Articles | Volume 15, issue 5
https://doi.org/10.5194/gmd-15-1913-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-1913-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Emulation of high-resolution land surface models using sparse Gaussian processes with application to JULES
Department of Mathematical Sciences, University of Exeter, Exeter EX4 4QF, UK
Anna B. Harper
Department of Mathematical Sciences, University of Exeter, Exeter EX4 4QF, UK
Daniel Williamson
Department of Mathematical Sciences, University of Exeter, Exeter EX4 4QF, UK
Peter Challenor
Department of Mathematical Sciences, University of Exeter, Exeter EX4 4QF, UK
Related authors
No articles found.
Hsi-Kai Chou, Anna B. Harper, Arthur P. K. Argles, Maria Carolina Duran Rojas, Emma W. Littleton, Richard A. Betts, and Peter M. Cox
EGUsphere, https://doi.org/10.5194/egusphere-2025-4536, https://doi.org/10.5194/egusphere-2025-4536, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Global warming and climate change caused by greenhouse gas emissions will have multiple impacts on forest ecosystems. A core part of the strategy to mitigating these impacts is to use afforestation and forestry management to implement large-scale Greenhouse Gas Removal. Here we use the JULES-RED model to evaluate the afforestation under a changing environmental condition. We project that Sitka Forest afforestation could meet the target of GGR once the plantation locations been selected properly.
Ricarda Winkelmann, Donovan P. Dennis, Jonathan F. Donges, Sina Loriani, Ann Kristin Klose, Jesse F. Abrams, Jorge Alvarez-Solas, Torsten Albrecht, David Armstrong McKay, Sebastian Bathiany, Javier Blasco Navarro, Victor Brovkin, Eleanor Burke, Gokhan Danabasoglu, Reik V. Donner, Markus Drüke, Goran Georgievski, Heiko Goelzer, Anna B. Harper, Gabriele Hegerl, Marina Hirota, Aixue Hu, Laura C. Jackson, Colin Jones, Hyungjun Kim, Torben Koenigk, Peter Lawrence, Timothy M. Lenton, Hannah Liddy, José Licón-Saláiz, Maxence Menthon, Marisa Montoya, Jan Nitzbon, Sophie Nowicki, Bette Otto-Bliesner, Francesco Pausata, Stefan Rahmstorf, Karoline Ramin, Alexander Robinson, Johan Rockström, Anastasia Romanou, Boris Sakschewski, Christina Schädel, Steven Sherwood, Robin S. Smith, Norman J. Steinert, Didier Swingedouw, Matteo Willeit, Wilbert Weijer, Richard Wood, Klaus Wyser, and Shuting Yang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1899, https://doi.org/10.5194/egusphere-2025-1899, 2025
Short summary
Short summary
The Tipping Points Modelling Intercomparison Project (TIPMIP) is an international collaborative effort to systematically assess tipping point risks in the Earth system using state-of-the-art coupled and stand-alone domain models. TIPMIP will provide a first global atlas of potential tipping dynamics, respective critical thresholds and key uncertainties, generating an important building block towards a comprehensive scientific basis for policy- and decision-making.
Anna B. Harper, Karina E. Williams, Patrick C. McGuire, Maria Carolina Duran Rojas, Debbie Hemming, Anne Verhoef, Chris Huntingford, Lucy Rowland, Toby Marthews, Cleiton Breder Eller, Camilla Mathison, Rodolfo L. B. Nobrega, Nicola Gedney, Pier Luigi Vidale, Fred Otu-Larbi, Divya Pandey, Sebastien Garrigues, Azin Wright, Darren Slevin, Martin G. De Kauwe, Eleanor Blyth, Jonas Ardö, Andrew Black, Damien Bonal, Nina Buchmann, Benoit Burban, Kathrin Fuchs, Agnès de Grandcourt, Ivan Mammarella, Lutz Merbold, Leonardo Montagnani, Yann Nouvellon, Natalia Restrepo-Coupe, and Georg Wohlfahrt
Geosci. Model Dev., 14, 3269–3294, https://doi.org/10.5194/gmd-14-3269-2021, https://doi.org/10.5194/gmd-14-3269-2021, 2021
Short summary
Short summary
We evaluated 10 representations of soil moisture stress in the JULES land surface model against site observations of GPP and latent heat flux. Increasing the soil depth and plant access to deep soil moisture improved many aspects of the simulations, and we recommend these settings in future work using JULES. In addition, using soil matric potential presents the opportunity to include parameters specific to plant functional type to further improve modeled fluxes.
Garry D. Hayman, Edward Comyn-Platt, Chris Huntingford, Anna B. Harper, Tom Powell, Peter M. Cox, William Collins, Christopher Webber, Jason Lowe, Stephen Sitch, Joanna I. House, Jonathan C. Doelman, Detlef P. van Vuuren, Sarah E. Chadburn, Eleanor Burke, and Nicola Gedney
Earth Syst. Dynam., 12, 513–544, https://doi.org/10.5194/esd-12-513-2021, https://doi.org/10.5194/esd-12-513-2021, 2021
Short summary
Short summary
We model greenhouse gas emission scenarios consistent with limiting global warming to either 1.5 or 2 °C above pre-industrial levels. We quantify the effectiveness of methane emission control and land-based mitigation options regionally. Our results highlight the importance of reducing methane emissions for realistic emission pathways that meet the global warming targets. For land-based mitigation, growing bioenergy crops on existing agricultural land is preferable to replacing forests.
Andrew J. Wiltshire, Eleanor J. Burke, Sarah E. Chadburn, Chris D. Jones, Peter M. Cox, Taraka Davies-Barnard, Pierre Friedlingstein, Anna B. Harper, Spencer Liddicoat, Stephen Sitch, and Sönke Zaehle
Geosci. Model Dev., 14, 2161–2186, https://doi.org/10.5194/gmd-14-2161-2021, https://doi.org/10.5194/gmd-14-2161-2021, 2021
Short summary
Short summary
Limited nitrogen availbility can restrict the growth of plants and their ability to assimilate carbon. It is important to include the impact of this process on the global land carbon cycle. This paper presents a model of the coupled land carbon and nitrogen cycle, which is included within the UK Earth System model to improve projections of climate change and impacts on ecosystems.
Cited articles
AppEEARS Team: Application for Extracting and Exploring Analysis Ready
Samples (AppEEARS), Ver. 2.35., NASA EOSDIS Land Processes Distributed
Active Archive Center (LP DAAC), USGS/Earth Resources Observation and Science
(EROS) Center, Sioux Falls, South Dakota, USA,
https://lpdaacsvc.cr.usgs.gov/appeears, last access: 12 February 2020. a
Baker, E., Harper, A., Williamson, D., and Challenor, P.: Gross Primary Productivity simulations of Great Britain for emulation, 2001–2010 from JULES land surface model, NERC Environmental Information Data Centre [data set], https://doi.org/10.5285/789bea37-0450-4822-9857-3dc848feb937, 2021. a
Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J.: The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes, Geosci. Model Dev., 4, 677–699, https://doi.org/10.5194/gmd-4-677-2011, 2011. a
Binois, M., Gramacy, R. B., and Ludkovski, M.: Practical heteroscedastic
gaussian process modeling for large simulation experiments, J.
Comput. Graph. Stat., 27, 808–821, 2018. a
Bower, R. G., Goldstein, M., and Vernon, I.: Galaxy formation: a Bayesian
uncertainty analysis, Bayesian Anal., 5, 619–669, 2010. a
Brynjarsdóttir, J. and OʼHagan, A.: Learning about physical parameters:
The importance of model discrepancy, Inverse Problems, 30, 114007, https://doi.org/10.1088/0266-5611/30/11/114007, 2014. a
Clark, D. B., Mercado, L. M., Sitch, S., Jones, C. D., Gedney, N., Best, M. J., Pryor, M., Rooney, G. G., Essery, R. L. H., Blyth, E., Boucher, O., Harding, R. J., Huntingford, C., and Cox, P. M.: The Joint UK Land Environment Simulator (JULES), model description – Part 2: Carbon fluxes and vegetation dynamics, Geosci. Model Dev., 4, 701–722, https://doi.org/10.5194/gmd-4-701-2011, 2011. a
Couvreux, F., Hourdin, F., Williamson, D., Roehrig, R., Volodina, V.,
Villefranque, N., Rio, C., Audouin, O., Salter, J., Bazile, E., Brient, F.,
Favot, F., Honnert, R., Lefebvre, M.-P., Madeleine, J.-B., Rodier, Q., and
Xu, W.: Process-Based Climate Model Development Harnessing Machine Learning:
I. A Calibration Tool for Parameterization Improvement, J. Adv.
Model. Earth Sy., 13, e2020MS002217,
https://doi.org/10.1029/2020MS002217, 2021. a
Cox, P., Huntingford, C., and Harding, R.: A canopy conductance and
photosynthesis model for use in a GCM land surface scheme, J.
Hydrol., 212, 79–94, 1998. a
Craig, P. S., Goldstein, M., Seheult, A. H., and Smith, J. A.: Pressure
matching for hydrocarbon reservoirs: a case study in the use of Bayes linear
strategies for large computer experiments, in: Case studies in Bayesian
statistics, Springer, 37–93, 1997. a
Fuller, R., Smith, G., Sanderson, J., Hill, R., and Thomson, A.: The UK Land
Cover Map 2000: construction of a parcel-based vector map from satellite
images, Cartograph. J., 39, 15–25, 2002. a
GPy: GPy: A Gaussian process framework in python,
http://github.com/SheffieldML/GPy (last access: 24 February 2022), 2012. a
Gramacy, R. B. and Lee, H. K.: Cases for the nugget in modeling computer
experiments, Stat. Comput., 22, 713–722, 2012. a
Gu, M. and Berger, J. O.: Parallel partial Gaussian process emulation for
computer models with massive output, Ann. Appl. Stat., 10,
1317–1347, https://doi.org/10.1214/16-AOAS934, 2016. a
Gu, M., Palomo, J., and Berger, J.: RobustGaSP: Robust Gaussian Stochastic
Process Emulation,
r package
version 0.6.4, https://CRAN.R-project.org/package=RobustGaSP, last access: 24 February 2022. a
Hemmings, J. C. P., Challenor, P. G., and Yool, A.: Mechanistic site-based emulation of a global ocean biogeochemical model (MEDUSA 1.0) for parametric analysis and calibration: an application of the Marine Model Optimization Testbed (MarMOT 1.1), Geosci. Model Dev., 8, 697–731, https://doi.org/10.5194/gmd-8-697-2015, 2015. a
Hensman, J., Matthews, A., and Ghahramani, Z.: Scalable Variational Gaussian
Process Classification, in: Proceedings of the 18th International
Conference on Artificial Intelligence and Statistics, 351–360, 2015. a
Higdon, D., Gattiker, J., Williams, B., and Rightley, M.: Computer model
calibration using high-dimensional output, J. Am.
Stat. Assoc., 103, 570–583, 2008. a
Hourdin, F., Williamson, D., Rio, C., Couvreux, F., Roehrig, R., Villefranque,
N., Musat, I., Fairhead, L., Diallo, F. B., and Volodina, V.: Process-based
climate model development harnessing machine learning: II. model calibration
from single column to global, J. Adv. Model. Earth Sy., 13,
e2020MS002225, https://doi.org/10.1029/2020MS002225,
2021. a, b
Johnson, J. S., Regayre, L. A., Yoshioka, M., Pringle, K. J., Turnock, S. T., Browse, J., Sexton, D. M. H., Rostron, J. W., Schutgens, N. A. J., Partridge, D. G., Liu, D., Allan, J. D., Coe, H., Ding, A., Cohen, D. D., Atanacio, A., Vakkari, V., Asmi, E., and Carslaw, K. S.: Robust observational constraint of uncertain aerosol processes and emissions in a climate model and the effect on aerosol radiative forcing, Atmos. Chem. Phys., 20, 9491–9524, https://doi.org/10.5194/acp-20-9491-2020, 2020. a
Jones, D. R., Schonlau, M., and Welch, W. J.: Efficient global optimization of
expensive black-box functions, J. Global Optimi., 13, 455–492,
1998. a
Keefer, D. L. and Bodily, S. E.: Three-point approximations for continuous
random variables, Manage. Sci., 29, 595–609, 1983. a
Kennedy, M. C. and O'Hagan, A.: Bayesian calibration of computer models,
J. Roy. Stat. Soc. B,
63, 425–464, 2001. a
Lee, L. A., Carslaw, K. S., Pringle, K. J., and Mann, G. W.: Mapping the uncertainty in global CCN using emulation, Atmos. Chem. Phys., 12, 9739–9751, https://doi.org/10.5194/acp-12-9739-2012, 2012. a
Loeppky, J. L., Sacks, J., and Welch, W. J.: Choosing the sample size of a
computer experiment: A practical guide, Technometrics, 51, 366–376, 2009. a
Lu, D. and Ricciuto, D.: Efficient surrogate modeling methods for large-scale Earth system models based on machine-learning techniques, Geosci. Model Dev., 12, 1791–1807, https://doi.org/10.5194/gmd-12-1791-2019, 2019. a, b
Matthews, A. G. D. G., van der Wilk, M., Nickson, T., Fujii, K.,
Boukouvalas, A., León-Villagrá, P., Ghahramani, Z., and Hensman,
J.: GPflow: A Gaussian process library using TensorFlow, J.
Mach. Learn. Res., 18, 1–6,
2017. a
McNeall, D., Williams, J., Betts, R., Booth, B., Challenor, P., Good, P., and Wiltshire, A.: Correcting a bias in a climate model with an augmented emulator, Geosci. Model Dev., 13, 2487–2509, https://doi.org/10.5194/gmd-13-2487-2020, 2020. a, b, c
Mockus, J.: Bayesian approach to global optimization: theory and applications,
vol. 37, Springer Science & Business Media, https://doi.org/10.1007/978-94-009-0909-0, 2012. a
Mohammadi, H., Challenor, P., and Goodfellow, M.: Emulating dynamic non-linear
simulators using Gaussian processes, Comput. Stat. Data
Anal., 139, 178–196, 2019. a
Morris, D. G. and Flavin, R. W.: A digital terrain model for hydrology, in:
Proc 4th International Symposium on Spatial Data Handling,
Zurich, Vol. 1, 250–262, 1990. a
Morris, D. G. and Flavin, R. W.: Sub-set of UK 50 m by 50 m hydrological digital
terrain model grids, Tech. rep., NERC, Institute of Hydrology, Wallingford,
1994. a
Nachtergaele, F., van Velthuizen, H., Verelst, L., Wiberg, D., Batjes, N.,
Dijkshoorn, J., van Engelen, V., Fischer, G., Jones, A., Montanarella, L.,
Petri, M., Prieler, S., Teixeira, E., and Shi, X.: Harmonized World Soil
Database (version 1.2), Food and Agriculture Organization of the UN,
International Institute for Applied Systems Analysis, ISRIC – World Soil
Information, Institute of Soil Science – Chinese Academy of Sciences, Joint
Research Centre of the EC, FAO, Rome, Italy and IIASA, Laxenburg, Austria, 2012. a
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.:
Scikit-learn: Machine Learning in Python, J. Mach. Learn.
Res., 12, 2825–2830, 2011. a
Petropoulos, G. P., Griffiths, H. M., Carlson, T. N., Ioannou-Katidis, P., and Holt, T.: SimSphere model sensitivity analysis towards establishing its use for deriving key parameters characterising land surface interactions, Geosci. Model Dev., 7, 1873–1887, https://doi.org/10.5194/gmd-7-1873-2014, 2014. a
Peylin, P., Bacour, C., MacBean, N., Leonard, S., Rayner, P., Kuppel, S., Koffi, E., Kane, A., Maignan, F., Chevallier, F., Ciais, P., and Prunet, P.: A new stepwise carbon cycle data assimilation system using multiple data streams to constrain the simulated land surface carbon cycle, Geosci. Model Dev., 9, 3321–3346, https://doi.org/10.5194/gmd-9-3321-2016, 2016. a
Raoult, N. M., Jupp, T. E., Cox, P. M., and Luke, C. M.: Land-surface parameter optimisation using data assimilation techniques: the adJULES system V1.0, Geosci. Model Dev., 9, 2833–2852, https://doi.org/10.5194/gmd-9-2833-2016, 2016. a, b
Reich, S. and Cotter, C.: Probabilistic Forecasting and Bayesian Data
Assimilation, Cambridge University Press, https://doi.org/10.1017/CBO9781107706804,
2015. a
Revie, M., Bedford, T., and Walls, L.: Evaluation of elicitation methods to
quantify Bayes linear models, P. I. Mech. Eng. O.-J. Ris., 224, 322–332, 2010. a
Ritchie, P. D., Harper, A. B., Smith, G. S., Kahana, R., Kendon, E. J., Lewis,
H., Fezzi, C., Halleck-Vega, S., Boulton, C. A., Bateman, I. J., and Lenton, T. M.:
Large changes in Great Britain’s vegetation and agricultural land-use
predicted under unmitigated climate change, Environ. Res. Lett.,
14, 114012, https://doi.org/10.1088/1748-9326/ab492b, 2019. a
Robinson, E., Blyth, E., Clark, D., Comyn-Platt, E., Finch, J., and Rudd, A.:
Climate hydrology and ecology research support system meteorology dataset for
Great Britain (1961–2015) [CHESS-met] v1.2, NERC Environmental Information Data Centre [data set],
https://doi.org/10.5285/b745e7b1-626c-4ccc-ac27-56582e77b900, 2017. a, b
Rougier, J.: Efficient emulators for multivariate deterministic functions,
J. Comput. Graph. Stat., 17, 827–843, 2008. a
Rougier, J.: “Intractable and unsolved”: some thoughts on statistical data
assimilation with uncertain static parameters, Philos. T.
Roy. Soc. A, 371,
20120297, https://doi.org/10.1098/rsta.2012.0297, 2013. a
Roustant, O., Ginsbourger, D., and Deville, Y.: DiceKriging, DiceOptim: Two
R Packages for the Analysis of Computer Experiments by Kriging-Based
Metamodeling and Optimization, J. Stat. Softw., 51, 1–55,
2012. a
Running, S. W. and Zhao, M.: MOD17A2HGF MODIS/Terra Gross Primary Productivity
Gap-Filled 8-Day L4 Global 500 m SIN Grid V006, NASA EOSDIS Land Processes
DAAC [data set],
https://doi.org/10.5067/MODIS/MOD17A2HGF.006, 2019a. a, b
Running, S. W. and Zhao, M.: MYD17A2HGF MODIS/Aqua Gross Primary Productivity
Gap-Filled 8-Day L4 Global 500 m SIN Grid V006, NASA EOSDIS Land Processes
DAAC [data set],
https://doi.org/10.5067/MODIS/MYD17A2HGF.006, 2019b. a, b
Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn, H. P.: Design and analysis
of computer experiments, Stat. Sci., 4, 409–423, 1989. a
Salimbeni, H. and Deisenroth, M.: Doubly stochastic variational inference for
deep Gaussian processes, arXiv [preprint], arXiv:1705.08933, 2017. a
Salmanidou, D. M., Beck, J., Pazak, P., and Guillas, S.: Probabilistic, high-resolution tsunami predictions in northern Cascadia by exploiting sequential design for efficient emulation, Nat. Hazards Earth Syst. Sci., 21, 3789–3807, https://doi.org/10.5194/nhess-21-3789-2021, 2021. a
Sexton, D. M. H., Murphy, J. M., Collins, M., and Webb, M. J.: Multivariate
probabilistic projections using imperfect climate models part I: outline of
methodology, Clim. Dynam., 38, 2513–2542,
https://doi.org/10.1007/s00382-011-1208-9, 2012. a
Sexton, D. M. H., Karmalkar, A. V., Murphy, J. M., Williams, K. D., Boutle,
I. A., Morcrette, C. J., Stirling, A. J., and Vosper, S. B.: Finding
plausible and diverse variants of a climate model. Part 1: establishing the
relationship between errors at weather and climate time scales, Clim.
Dynam., 53, 989–1022, https://doi.org/10.1007/s00382-019-04625-3, 2019.
a
Snelson, E. and Ghahramani, Z.: Sparse Gaussian processes using pseudo-inputs,
in: Advances in neural information processing systems, 18, 1257–1264, 2006. a
Spiller, E. T., Wolpert, R. L., Ogburn, S. E., Calder, E. S., Berger, J. O.,
Patra, A. K., and Pitman, E. B.: Volcanic Hazard Assessment for an Eruption
Hiatus, or Post-eruption Unrest Context: Modeling Continued Dome Collapse
Hazards for Soufrière Hills Volcano, Front. Earth Sci., 8, 396,
https://doi.org/10.3389/feart.2020.535567, 2020. a
Titsias, M.: Variational learning of inducing variables in sparse Gaussian
processes, in: Artificial Intelligence and Statistics, 5, 567–574, 2009. a
UK Met Office: Met Office Science Repository Service (MOSRS), https://code.metoffice.gov.uk, last access: 22 February 2022. a
Vernon, I., Goldstein, M., and Bower, R. G.: Galaxy formation: a Bayesian
uncertainty analysis, Bayesian Anal., 5, 619–669, 2010. a
Williamson, D. B., Blaker, A. T., and Sinha, B.: Tuning without over-tuning: parametric uncertainty quantification for the NEMO ocean model, Geosci. Model Dev., 10, 1789–1816, https://doi.org/10.5194/gmd-10-1789-2017, 2017. a, b
Short summary
We have adapted machine learning techniques to build a model of the land surface in Great Britain. The model was trained using data from a very complex land surface model called JULES. Our model is faster at producing simulations and predictions and can investigate many different scenarios, which can be used to improve our understanding of the climate and could also be used to help make local decisions.
We have adapted machine learning techniques to build a model of the land surface in Great...