to distribut-
ing flux to steeper slopes; this distribution function allows
for routing on flat and uphill terrain by returning values <0
for−90◦<ψi<90◦. The distribution function reaches a max-
imum at ψ = 90◦, which is a vertical drop or free fall, and a
minimum at ψ =−90◦, where tanψi ≈ 0 occurs at a vertical
rise or wall face.

To control the concentration of routing flux an approach
based on the multiple flow direction algorithm for runoff
has been employed (Holmgren, 1994). The exponent exp,
together with the flux cutoff (see Sect. 2.4.6), controls the
lateral spreading of the flow (Horton et al., 2013). When exp
increases, the terrain-based routing flux is concentrated to the

https://doi.org/10.5194/gmd-15-2423-2022 Geosci. Model Dev., 15, 2423–2439, 2022



2428 C. J. L. D’Amboise et al.: Flow-Py

steepest decent. Together with the flux cutoff >0, this results
in the path’s lateral spreading being reduced. As exp→∞
the divergence results in a single flow direction (block move-
ment) and as exp→ 1 wide spreading is encouraged (flu-
vial movement). However, other terrain-based routing ap-
proaches can be easily implemented in Flow-Py (see Horton
et al., 2013, for a summary).

2.4.3 Persistence-based routing

The persistence-based routing contribution aims to account
for the influence or prior GMF movement on the subsequent
routing. It must be noted that persistence is empirically de-
rived and may be conceptually comparable to momentum;
however, Flow-Py’s underlying model equations do not ac-
count for mass (and hence momentum).

Equation (8) shows the persistence routing function Pi for
neighbor cell i:

Pi =

Np∑
p=1

8∑
n=1

ZδpDn, (8)

which consists of two components, the direction Dn in
Eq. (9) and the intensityZδp, which has classically been called
energy line height (Körner, 1980). Because a base cell can re-
ceive flux from many parent cells p the persistence routing
function is calculated over all neighbor cells n considering
the incoming flux from each parent cell.

The direction Dn maintains the flow direction from a par-
ent cell (p, flux source) to the base cell b. Weights are used
to define the flow direction and are expressed as

Dn =max {0,cos(θ)} , (9)

where θ = 6 pbn− 180◦ is the resulting deviation angle be-
tween the projected incoming and outgoing direction, with
6 pbn as the angle formed from the directions of parent cell p
to base cell b and from base cell b to neighbor cell n (com-
pare to Fig. 2). Cells located opposite a parent cell are as-
signed the full weight of 1, whereas cells 45◦ off the direct
flow direction get a weight of cos(45◦) or 0.707, similar to
Horton et al. (2013).

The reason that the persistence function passes flux
through three cells and not only one is to compensate for the
restriction that there are only eight directions to move on a
raster grid. A weight of 0 is given to all other cells including
the parent cell.

The intensity Zδp is stored in the Flow-Class of the parent
cell p from a previous iteration step, and the value of Zδ

is saved in the Flow-Class of each child cell. If one child
cell has more than one parent cell, then Zδmax,path (maximum
value of Zδ for the many combinations of routes to a cell on
a single path) is stored in its Flow-Class.

The intensity Zδn at the neighbor cell n is calculated cell-
wise, i.e., cell to cell throughout the spatial iterations. The

intensity Zδbn refers to the iterative part of Zδn that is associ-
ated with the spatial step from the base cell b to the neighbor
cell n. Equation (10) shows the calculation of Zδn, where Zδb
is the intensity of the base cell b, which is stored in its Flow-
Class. Zδb was calculated on a previous spatial iteration when
the current base cell was a child cell:

Zδn = Z
δ
b+Z

δ
bn, (10)

where Zδbn is calculated with respect to

Zαbn = Sbn tan(α), (11)
Z
γ

bn = Zb−Zn, (12)

Zδbn = Z
γ

bn−Z
α
bn, (13)

where the subscript bn refers to base cell b to neighbor cell
n, with the distance Sbn and the iterative energy quantities
Zαbn,Z

γ

bn, and Zδbn (see Fig. 1).
The total projected distance along the GMF path Sn is ex-

pressed as

Sn = Sb+ Sbn. (14)

The parent cell further away from the stopping condition
(larger Zδ) will have more influence on the routing flux. Af-
ter all n parent cells are calculated for each neighbor i the
persistence-based routing Pi is combined with the terrain-
based routing Ti, as seen in Eq. (7). When the parent cell
has a large Zδp the persistence-based routing Pi will be the
dominant term in Eq. (7); however, if Zδp is small, then the
terrain-based routing Ti will dominate the routing direction.

There are two limits that are imposed in the persistence
routing routine: first, any cell that has previously been a base
cell cannot be a child cell (a parent cell cannot be a child
cell). The disadvantage of this limit is exerted on half-pipe-
shaped terrain in which the mass moves up a slope and back
down on the same path but in the opposite direction. This
limit is necessary to keep small amounts of flux from rout-
ing back and forth in terrain shaped like a bowl. The major
advantage of this limit is the reduction of iteration steps by
not calculating further flux for child cells resulting from flux
oscillating in a bowl feature.

The second limit is imposed on the maximum value of Zδi ,
which is a limit of the process intensity (Zδlim) correspond-
ing to a kinetic energy height or GMF velocity limit, respec-
tively:

Zδn =min(Zδn,Z
δ
lim), (15)

which is important for some GMF types because it is anal-
ogous to introducing a turbulent friction coefficient in a
process-based model (Horton et al., 2013). In the examples
used in Sects. 3, 4, and 5, no such limits are imposed.

2.4.4 Stopping

Two stopping criteria are employed: the first is a runout angle
criterion that limits how far the GMF runout goes. The sec-
ond is a flux cutoff stopping routine, which, together with
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the divergence control (exp) in the routing routine, limits
the lateral spreading of the path. The GMF will not propa-
gate further if either stopping criteria is met; however, the
runout angle mainly determines the total travel distance in
the main flow direction, while the flux cutoff influences the
lateral spreading.

2.4.5 Runout-angle-induced stopping

The runout-angle-induced stopping routine is based on the
geometric quantities derived with the α angle concepts (see
Eqs. 1 to 5; see Fig. 1). The local travel angle γn is the incli-
nation of the line formed from the top of the starting zone to
the current neighbor cell n.

The stopping condition is reached when γn<α, i.e., when

Zδn<0. (16)

When the stopping condition is met, no child cells are as-
signed in the next iteration step.

2.4.6 Routing-flux-induced stopping

The second stopping criterion is based on the assumption
that a GMF must have a critical amount of routing flux Ri
to continue its propagation. If the GMF has an excessively
divergent flow concentration that dilutes down and across
a slope, then the flow concentration (that can be associated
with GMF mass) disappears at a critical amount of spreading
corresponding to the critical routing flux threshold Rstop.

The routing flux stopping criterion is met when

Ri<Rstop; (17)

the runout angle stopping condition is also met, and neighbor
cell i is not a child cell. If Ri ≥ Rstop and the runout angle
stopping condition is not met, then neighbor cell i is a po-
tential child cell and is added to the calculation queue, and a
Flow-Class is accepted.

The routing-flux-induced stopping mainly limits the width
or spreading of the path. The magnitude of the routing flux
of the potential child cell Ri relates to the percentage of ini-
tial routing flux from the start cell, where the starting flux
Rstart = 1. As a default, Rstop = 3× 10−4 has been adopted
in Flow-Py and is shown in the examples in Sects. 3, 4, and
5.

2.5 Flow-Py outputs

The outputs of Flow-Py are a set of rasters in the same res-
olution and extent as the input DEM, providing information
about the runout of the GMF and different measures of the
intensity.

– Zδmax is the local maximum Zδ for a cell over all path
calculations. This is a geometric measure of highest in-
tensity in terms of Zδ for all starting cells, which can

be associated with the maximum kinetic energy that is
expected at each location (raster cell).

– Rmax is the local maximum routing flux for a cell over
all path calculations. This is a measure of intensity in
terms of the maximum of flow concentration from a
single start cell that is expected at each location (raster
cell).

– Zδsum is the sum of all Zδ for a cell over all path cal-
culations. This is a measure of intensity in terms of Zδ

combined with the number of starting cells that route
flux through a location (raster cell).

– CC is path cell counts, which is the number of paths that
route flux through a location (raster cell). Together with
Zδsum an average of Zδ can be formed.

– γmax is the local maximum flow path travel angle for
a cell over all path calculations. This is a measure of
how exposed a location is with regards to how close the
highest GMF intensity in terms of Zδ is to the runout
angle stopping criteria.

3 Model testing and validation on generic slopes

This first computational experiment demonstrates the Flow-
Py routing and stopping algorithms for GMF modeling on
simple but increasingly complex generic topographies. We
highlight how GMFs interact with different terrain features
and show the influence of different parameterizations on the
flux; however, we do not perform a detailed parameter study,
which is beyond the scope of this contribution. First, we de-
scribe the scenarios (terrain and model parameterizations)
and present the simulations results. For each scenario, we al-
tered the model parameterization or terrain complexity. Then
the behavior of the simulations and a comparison to the ge-
ometrically expected results, which allows for validation of
the model implementation, are summarized and discussed.

The generic topographies used for Flow-Py testing were
generated using the “generate topography” functions pro-
vided within AvaFrame (Wirbel et al., 2021). Terrain data
were saved in ASCII raster format (.asc) with 10 m resolu-
tion. The release raster consisted of three 100 m2 neighboring
starting cells (starting zone = 300 m2, 3 raster cells) located
close to the top of the generic terrain model at an elevation of
982 m. The three starting cells are centered on the y plane.

3.1 Parabolic, open slope

The first example topography is built from a parabolic slope
that connects with a flat (0◦ slope) plane. The extent of the
terrain model is 5000 m (x axis) by 1500 m (y axis). The tran-
sition from parabolic slope to flat plane takes place at 2250 m
along the x axis. The total altitude difference of the terrain
is 1000 m, with a maximum altitude located at x = 0. This
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parabolic slope example is used as the base topography, to
which more complex terrain features are added.

Figure 3 shows the parabolic slope and the results from
two simulations, for which the color scale is the Zδmax as an
indication of the intensity of the GMF. The parameterizations
used for these simulations are α = 25◦,Rstop = 3×10−4, and
Zδlim = 8849m (the height of Mount Everest, i.e., no effec-
tive limit is used). The parameter that controls the concen-
tration of flux (exp) is varied between the two simulations
to show results with low spreading (Fig. 3a, exp= 100) and
high spreading (Fig. 3b, exp= 8). The run time for these
examples when run on a personal computer with an eight-
core processor (AMD Ryzen 7 2700X eight-core Processor
3.70 GHz) and 32 GB RAM is 1 s for the low spreading case
(Fig. 3a) and 16 s for the high spreading case (Fig. 3b).

Comparing the top and bottom panels of Fig. 3, it can be
seen that keeping the terrain, the runout angle, and Rstop the
same but reducing the exp value increases the spreading of
the GMF, yet the runout length does not change. In the low
spreading example in Fig. 3a (exp= 100), the behavior of
the downhill flow is restricted to a single flow direction in
steeper terrain. Once the slope flattens out the path diverges
with very limited spreading. The small amount of spreading
in flatter terrain can be explained by the low Zδmax, which
results from the persistence-based routing being dominated
by the terrain-based routing. The front of the GMF runout
is defined by the runout-angle-induced stopping routine with
Zδmax = 0 (black). The sides of the GMF process path are de-
fined by the routing-flux-induced stopping routine, and be-
cause Zδmax>0 the runout-angle-induced stopping condition
is not met.

3.2 Parabolic, channelized slope

This topography has the same extent, centerline profile, and
configuration as the parabolic slope in Sect. 3.1; however, an
hourglass-shaped channel is added, which begins wide and
becomes narrow, returning to a wide channel in the runout
zone again. The parameterizations used for this scenario are
α = 25◦, exp= 8, Rstop = 3×10−4, and Zδlim = 8849 m such
that one can compare it to the simulation results shown in
Fig. 3b.

This example highlights the routing-flux-induced stopping
and the terrain-based routing (Fig. 4). The GMF travels down
the channel and does not spread like in the previous exam-
ple (Fig. 3). That is, the routing algorithms acts on the chan-
nelized terrain and concentrates the flux in the center of the
channel. The GMF does not spread outside the channel be-
cause the flux that is routed up the channel walls does not ex-
ceed the flux cutoffRstop, and hence the routing-flux-induced
stopping criterion is met.

3.3 Parabolic, channelized slope with superimposed
dam

The topography used in this scenario is the same as in the last
section (Sect. 3.2) including a superimposed obstacle that
crosses the terrain such that the GMF must travel uphill to
overcome it. We refer to this obstacle as a dam as it could re-
semble a dam built in the GMF path. This example highlights
how the Flow-Py simulation responds to flat or uphill ter-
rain, which is where persistence-based routing will dominate
over the terrain-based routing. The parameterizations used
are α = 25◦, exp= 8, Rstop = 3× 10−4, and Zδlim = 8849 m
so that the result can be directly compared with the spread-
ing example shown in Fig. 3b and the channelized example
(Fig. 4). The dam has the shape of a Gaussian function with
a width of 75 m and a height of 75 m, which is added on top
of the topography of the parabolic slope with a channel. The
center of the dam (maximum height) is located at 1350 m
(Fig. 5).

The GMF traveled just as far as in the previous exam-
ples, but its spreading increased once it encountered the dam
since uphill terrain is more divergent (Fig. 5). The GMF has
a lower Zδmax or energy when reaching the top of the dam;
however, after the dam the intensity is the same as in pre-
vious examples, resulting in the same runout length with a
slightly different lateral shape. Changing the parameteriza-
tion such that α = 30◦ would result in the GMF stopping on
the face of the dam, resulting in a shorter runout length than
a channelized parabolic slope without a dam.

3.4 Discussion on model testing and validation

The Flow-Py simulation tool is based on a simple model that
allows for regional application and was not specifically de-
signed to model a singular GMF. However, simulations on
generic topographies and of single paths provide a visual de-
scription of how the implemented routing and stopping rou-
tines react to different terrain features and parameterizations.
The parameters Rstop and exp are primarily responsible for
limiting the spreading of the path, whereas α and Zδlim are
primarily responsible for limiting the runout distance. Rstop
and exp are dependent on the resolution of the DEM, whereas
α and Zδlim are not.

Figure 6 shows Zδmax values for the centerline of all sce-
narios presented in this section, which allows quantification
and validation of the model implementation. All simulations
yield the same values for Z+Zδmax (where Z is the terrain
height) along the centerline, although topographies and asso-
ciated three-dimensional runout extents differ significantly.
This is particularly interesting for the third scenario (Fig. 5)
in which not only Z+Zδmax values are matched but the rout-
ing and propagation of the GMF also continued beyond the
obstacle, where it would usually prohibit any propagation,
e.g., with an often-employed steepest descent routing ap-
proach.
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Figure 3. GMF runout modeled with Flow-Py on a simple parabolic slope connected to a flat plane with the runout angle α = 25◦. The
divergence control is exemplified with a low spreading (a, exp= 100) and a high spreading (b, exp= 8) simulation. Both examples use a
flux cutoff of Rstop = 3×10−4 and Zδlim = 8849 m (the height of Mount Everest, i.e., no effective limit is used). Cooler colors indicate areas
where the process has a relatively low intensity with regards to Zδmax, and warmer colors show areas where the process has a relatively high
intensity with regards to Zδmax, which is associated with maximum kinetic energy.

Figure 4. GMF runout modeled with Flow-Py on a parabolic slope with a channel with α = 25◦, exp= 8, Rstop = 3× 10−4, and Zδlim =
8849 m. The colors show the value of Zδmax, which is associated with maximum kinetic energy. The topography is a simple parabolic slope
connected to a flat plane.
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Figure 5. GMF runout modeled with Flow-Py on a parabolic slope with a channel and a dam that crosses the terrain at 1350 m with α = 25◦,
exp= 8, Rstop = 3× 10−4, and Zδlim = 8849 m. The colors show the value of Zδmax, which is associated with maximum kinetic energy. The
topography is a simple parabolic slope connected to a flat plane.

Figure 6. Geometric solution for the stopping criteria (red line) represented by the α line from starting to the runout points with Zδmax values
for the centerlines of scenarios presented in Sect. 3.1–3.2 (black line) and 3.3 (black dashed line).

In addition, the model motivation allows prediction of the
geometrically and theoretically expected solution in terms of
runout and zδ . By comparing the geometrically correct so-
lution zδ with the simulation results of Zδmax for each sce-
nario we obtain a match with the root mean squared error of
4× 10−5 for each simulation result compared with the ge-
ometric solution (see Fig. 6). This in turn validates the dis-
cretized model equations and their correct implementation.
That is, the cell-by-cell approach to the routing results in ex-
pected behavior with all the stopping points matching the ge-
ometric solution even on flat and uphill terrain with very high
accuracy. Furthermore, Zδmax values solved on the 10 m grid
for each scenario fit the continuous geometric solution. This
validation, however, is only relevant for the intensity Zδmax
and runout length along the centerline. It was not the aim to

fully validate the implementation of the spreading algorithm;
however, the scenarios show satisfying results wherein sin-
gle flow and divergent flow behavior, i.e., ranges from block
to fluvial GMF behavior, can be reproduced by changing the
Flow-Py parameterization (Fig. 3).

4 Performance testing on a regional scale

This section is dedicated to highlighting the performance of
the Flow-Py simulation tool in real terrain and on a regional
scale by applying it to the snow avalanche GMF.
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4.1 Study area description and experimental setup

The study area is located in the mountains surrounding the
Austrian villages Vals and Gries am Brenner in Tyrol close
to the Italian border (Plörer and Stöhr, 2021). The area of
the study area is 104.5 km2. The input DEM is freely avail-
able from Land Tirol (data.tirol.gv.at) issued under a Creative
Commons Attribution 4.0 International (CC BY 4.0) license.

The computation time is dependent on the number of
starting cells and the extent of the paths (how divergent or
concentrated). We developed an overly simple starting zone
model to test the performance of Flow-Py on a regional scale.
There are many models for identifying potential avalanche
starting zones that use a range of slope inclinations such
as 28 to 60◦ (Veitinger et al., 2016; Pistocchi and Notarni-
cola, 2013; Maggioni and Gruber, 2003). More information,
such as terrain curvature, forest cover, and average maximum
snow depth, is used to further restrict the number and size of
potential starting zones. The starting zone model employed
is based solely on the slope inclinations derived from the
10 m DEM with the goal to provide a sufficient number of
starting cells with potentially long runout lengths for per-
formance testing. To achieve this we used two criteria for
identifying starting cells: first, starting cells must be located
above 1800 m; second, the starting cell must have a slope in-
clination between 31 and 34◦. The range of slope inclinations
used is much smaller than used in more sophisticated mod-
els. This method was used to reduce the number of starting
cells without introducing more information, such as forest
area or average snow depth, but rather relying solely on the
10 m DEM.

The parameterizations for this simulation were α = 25◦

and exp= 8 as well as Rstop = 3× 10−4 and Zδlim = 8849 m,
which have successfully been used to model large to very
large avalanches (D’Amboise et al., 2021b). For snow
avalanches an exp of 8 on a 10 m resolution DEM has pro-
duced good results in past studies (Huber et al., 2016).

4.2 Results

The study area contains 1 045 311 raster cells
(104 531 100 m2), and starting cells comprise 5.4 % of
the total study area (56 969 raster cells or 5 696 900 m2),
which can be seen in Fig. 7. The simulation took 3 h and
45 min with multi-processing on 16 cores.

Flow-Py identified 642 630 cells or 61.5 % of the total
study area as part of the avalanche starting, transit, and runout
zones (see Fig. 8). Many of these cells belong to multi-
ple paths and are therefore base cells for many calculations,
which is reflected in the CC (cell counts) output raster. The
CC output is not shown; however, all the example input data
and simulation results can be found in D’Amboise et al.
(2021a).

4.3 Discussion

The GMF path (extent of the avalanche starting, transit, and
runout zones) is determined by the length of runout and the
amount of spreading. Because of the overly simple starting
zone model used, these results should not be used to exam-
ine the avalanche situation in the study area, but rather for
demonstrating the computational performance of Flow-Py. In
this example, the dominant term that determines the runout
length is the runout angle α, but it can also be affected by
Zδlim. The dominant terms that determines the spreading of
the process are the divergence (exp) and flux cutoff (Rstop).
Combined, they can also limit the runout length when Rstop
is high or divergence (low exp values) is excessively high.
However, the feedback that propagates between the routines
should not be ignored. A large runout angle (short runout
length) will restrict the spreading capabilities even when us-
ing a low exp for a highly divergent process.

The parameterization used in this example has been used
in past work for simulations of extreme avalanche events
(D’Amboise et al., 2021b); however, there is a need for much
more extensive parameter studies, in particular how exp and
Rstop interact to limit the spreading of the GMF and the use
of Zδlim to limit the reach of the GMF.

The run time of simulations is highly dependent on the
scenario and parameter setting. For Flow-Py we showed that
the simulation run time in the parabolic slope example varies
by an order of magnitude by changing the divergence param-
eter, exp (compare Fig. 3a and b). The run time is affected to
a lesser extent by the number of starting cells and the length
of the runout.

The comparison of computational efficiency of GMF sim-
ulation tools is not a trivial task because there is a lack
of standardized examples and parameterizations used for
benchmarking. More specifically, these tests are restricted
by limited model access, and simulation tools belonging to
the data-based class of models require a spatial iteration
wherein process-based models solve the equations of motion
and therefore the spatial–temporal flow evolution. Since the
solver and parameterization differ drastically a direct com-
parison is not possible for different modeling approaches.
Values in the literature vary significantly for the different
types of simulation tools (Fischer et al., 2020; Rauter et al.,
2018), so their potential for comparison is limited due to the
already mentioned variation in scenarios and parameter set-
ting but also the different computer hardware used to test the
simulation tools, ranging from personal computers to cloud
computing approaches. However, a comparison of simula-
tions run on the same hardware that result in a similar spatial
extent can be used to gain insight on computational efficiency
and simulation run time.

To provide an estimate of computational efficiency
we compared Flow-Py simulations with the open-source
process-based physical simulation tool AvaFrame Com1DFA
(Wirbel et al., 2021). Flow-Py and Com1DFA simulations
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Figure 7. Study area for Flow-Py performance testing on a regional scale. Snow avalanche starting cells (green) are defined by locations above
1800 m on slope inclinations between 31 and 34◦. The maps utilize datasets from the following sources. (a) ©OpenStreetMap contributors
2021. Distributed under the Open Data Commons Open Database License (ODbL) v1.0. (b) Natural Earth. Free vector and raster map data at
https://www.naturalearthdata.com/ (last access: 1 October 2021). (c) Land Tirol – https://www.tirol.gv.at/statistik-budget/tiris/ (last access:
1 March 2021), issued under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.

Figure 8. Flow-Py simulation results of snow avalanche runout and intensity (Zδmax) in complex terrain on a regional scale. The simulation
took 3 h and 45 min. The map utilizes data from ©OpenStreetMap contributors 2021. Distributed under the Open Data Commons Open
Database License (ODbL) v1.0 and Land Tirol (https://www.tirol.gv.at/statistik-budget/tiris/, last access: 1 March 2021) issued under a
Creative Commons Attribution 4.0 International (CC BY 4.0) license.
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were run on a personal computer with an eight-core proces-
sor (AMD Ryzen 7 2700X eight-core Processor 3.70 GHz)
and 32 GB RAM. For the parabolic slope example (Fig. 3) it
turned out that Flow-Py requires 1–2 orders of magnitude
less computational time than Com1DFA using operational
standard parameters (e.g., 5 m computational resolution com-
pared to 10 m in the Flow-Py example) for avalanches of
catastrophic size and an estimated release thickness of 1 m
as required input.

5 Model customization and adaptability

The third computational experiment highlights the adaptabil-
ity of the Flow-Py simulation tool with an example for a cus-
tom extension that was designed to answer a specific ques-
tion, but additional information and calculations can be eas-
ily added into the Flow-Classes (Neuhauser et al., 2021).

5.1 Experimental setup and methods

This specific model customization experiment addresses this
research question: what areas on the terrain are associated
with endangering a location containing infrastructure by a
GMF? For this example the parabolic slope from Sect. 3.1
and release raster from Sect. 3 were used as input data with
the parameterization α = 25◦, exp= 8,Rstop = 3×10−4, and
Zδlim = 8849 m as well as an additional input raster that con-
tains the location of infrastructure. With the experimental
setup defined the initial question can be refined: what raster
cells on the synthetic parabolic slope are associated with
routing flux of an GMF through a specific set of raster cells
that have been identified as locations with infrastructure?

A custom extension called the back-tracking extension
was implemented to change the runout model to a model that
highlights terrain associated with endangering infrastructure.
The back-tracking results will be a spatially explicit subset of
the GMF path. Three steps are required to adjust the Flow-Py
simulation tool.

1. Load the infrastructure raster as an additional input
raster.

2. Adjust the calculation and store new information in the
Flow-Class.

3. Save the back-tracking information as a raster and dis-
card the default outputs.

Steps 1 and 3 are simple tasks when using the existing in-
put and outputs of Flow-Py as an example. For the version of
Flow-Py used in this contribution an automatic switch was
added such that, when an additional input raster is included,
Flow-Py will initiate the back-tracking extension and sup-
press the normal Flow-Py outputs (see the Flow-Py reposi-
tory in Neuhauser et al., 2021, for more information on im-
plementing these steps).

Step 2 is the more challenging adjustment that highlights
the adaptable nature of the Flow-Class organization. Since
the goal of back-tracking is to find the avalanche starting,
transit, and runout zones that are associated with endangering
infrastructure, a new back-tracking variable must be added
to the Flow-Class storing information about a cell’s parents.
If the back-tracking variable of a cell is 0, then this cell is
not associated with endangering infrastructure; if it is 1, then
the cell is associated with endangering infrastructure. After
a path is calculated and before updating the result raster, the
back-tracking routine can start. Starting with the cells iden-
tified as a location with infrastructure a family tree can be
constructed by looking at which cells acted as parent cells
to these infrastructure cells. For each parent cell the back-
tracking variable is changed from 0 to 1. After looping over
all cells identified as parent cells that are related to cells con-
taining infrastructure, the result raster can be updated with
the back-tracking results and the next GMF starting cell can
be calculated.

To optimize the back-tracking extension with regards to
model run time, the starting cells have been ordered by el-
evation. If a starting cell is located in the path of a previ-
ously calculated starting cell at a higher elevation, then the
lower-elevation starting cell is removed from the queue of
starting cells that must be calculated. This will greatly re-
duce the run time of the model as fewer starting cells and
process paths need to be computed; however, no information
about the back-tracking is lost because the process path of
the lower starting cell will be a subset of the upper starting
cell’s path, but other output rasters such as cell counts (CC)
and the Zδsum will no longer be valid since some starting cells
are ignored for optimization.

To test the back-tracking extension two types of infrastruc-
ture were considered: a linear infrastructure such as a road,
railroad, or walking path that crosses the terrain and a single
pixel which could represent a building or utility pole.

5.2 Results

Figure 9a shows linear infrastructure (vertical red line) cross-
ing the parabolic terrain, with the areas identified by the
back-tracking extension. Most of the path located uphill of
the infrastructure has been identified by the back-tracking
extension except for a few cells that lay on its edges. This is
because these cells were not parent cells due to the routing-
flux-induced stopping criterion.

The bottom panel of Fig. 9 shows how the back-tracking
extension behaves for a single infrastructure cell (red), e.g.,
a building, in the center of the GMF path. A wedge-shaped
subset of the process path starting at the infrastructure cell
and extending upslope is identified by the back-tracking ex-
tension, and it is clearly shown that not all uphill cells of
the infrastructure cell route flux through the infrastructure
cell. In both linear and building infrastructure cases, all cells
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Figure 9. GMF runout modeled with Flow-Py and results of the back-tracking extension with α = 25◦, exp= 8, Rstop = 3× 10−4, and
Zδlim = 8849 m. The textured areas highlight starting, transit, or runout zones associated with endangering linear infrastructure (a) or a
building (b). The topography is a simple parabolic slope connected to a flat plane.

that lay below the infrastructure cells are not identified by the
back-tracking extension.

5.3 Discussion

The back-tracking extension is a complex adaptation because
inputs, outputs, and some calculations are changed. However,
because of the modular and adaptive Flow-Py development
environment and the advantages of programming in Python’s
object-oriented class method, this complex task could be
adopted with little effort.

Different routing or stopping approaches could also be
easily added to the Flow-Class, which may be necessary to
represent different types of GMFs more precisely. For in-
stance, the additional energy dissipation due to terrain rough-
ness or forest can be included by accepting different runout
angles in the Flow-Class (D’Amboise et al., 2021b) as well
as a Voellmy-type friction term (Voellmy, 1955), which is
dependent on the GMF intensity (Zδb). Moreover, material
flowing versus material sliding or falling downslope behaves
differently, which could be described more precisely in the
Flow-Py simulation tool by including different routing and
stopping routines, such as the TauDEM routing for snow
avalanches (Tarboton et al., 2015) or a steepest decent single
flow method (Huggel et al., 2003). However, many of poten-
tial Flow-Py extensions will include one or more of the three
steps outlined with the back-tracking examples (i.e., load ad-

ditional input, adjust the calculation, or save additional out-
put).

We used the back-tracking extension to exemplify and
highlight the adaptability of the Flow-Py simulation tool. By
making small adaptions Flow-Py was changed from a runout
model to a model that identifies endangered infrastructure,
which demonstrates how Flow-Py can be used to investigate
questions related to specific GMFs.

6 Conclusions and outlook

Flow-Py is an open-source simulation tool for data-based
gravitational mass flow (GMF) runout and intensity model-
ing, which is suitable for spatially explicit applications on a
regional scale. GMF is a term that generalizes the flow of var-
ious materials in different ratios of solids, water (ice), and air
down a slope. The GMF behavior, the runout length, and the
amount of lateral spreading are all partially dependent on the
composition of the material (Pudasaini and Mergili, 2019).
Flow-Py handles diverse flow behaviors by providing an ad-
justable parameterization that acts to control the spreading
and runout lengths of the simulated GMF path.

Flow-Py’s basic model equations and well-organized
solver split the GMF runout modeling into two routines: (1)
routing of the GMF and (2) stopping of the GMF. The rout-
ing routine is further broken down into terrain-based and
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persistence-based routing, and the stopping routine is fur-
ther broken down into two stopping criteria based on runout
length and the amount of flux. With this, Flow-Py provides an
educational GMF model development environment, which
combines computational efficiency with low entry barriers
for adaptations and extension, such as the presented back-
tracking extension.

Besides the local topography two factors influence the
spreading of the simulated GMF, namely the exp parameter
and the routing flux threshold Rstop. However, the four main
parameters (runout angle α, divergence control exp, flux cut-
off Rstop, and the limit of the process intensity Zδlim) have
to be defined based on one’s experience or corresponding
guidelines to obtain the desired range of motion behaviors
corresponding to different materials and their compositions.
However, further studies are needed for in-depth parameter
investigations, including the development of parameter sets
which can be used for specific GMF types such as rockfall,
different types of snow avalanches, or landslides. Some of
these parameter studies should include a sensitivity study on
the DEM resolution used.

The implementation of the model equations to route the
flux on the cell level has the advantage that the flow path
does not need to be predetermined in contrast to some sim-
ilar statistical runout methods (Lied and Bakkehøi, 1980).
Therefore, Flow-Py combines the simplicity of a runout-
angle-motivated model with the advantages associated with
process-based modeling, providing a corresponding intensity
measure and allowing for routing in flat or uphill terrain as
we demonstrated in a computational experiment.

The results of a second experiment show that the run
time of the model is suitable for regional modeling (several
100 km2) (see Sect. 4). The main factor that controls model
run time is the parameterization, especially the amount of
spreading, which is controlled by exp and Rstop; however,
the number of starting cells and the number of available com-
puter cores are also important factors influencing model run
time.

One of the major benefits of Flow-Py compared to exist-
ing GMF simulation tools is its well-organized code that al-
lows easy adaptations and extension development. A custom
extension was developed for Flow-Py to take into account
terrain complexity with regards to snow avalanches; auto-
mated avalanche terrain exposure scale (ATES) maps were
created (Larsen et al., 2020). Future work is being carried
out to develop a custom extension which will adapt the stop-
ping criteria to other statistical models (Lied and Bakkehøi,
1980; Barbolini et al., 2011). We presented the back-tracking
extension in Sect. 5 to demonstrate adaptability of the simu-
lation tool, which required adjustments to the input data, cal-
culations, and output raster. The additional calculations took
advantage of Flow-Py’s programming in Python’s object-
oriented class method, the Flow-Class. The output can be
used to identify forests with a direct object protective func-
tion by combining the back-tracking results with a map of

the current forest cover in a post-processing procedure. More
simple extensions have already been developed and used,
e.g., the forest extension, which has been applied to quan-
tify the forest’s protective effects in transit zones of rockfall
and starting, transit, and runout zones of snow avalanches,
as well as adapting the runout angle stopping criteria depen-
dent on forest structure and the intensity (Zδmax) of the GMF
(D’Amboise et al., 2021b).

We have shown that Flow-Py is an innovative GMF simu-
lation tool that can be applied for basic simulations (e.g., for
hazard zone mapping) but also for more sophisticated custom
applications such as identifying areas that potentially endan-
ger specific infrastructure. Furthermore, presenting Flow-Py
in this contribution as well as the modeling concepts that mo-
tivated its model equations and their implementation in the
Flow-Py code enables one to reproduce and understand the
basic concepts of GMF modeling and to also use Flow-Py as
an educational tool.

Code and data availability. The Flow-Py code and user manual
can be found in the repository in Neuhauser et al. (2021).

Input data and simulation results can be found in D’Amboise
et al. (2021a).
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