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Abstract. Land surface models are typically integrated into
global climate projections, but as their spatial resolution in-
creases the prospect of using them to aid in local policy de-
cisions becomes more appealing. If these complex models
are to be used to make local decisions, then a full quantifica-
tion of uncertainty is necessary, but the computational cost of
running just one full simulation at high resolution can hinder
proper analysis.

Statistical emulation is an increasingly common technique
for developing fast approximate models in a way that main-
tains accuracy but also provides comprehensive uncertainty
bounds for the approximation. In this work, we developed
a statistical emulation framework for land surface models,
enabling fast predictions at a high resolution. To do so, our
emulation framework acknowledges, and makes use of, the
multitude of contextual data that are often fed into land sur-
face models (sometimes called forcing data, or driving data),
such as air temperature or various soil properties. We use The
Joint UK Land Environment Simulator (JULES) as a case
study for this methodology, and perform initial sensitivity
analysis and parameter tuning to showcase its capabilities.
The JULES is perhaps one of the most complex land surface
models and so our success here suggests incredible gains can
be made for all types of land surface model.

1 Introduction

Land surface models (LSMs) represent the terrestrial bio-
sphere within weather and climate models, focusing on hy-
drometeorology and biogeophysical coupling with the atmo-
sphere. The latter includes nutrient flows between vegetation
and soils, and the turbulent exchange of CO2, heat, mois-

ture, and momentum between the land surface and the atmo-
sphere. The Joint UK Land Environment Simulator (JULES)
(Cox et al., 1998; Best et al., 2011; Clark et al., 2011) is
an example of an LSM used for a variety of applications
and temporal/spatial scales as part of the UK Meteorolog-
ical Office’s unified modelling system. The LSMs can be
used to further scientific understanding of land surface pro-
cesses and to inform policy decisions. For both applications,
increased confidence in simulated results and knowledge of
model uncertainty is needed, which typically involves run-
ning the model many times with varied forcings and parame-
ters (Booth et al., 2012; Murphy et al., 2004). The computa-
tional cost of running these models limits the number of runs
that can be obtained, constraining the resulting analysis.

An important factor in computational cost versus practical
relevance is the resolution at which the model can be run.
Whilst there is a general, and not always justifiable, push to-
wards higher resolution across climate modelling, when us-
ing LSMs to support landscape decisions (whether these be
local/national government policy decisions, or landowner in-
vestment decisions), ensuring that the model is able to in-
form at decision relevant resolutions is critical. For exam-
ple, if considering different policies to incentivise farmers
to alter land use (by giving over land to tree planting for
example), LSM simulations run to help understand the ef-
ficacy and risks of different policies would need to be at a
high enough resolution to capture areas the size of individual
farms (say at 1 km). This can be incredibly costly; in Ritchie
et al. (2019), at 1.5 km× 1.5 km resolution for Great Britain
(77 980 grid cells), JULES took approximately 25.5 h to sim-
ulate a decade (with 20 years of spin up simulation to allow
any input parameters to influence the present-day land sur-
face, which takes approximately 19 additional hours) on 72
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processors of the UK NERC/Met Office MONSooN super-
computer. Quantifying uncertainty for even a single policy
option, let alone a diverse array of policies, would not be
feasible using high resolution JULES directly.

Statistical surrogate models, also known as emulators,
have been developed to combat this issue (Sacks et al., 1989;
Kennedy and O’Hagan, 2001). An emulator is a statistical
model that, once built, facilitates fast predictions of the out-
put of a computer model, with quantified uncertainty in the
predictions, and without any further simulation. The result-
ing statistical model provides a powerful tool for exploring,
understanding, and improving the process-based model from
which it is built. Fast predictions of LSMs could enable better
decision-making, improve scientific understanding, and en-
able the effective linking of multiple models, all while quan-
tifying the various uncertainties involved.

Emulators have been widely used by the climate commu-
nity. They have been used to study the Met Office’s cou-
pled models (Williamson et al., 2013), including develop-
ing the UK climate projections in 2009 and 2018 (Sexton
et al., 2012, 2019). Hemmings et al. (2015) built mechanistic
emulators for specific locations for an ocean biogeochem-
ical model; Petropoulos et al. (2014) conducted a compre-
hensive sensitivity analysis using an emulator for a land sur-
face model and Williamson et al. (2017) calibrated an ocean
model using emulators. Such efforts typically only emulate a
few key locations or summary statistics of interest, for exam-
ple, McNeall et al. (2020) emulated (and calibrated) JULES
considering only three averaged locations. These types of
analysis can be useful in understanding the sensitivity of the
model output to its different parameters, and for constraining
parameter space, but cannot be used as surrogates for the full
model when needed to support local decision-making.

Emulating spatiotemporal output in order to use an emula-
tor as a surrogate for the full model has also received atten-
tion.

Lu and Ricciuto (2019) attempted to emulate an LSM at a
higher resolution, where they reduced the dimensionality of
the output via singular value decomposition. This is a well-
known strategy (Higdon et al., 2008), but lowering the di-
mension in this way can lead to a loss of information and in-
terpretability, with documented negative effects (Salter et al.,
2019). Additionally, Lu and Ricciuto (2019) used a neural
network to construct their emulator. Whilst neural networks
can be capable tools, they do not provide a complete quantifi-
cation of the various uncertainties, which can be an essential
quality when dealing with complex LSMs.

Attempts to emulate spatiotemporal models without di-
mension reduction, but by emulating each point in space and
time separately, are also popular. Gu and Berger (2016) as-
sumed that the same correlation function and parameters are
shared across all outputs, enabling huge numbers of emula-
tors to be built in parallel. The “emulate every grid cell” ap-
proach has been used in environmental applications includ-
ing aerosol models (Lee et al., 2012; Johnson et al., 2020),

tsunami models (Salmanidou et al., 2021) and volcano mod-
els (Spiller et al., 2020). These methods do not directly model
spatial and temporal dependence,but instead assume that the
training data for each grid cell contain enough information
alone, and rely on the fast training and prediction times of
standard emulators (though for JULES, the millions of em-
ulators required to follow this approach renders it less feasi-
ble). Another approach is to consider space and time as in-
puts to the model, although this can render the number of
data points too large for traditional Gaussian process imple-
mentations. Rougier (2008) used separability in space and
time to develop efficient emulators of this type that rely on
Kronecker identities for their speed.

The LSMs typically do not exchange information laterally
between grid cells (LSMs with more sophisticated hydrol-
ogy schemes can be an exception to this, where groundwater
and rivers can flow between grid cells). Therefore, the struc-
ture of the spatiotemporal outputs is often controlled entirely
by a set of pre-known forcing data (which could be obser-
vational data, or outputs from an atmospheric model, or pre-
selected by a practitioner). For example, JULES relies on a
set of driving data; providing information about the weather
on a sub-daily time step, and various soil properties. In many
cases, the land surface model output can be treated as inde-
pendent in space and time, conditional on the forcing data.
With this framing, the land surface model only outputs a spa-
tiotemporal map because it inputs a spatiotemporal map. In
other words, grid cells in LSMs often do not “talk” to each
other: what happens in one grid cell has no bearing on what
happens in a neighbouring grid cell (except that the forcing
data are likely to be similar and that is why the outputs are
likely to be similar).

In this paper we outline a framework for building emu-
lators of LSMs, leveraging this interesting property of many
LSMs to facilitate the emulation of the high-dimensional out-
put. This framework is described in Sect. 2. We demonstrate
the capabilities of such an emulator by emulating JULES at
1 km resolution in Sect. 3. We also use this emulator to ob-
tain a ranking of the relative importance of different model
inputs, which can be the key to scientific understanding and
can guide future model development, and we use the emula-
tor to tune the model via history matching. We offer discus-
sion in Sect. 4 about the importance of this work and where
improvements could be made along with other possible ap-
plications of LSM emulators and future research opportuni-
ties.

2 Methods

2.1 Emulators

Gaussian processes (GPs) are commonly used to build emu-
lators. Because complex models (simulators) can be slow to
evaluate, they can be treated as a function that we are uncer-
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tain about. A GP provides a probability distribution over all
possible functions that could recreate an observed simulation
ensemble. These possible functions can then be quickly sam-
pled, or evaluated to predict the simulator output for new in-
put values, while quantifying the respective uncertainty. Off
the shelf software for implementing GPs is commonplace,
including (but by no means limited to) the DiceKriging
and RobustGaSP packages in R (Roustant et al., 2012;
Gu et al., 2022), the scikit-learn and GPy packages in
python (Pedregosa et al., 2011; GPy, 2012), and via the built-
in Statistics and Machine Learning Toolbox in MATLAB. A
GP emulator can be written as:

y(θ)∼ GP(m(θ),k(θ ,θ ′)), (1)

where y is the simulation output, θ is a vector of input pa-
rameters, m is a mean function that can be used to provide
prior beliefs about the model, and k is a covariance function.

Formally, a GP is a stochastic process such that any fi-
nite collection of outputs, y(θ1), . . .,y(θn), has a multivariate
normal distribution with mean (m(θ1), . . .,m(θn)) and vari-
ance matrix K, where Kij = k(θ i,θ j ). After observing an
ensemble of runs, y, the posterior process, y(θ) | y, is still a
GP, and the mean and covariance function of this posterior
GP have a known analytical form (Rasmussen and Williams,
2006). The prior mean function m and covariance function
k have to be specified in advance. In this paper, we use a
zero function m (providing no prior beliefs about the shape
of the output), and a standard non-isotropic squared exponen-
tial covariance function (sometimes known as an “automatic
relevance determination kernel”).

Throughout this article, emulating output y and inputs θ
with a GP is shortened to: y(θ)∼ GP(θ). It can be good prac-
tice to re-scale the inputs to all be in [0,1], and to standardise
the outputs (subtract the ensemble mean and divide by the
ensemble standard deviation), and this is also done in this
work.

2.2 Emulating a land surface model

We consider the case of an LSM which outputs spatial maps
that vary in time. Spatiotemporal maps can be dimensionally
very high; for example, our study area is Great Britain, where
there are 230 615 1 km× 1 km grid cells. If Gross Primary
Productivity (GPP) was output daily, then the simulation re-
sult for a single year would be an approximately 8.5 million
dimensional outputs.

The spatiotemporal correlation structure in an LSM is of-
ten inherited through its input forcing data. For example,
JULES solves the same differential equations independently
in each grid cell and no information is passed horizontally by
the solver. As such, we choose to treat an S×T dimensional
output as ST different 1D outputs, each with a different set of
forcing data inputs (where S represents the number of spatial
locations and T the number of time steps). Mathematically,

that is:

yts(W,θ)= f (W ts,θ), (2)

where yts(W,θ) is the output at time t and location s, with
forcing data W and input parameters θ , f is the land surface
model, and W ts is the forcing data only at time t and at lo-
cation s. By treating the LSM as a model with 1D output, a
standard emulator can be built; that is:

f (W ts,θ)∼ GP(W ts,θ), (3)

where W ts is treated like additional input parameters, along
with θ .

While the assumption of spatial independence (conditional
on the forcing data) can be sensible, temporal independence
is often less so. In JULES, various internal state variables are
stored and updated at each time step, which provides some
temporal structure. For example, the soil moisture (which is
modelled by JULES) depends not only on the precipitation at
the current time step, but also previous time steps. Another
example is the leaf area index: future carbon assimilation and
respiration depend on the leaf area index from the previous
time step.

Such time structures could be emulated using a “dynamic
emulator” (Mohammadi et al., 2019), but the computational
cost of this is prohibitive for the lengths of time LSMs often
deal with. In this work, for JULES, we mitigate this time-
dependence by working with 8-day averages, which miti-
gates the short-term temporal dependence (for both the out-
put and the forcing data). To control for some longer term
temporal dependencies, we supplement the forcing data W ts

with a pseudo-forcing variable that records the day of the
year. In this paper, this supplementary “day of the year” forc-
ing input arbitrarily takes the 5th day in the 8-day average
(so the value of “day of the year” for data from 1 to 8 Jan-
uary would be 5). This is then included as an additional col-
umn of W ts . This acts as a proxy for any long-term (i.e.
seasonal) temporal structure, which our assumption of time-
independence ignores.

Any residual temporal correlation is then modelled as
residual noise and so the emulator is no longer forced to
perfectly interpolate each simulation. This additional noise
is sometimes called a “nugget”, and including it has been
found to provide improved emulator performance regardless
of whether it is technically needed (Gramacy and Lee, 2012).

An overview of this process is provided in Fig. 1, outlining
the various steps needed to build such a land surface emula-
tor.

2.3 Data abundance

The formulation discussed previously, where each grid cell
and each time step is treated as an independent (conditional
on the forcing data) data point, results in tens of millions of
data points per year for even a single simulation. Theoreti-
cally, an abundance of data should greatly improve predictive
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Figure 1. A flowchart broadly showing the steps needed to build
and use a land surface emulator under our framework.

capabilities. However, Gaussian processes are not designed
for large data sets, as they require the inversion of an n×n co-
variance matrix, where n is the number of data points, and so
computational time scales with n3. In computer experiments,
roughly 10 data points per input dimension are normally ex-
pected and recommended (Loeppky et al., 2009), and so tens
of millions of data points is far beyond standard. We could
use other statistical models here instead (such as a standard
linear regression model, or a neural network), but the flexi-
bility and the uncertainty estimates of a GP are desirable.

The concept of sparse GPs was developed to mitigate
the computational issues of GPs (Snelson and Ghahramani,
2006). In effect, the idea is to learn some hypothetical,
smaller, ideal data set, and use that to build the emulator.
If X is a set of inputs (the combined set of W ts and θ ) and
y is a set of outputs, both n in number, then the goal is to
learn some set of inputs Z and some set of outputs u which
are only M in number (where M � n) whilst maintaining as
much accuracy as possible. The smaller set of data points Z
and u are called “inducing points”. The input values of these
inducing points do not need to be constrained as a subset of
X, and so they can be freely placed at key locations in the in-
put space of X. Learning these inducing points, along with all
other parameters in the GP, can be done efficiently via varia-
tional inference (Titsias, 2009; Hensman et al., 2013, 2015),
which involves optimising a lower bound for the likelihood
of the data. A specific lower bound used for GPs also facili-
tates additional speed up by allowing small, random, batches
of the total dataset (minibatches) to be used at each optimi-
sation step. We make use of the python package GPflow
(version 1.5.1) (Matthews et al., 2017) which provides an
implementation for sparse GPs. For the GP flow settings, we
used 10 inducing points per input dimension and a minibatch
size of 1000. Further details for sparse GPs are provided in
Appendix A, and in the given references.

2.4 Obtaining an ensemble

To build an emulator of the type described previously, we
need several simulations from the LSM. Standard practice
would be to run the LSM for the entire area of interest (for ex-
ample, Great Britain), and then repeat this several times with
different parameter values to obtain an initial ensemble (Mur-
phy et al., 2004; Booth et al., 2012; Williamson et al., 2017).
Our assumption of LSM grid cell independence means that
we do not need to run the LSM for the entire area of inter-
est. Instead, we can select only a subset of coordinates, and
pair each with a different parameter setting. For JULES, we
select the subset of grid cell coordinates so that they, collec-
tively, are representative of the different regimes of forcing
data that appear in Great Britain. We then pair each coordi-
nate with its own parameter setting in such a way that the set
of (W ts,θ) combinations were sufficiently diverse. Details
for both selection processes are provided in Appendix B.
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To see the potential benefits of this approach, consider
an example where the area of interest contains 200 000 grid
cells, and we could afford to run the LSM for this area 10
times, each time with a different θ value. Alternatively, we
could run 2 000 000 different θ values, each with 1 run at only
1 coordinate. Collectively, this second option should still pro-
vide a good coverage of the different possible forcing data,
but we would now have much better coverage in θ , without
requiring any additional simulation effort.

2.5 Emulating JULES

To demonstrate the outlined framework, we build an emula-
tor for JULES. We narrow our focus to only investigate GPP,
which is a measure of plant photosynthesis. We begin with
GPP as this is the entry point of carbon into the terrestrial
carbon cycle. Further work could focus on emulating other
aspects of the land carbon cycle (such as net primary roduc-
tivity, or vegetation and soil stores). The carbon cycle is rel-
evant for studies of climate change, and for these applica-
tions JULES is typically run globally with a course spatial
resolution (at least 0.5◦× 0.5◦). However our study is moti-
vated by an increasing need for detailed process models to
inform decisions about land use and management at a much
higher resolution. Therefore, we run and emulate JULES at
a 1 km× 1 km resolution for Great Britain1.

Grid cells in JULES are subdivided into tiles represent-
ing vegetated and non-vegetated surfaces. On vegetated tiles,
JULES calculates the GPP for different plant functional types
(PFTs). The grid cell GPP is a weighted average of the
PFT-dependent GPP (depending on the fractional area cov-
ered by each PFT). The five PFTs we use are: deciduous
broadleaf trees (BT), evergreen needleleaf trees (NT), C3
grasses (C3g), shrubs (SH) and cropland (Cr). The fractional
area covered by each PFT is set based on land cover data (see
Appendix C for details on the JULES simulations). We build
five independent emulators, one for each PFT. These inde-
pendent emulators can then be summed together, weighted
by the PFT fractions, to provide the final emulator for overall
GPP. In summary, the overall emulator is then:

GPP(W ts,θ)=
∑

j∈{PFT}
γjGPPj (W ts,θ j ); (4)

with

GPPj (W ts,θ j )∼ GP(W ts,θ j ), (5)

where γj is the fraction of PFT j in the grid cell, GPPj is the
PFT-j -specific GPP value, and θ j is the collection of input
parameters that are relevant for PFT j . This overall emulator
is simply the sum of five distinct emulators, one per PFT.
Building one emulator for each PFT and then summing them
together makes use of more information known to JULES,

1At a 1 km× 1 km resolution, our set-up for Great Britain has a
total of 230 615 grid cells.

which should improve the accuracy of the overall emulator. It
also reduces the dimension of θ in each individual emulator.

The PFTs are characterised by parameters describing
their physiology, radiative properties, seasonal responses and
other attributes. In this configuration of JULES, there are ap-
proximately 50 relevant parameters for each PFT. We inves-
tigate only 13, 10 of which are different for each PFT, cho-
sen based on previous sensitivity studies of JULES (Booth
et al., 2012; Raoult et al., 2016), and experience working with
JULES. Table 1 lists the different tuning parameters θ , stan-
dard values, the ranges we consider, and their role in JULES.

Table 2 provides the different forcing variables that we
provide the emulator. Each can take a different value for each
grid cell, at each time point. Additional details can be found
in Appendix C.

From here, 20 000 combinations of parameters are chosen
and paired with 20 000 grid cells. This results in 9 120 000
data points in total (20 000 grid cell/parameter combinations,
each for 456 eight-day averages). As mentioned previously,
efforts are made to ensure that a good coverage in θ andW ts

is obtained from these choices (by maximising a criteria dis-
cussed in Appendix B).

Running JULES for these settings then provides the data
required to train the outlined emulator. Some simulations
failed, and some simulations were mistakenly run for values
of f 0 which were too high. After discarding these simula-
tions, we are left with 7 814 472 total data points which are
used to train the emulator.

The resulting emulator is then used to perform some ex-
ploratory model tuning (Sect. 3.3) using observational data
from two MODIS satellites (Running and Zhao, 2019a, b)
(see Appendix D for details).

3 Results

3.1 Emulator performance

It is an essential part of the process to check the accuracy
of an emulator, just as it is with the LSM itself. When train-
ing the emulator(s), we hold 10 % of the data points aside
at random. These withheld data points can then be used to
test the accuracy of the emulator(s). For each of the 5 PFT-
specific emulators, we obtain emulator predictions for 1000
randomly chosen points from the withheld testing data set,
and obtain the 2 standard deviation intervals. These 2 stan-
dard deviation intervals should approximately correspond
with the 95.4 % certainty interval; and so roughly 95.4 %
of the withheld data should lie within the intervals. Table 3
shows that each of the 5 emulators performs well, with accu-
racy rates between 94.8 % and 95.6 %.

With this emulator we can then make fast predictions of
8-day average GPP without needing to run JULES again. We
can do this for any time, location and scenario (whether his-
torical or hypothetical), and for any tuning parameter setting

https://doi.org/10.5194/gmd-15-1913-2022 Geosci. Model Dev., 15, 1913–1929, 2022



1918 E. Baker et al.: Land Surface Emulation

Table 1. A table showing the parameters, their “standard” values, their initial untuned ranges, and a short description. Most parameters
are given different ranges for each plant functional type, indicated by the brackets in the parameter name, these are broadleaf trees (BT),
needle-leaf trees (NT), C3 grasses (C3g), shrubs (SH), and crops (Cr).

Parameter Standard Range Description

alpha 0.08 [0.04,0.12] Quantum efficiency of photosynthesis (mol CO2 (mol PAR photons)−1)
knl 0.2 [0.05,0.35] Rate of decay of N through the canopy
g_leaf_0 0.25 [0.1,3] Minimum turnover rate for leaves (360 d)−1

dqcrit(BT) 0.09 [0.045,0.18] Critical humidity deficit (kg H2O per kg air)
dqcrit(NT) 0.06 [0.03,0.12] Critical humidity deficit (kg H2O per kg air)
dqcrit(C3g) 0.051 [0.0255,0.102] Critical humidity deficit (kg H2O per kg air)
dqcrit(SH) 0.03 [0.015,0.06] Critical humidity deficit (kg H2O per kg air)
dqcrit(Cr) 0.075 [0.0375,0.15] Critical humidity deficit (kg H2O per kg air)
f0(BT) 0.875 [0.65,0.972] Ci/Ca when dq = 0
f0(NT) 0.875 [0.65,0.972] Ci/Ca when dq = 0
f0(C3g) 0.931 [0.6916,1.034208] Ci/Ca when dq = 0
f0(SH) 0.875 [0.65,0.972] Ci/Ca when dq = 0
f0(Cr) 0.8 [0.5942857,0.8886857] Ci/Ca when dq = 0
g_grow(BT) 20 [10,40] Rate of leaf growth (360 d)−1

g_grow(NT) 15 [7,30] Rate of leaf growth (360 d)−1

g_grow(C3g) 20 [10,40] Rate of leaf growth (360 d)−1

g_grow(SH) 30 [15,60] Rate of leaf growth (360 d)−1

g_grow(Cr) 20 [10,40] Rate of leaf growth (360 d)−1

lai_max(BT) 7 [3.5,10] Maximum leaf area index
lai_max(NT) 7 [3.5,10] Maximum leaf area index
lai_max(C3g) 3 [1.5,6] Maximum leaf area index
lai_max(SH) 4 [2,7] Maximum leaf area index
lai_max(Cr) 3 [1.5,6] Maximum leaf area index
nmass(BT) 0.0257 [0.0089,0.0354] Top leaf N content (kgN per kgLeaf)
nmass(NT) 0.01091 [0.00667,0.02253] Top leaf N content (kgN per kgLeaf)
nmass(C3g) 0.02248 [0.01076,0.05433] Top leaf N content (kgN per kgLeaf)
nmass(SH) 0.0192 [0.01,0.0319] Top leaf N content (kgN per kgLeaf)
nmass(Cr) 0.0113 [0.00565,0.0226] Top leaf N content (kgN per kgLeaf)
rootd_ft(BT) 2 [0.1,5.33] Parameter for decay of root functioning with depth (m)
rootd_ft(NT) 1.8 [0.1,4.8] Parameter for decay of root functioning with depth (m)
rootd_ft(C3g) 0.5 [0.1,1.333] Parameter for decay of root functioning with depth (m)
rootd_ft(SH) 0.5 [0.1,1.333] Parameter for decay of root functioning with depth (m)
rootd_ft(Cr) 0.5 [0.1,1.333] Parameter for decay of root functioning with depth (m)
tleaf_of(BT) 278.15 [273,283] Temperature below which leaves are dropped (K)
tleaf_of(NT) 233.15 [233,273] Temperature below which leaves are dropped (K)
tleaf_of(C3g) 278.15 [273,283] Temperature below which leaves are dropped (K)
tleaf_of(SH) 278.15 [273,283] Temperature below which leaves are dropped (K)
tleaf_of(Cr) 278.15 [273,283] Temperature below which leaves are dropped (K)
tlow(BT) 0 [−1,1] Lower temperature parameter for photosynthesis (◦C)
tlow(NT) 0 [−1,1] Lower temperature parameter for photosynthesis (◦C)
tlow(C3g) 10 [9,11] Lower temperature parameter for photosynthesis (◦C)
tlow(SH) 10 [9,11] Lower temperature parameter for photosynthesis (◦C)
tlow(Cr) 13 [11,15] Lower temperature parameter for photosynthesis (◦C)
tupp(BT) 32 [22,36] Upper temperature parameter for photosynthesis (◦C)
tupp(NT) 32 [22,36] Upper temperature parameter for photosynthesis (◦C)
tupp(C3g) 32 [22,36] Upper temperature parameter for photosynthesis (◦C)
tupp(SH) 40 [31,46] Upper temperature parameter for photosynthesis (◦C)
tupp(Cr) 45 [28,51] Upper temperature parameter for photosynthesis (◦C)
vsl(BT) 32.50 [6,150] Regression slope between Vcmax and Narea (µmol CO2 gN−1 s−1)
vsl(NT) 21.46 [3,96] Regression slope between Vcmax and Narea (µmol CO2 gN−1 s−1)
vsl(C3g) 48.03 [7,322] Regression slope between Vcmax and Narea (µmol CO2 gN−1 s−1)
vsl(SH) 32.16 [15,119] Regression slope between Vcmax and Narea (µmol CO2 gN−1 s−1)
vsl(Cr) 20.48 [9,95] Regression slope between Vcmax and Narea (µmol CO2 gN−1 s−1)
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Table 2. A table showing the forcing data variables considered

Short Form Name Long Form Name

dtr diurnal temperature range
huss specific humidity
precip precipitation
psurf air pressure
rlds longwave radiation
rsds shortwave radiation
sfcWind wind speed
tas air temperature
slope topographic slope
hcon1 dry thermal conductivity in the upper soil layer
hcon2 dry thermal conductivity in the lower soil layer
satcon1 hydraulic conductivity at saturation in the upper soil layer
satcon2 hydraulic conductivity at saturation in the lower soil layer
vcrit1 critical point water content in the upper soil layer
vcrit2 critical point water content in the lower soil layer
vsat1 saturation point water content in the upper soil layer
vsat2 saturation point water content in the lower soil layer
vwilt1 wilting point water content in the upper soil layer
vwilt2 wilting point water content in the lower soil layer
dayofyear the day of the year

Table 3. A table of the accuracy rates of each of the 5 PFT-specific
emulators. A perfect emulator would have an accuracy rate of
95.4 %; larger values imply underconfidence, smaller values imply
overconfidence.

GPPBT GPPNT GPPC3g GPPSH GPPCr

94.8 % 95.6 % 95.6 % 95.4 % 95.0 %

(assuming reasonable ranges), rapidly on a personal laptop.
As an example, Fig. 2 shows two 1 km resolution maps of
predicted GPP for Great Britain, for 1 June 20042, obtained
from the emulator, using two different tuning parameter set-
tings.

The emulator is given no information about location, and
thus the spatial structure in the predictions is inherited en-
tirely from the forcing data provided. Other maps like these
can be produced for different scenarios representing a range
in environmental data, parameter settings, or PFT fractions.

The ability to emulate a LSM at high resolution opens
many potential avenues of research. For the rest of this sec-
tion we explore two such avenues: sensitivity analysis and
calibration.

3.2 Sensitivity analysis

With a GP emulator it is possible to obtain an automatic, pre-
liminary, sensitivity analysis. If the covariance function, k,

2More accurately, as we are working with 8-day averages, these
maps are for the average from 28 May to 4 June

in Eq. (1) is chosen to be an automatic relevance determina-
tion kernel (as in this paper), the emulator will automatically
obtain estimates of the relative importance of different in-
puts (i.e. how sensitive the outputs are to individual inputs)
if a constant mean function is also chosen (Rasmussen and
Williams, 2006). This choice of k is available as an option
in almost all GP software, often as the default. In training
the emulator, length scale estimates are obtained, which pro-
vide a measure of how far away two points need to be in a
given dimension before they become uncorrelated. As such, a
smaller length scale suggests a stronger relationship between
the parameter and the output, and thus greater importance.
Figure 3 plots these estimates for each input, for each PFT.

Clearly, each PFT has a different relationship between the
inputs and GPP, but some overall patterns are visible. For
one, the forcing data are, in general, more important than the
parameter settings. The air surface temperature (tas), the gra-
dient of a specific grid cell (slope), the amount of shortwave
radiation (rsds), and humidity (huss) all appear important for
all PFTs. For tuning parameters, the parameter “tleaf” ap-
pears important for broadleaf trees and shrubs, and the pa-
rameter “vsl” appears important for all PFTs, as does “alpha”
and “nmass” and “lai_max” also seems to be important for
cropland and C3 grasses. Results like these can provide key
insights into a LSM. A more comprehensive sensitivity anal-
ysis is also possible with an emulator (Oakley and O’Hagan,
2004), with our results obtained automatically after the con-
struction of an emulator using this covariance function.
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Figure 2. Two maps of GPP for 1 June 2004, as generated by the emulator, for two different parameter settings. (a) Corresponds to a
non-implausible set of inputs and (b) corresponds to an implausible set of inputs. Both represent the emulator’s mean prediction.

3.3 Tuning/calibration

Formal tuning, or calibration of the various input parame-
ters in a LSM can also be performed more easily using an
emulator. Tuning is the process of choosing the parameters,
such that the resulting outputs match up with real-life ob-
servations. Without an emulator, an exhaustive search of the
different possible parameter settings can be prohibitively ex-
pensive, and so tuning in practice often involves some de-
gree of arbitrariness, relying heavily on subjective experience
and instinct. Alternatively, an optimisation procedure can be
taken (Raoult et al., 2016; Peylin et al., 2016), but this can be
computationally intensive, the results will not quantify uncer-
tainties completely, and no alternative options are provided if
the final result does not agree with scientific belief.

With an emulator, many different parameter settings can
be directly tested, facilitating an efficient exploration of
the parameter space. History matching is a straightforward
method for testing different parameter settings, ruling out in-
puts as “implausible” if observed data do not match with the
model output (Craig et al., 1997), and has already been suc-
cessfully applied to other climate models (Williamson et al.,
2013; Couvreux et al., 2021; Hourdin et al., 2021). Given
observed data yobs, observational error σ 2

obs, a tolerance to
model error σ 2

MD, a mean prediction for the output of the
model E[y(θ)] and a predictive covariance of the model out-
put 6(θ) (the latter two are provided by an emulator), the
implausibility of any given parameter setting θ can be calcu-
lated as:

I(θ)=
(
yobs−E[y(θ)]

)>(
6(θ)+ σ 2

obsI + σ
2
MDI

)−1

(
yobs−E[y(θ)]

)
, (6)

where I is the identity matrix. Implausibility is similar to
mean square error, but each grid cell is weighted accord-
ing to its uncertainty (which has components due to obser-
vation error, structural model error and emulator variance).
A larger implausibility indicates a greater mismatch between
the observations and the output from the LSM (indicating
that the parameter setting, θ , can be ruled out). A conserva-
tive threshold for rejecting a parameter setting can be taken
as the 99.5 % quantile of the χ2 distribution with l degrees of
freedom (where l is the dimension of the observation) (Ver-
non et al., 2010).

To demonstrate history matching for JULES, we consider
a small subset of our grid cells (1000 points chosen to main-
tain a good coverage of the forcing data), and we randomly
sample a time point for each coordinate. We then use ob-
served GPP data from MODIS (details in Appendix D) for
these locations and times, taking the mean of two separate
observations as “the” observation. We take the observational
error standard deviation σobs as the standard deviation be-
tween the 2 individual observations plus an additional, con-
servative, 20 % of the mean value (because a standard de-
viation estimate obtained from only 2 samples will be very
inaccurate).

Tolerance to model error (model discrepancy) is an inher-
ently subjective concept, and it is almost impossible to learn
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Figure 3. Estimated length scales from the Gaussian process emulators; a smaller value implies a stronger relationship between the input
and GPP. Orange points represent tuning parameters and blue dots represent environmental data. Descriptions for the tuning parameter
abbreviations can be found in Table 1, and descriptions for the environmental data can be found in Table 2.

this from data when there are also uncertain tuning param-
eters, at least not without strong prior beliefs (Brynjarsdót-
tir and O’Hagan, 2014). To elicit subjective values for the
model discrepancy variance, we use the 3-point Pearson and
Tukey formula outlined in Keefer and Bodily (1983) and Re-
vie et al. (2010). With this, we need to provide several values
quantifying how flawed we believe JULES could be. Specif-
ically, we have to provide the 5 %, 50 %, and 95 % quan-
tiles for what we believe the difference between real GPP
and the estimates of GPP from JULES would be, even if we
obtained the “correct” parameter values. For this, we assume
the difference could be up to 40 % of the real GPP value (our
95 % quantile), or down to 20 % of the real GPP value (our
5 % quantile), whilst assuming the output from JULES is still
the best guess for what the real GPP could be (0, our 50 %
quantile). With these beliefs, the Pearson and Tukey formula
imposes a mild bias (as our hypothetical distribution for the
failings of JULES is skewed), which needs to be added to

the
(
yobs−E[y(θ)]

)
terms in Eq. (6). To calculate these val-

ues, we use the observed data as a substitute for the real GPP
values. Because of how we quantified our model discrepancy
beliefs, our values for the model discrepancy bias and vari-
ance vary from grid cell to grid cell.

We then consider 100 000 different candidate parameter
settings (θ , selected using a maximin Latin hypercube to en-
sure a good variety McKay et al., 1979) and immediately
rule-out roughly 85.5 % as implausible, leaving 14 475 non-
implausible parameter settings.

Some parameter settings are not ruled out because they re-
sult in sufficiently accurate GPP predictions. Some are not
ruled out because the uncertainty from the emulator is too
large. To rectify this, more JULES runs can be made for pa-
rameter settings which have not yet been ruled out, improv-
ing the confidence of the emulator in the non-implausible re-
gions of parameter space, and the tuning process can then
be repeated. This is common practice with history matching,
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and is called “iterative refocusing” (Hourdin et al., 2021). We
obtain another “wave” of 3000 JULES runs, using 3000 dif-
ferent non-implausible parameter settings. These parameter
settings are chosen as a subset of the 14 475 non-implausible
parameter settings found, with the subset chosen using the
same technique used to choose the initially simulated grid
cell subset in Sect. 2.4. The grid cells for the new runs were
made up of 2000 new coordinates chosen via the same tech-
nique in Sect. 2.4, and the 1000 coordinates that we have ob-
servational data for. These parameter settings and grid cells
are then combined via the same technique for matching pa-
rameter settings and grid cells used in Sect. 2.4.

The combined set of the new JULES runs and the previous
runs for parameter settings which are not yet ruled out makes
up the second wave dataset. We fit a new emulator using the
same procedure as before, which is then used to further rule
out parameter settings. We find a further 69.9 % of parame-
ter settings to be implausible; leaving a total of 4363 non-
implausible parameter settings, or 4.4 % of the originally
considered set of parameter settings. This procedure could
be repeated further, until no changes are found. At any stage,
the non-implausible parameter settings represent the param-
eter choices which sufficiently agree with the observed data
and simulations, considering the various uncertainties.

Interestingly, we found “canonical JULES” (i.e. the set of
standard values considered) to be non-implausible in the first
wave, but with more simulations, we found it be implausible
in the second. This suggests that improvements in the stan-
dard settings can be made.

The map on the left in Fig. 2 was produced using a non-
implausible parameter setting, and the map on the right used
an implausible parameter setting. There is a clear difference
between the two maps. Spatial gradients in the not yet ruled
out parameter setting are much more gentle, with no large ex-
tremes in GPP, but still a distinct spatial pattern (for example,
lower GPP in the Scottish highlands, and a decrease in GPP
going from west to east and corresponding to rainfall gradi-
ents). The GPP map corresponding to the ruled out parameter
setting appears very extreme, predicting larger changes over
relatively small areas, as well as generally very large values
for GPP, with the extremes > 15 gC m−2 d−1.3

As an illustrative example of the iterative tuning process;
Fig. 4 presents different possible trajectories from different
possible parameter settings.

This plot shows how the distribution of possible trajecto-
ries of the model output change after different waves of tun-
ing. Initially, the range of possible trajectories extends far be-
yond what is possible according to the observations. By wave
2, the trajectories closely follow the observations, with their
allowed spread appearing to be determined entirely by the
observational error. The improvement between wave 1 and

3gC m−2 d−1 is used as the unit here, but these GPP predictions
are still for the 8-day average

Figure 4. Different time series of GPP for the year 2002 for a ran-
domly chosen coordinate where we have observations. Grey lines
represent 100 randomly chosen parameter settings before any tun-
ing is performed. Blue lines represent 100 randomly chosen param-
eter settings after the first wave of tuning. Red lines represent 100
randomly chosen parameter settings after the second wave of tun-
ing. The black solid line represents the observations for that coordi-
nate (and the black dashed lines represent the 2 standard deviation
intervals of the observational error). By its nature, all possible wave
2 trajectories must be a subset of all possible wave 1 trajectories,
which in turn must also be a subset of all possible initial trajecto-
ries.

wave 2 is visible, but minor, suggesting that an additional
wave of simulations is unlikely to be worthwhile.

4 Discussion

In this work, we have outlined a framework for emulating
land surface models (LSM) using sparse Gaussian processes
(GP). This framework takes into account a unique feature of
many LSMs, incorporating the information contained within
the forcing data. Under this framework, a substantially bet-
ter coverage of the input parameters can be obtained in the
initial simulation ensembles, without additional simulation
effort and without compromising analytical capabilities. The
use of sparse GPs for emulating a LSM is the first we are
aware of and is natural here where the ensembles are made
artificially large, relative to standard computer experiments.
Specific modifications were made to build an emulator for
JULES, but the overall procedure can remain the same for
many LSMs. However, every LSM is different, and so vari-
ous modifications to the procedure should be made depend-
ing on the specific priorities and interests of the modeller.

Such an emulator can be used to achieve many experimen-
tal goals. Being able to obtain fast predictions for new sim-
ulations can unlock comprehensive analysis and exploration
of the various relationships within an LSM, even at high res-
olution. Any goal that would be better achieved with unlim-
ited simulation from the LSM could benefit from an emula-
tor acting as a fast surrogate model. Sensitivity analysis and
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calibration of input parameters are two potential applications
which were explored briefly in this work. A promising poten-
tial application is optimisation, where one tries to maximise
(or minimise) an output of the LSM (or a metric that can be
created from various outputs). The optimisation of a system
using a high-resolution LSM could be an effective tool in
informing local policymaking regarding changing land use.
Optimisation usually requires many evaluations of the pro-
cess in question, and local policy making will require expen-
sive high resolution evaluations, and so an emulator like the
one outlined here is a valuable asset. Optimisation using GPs
is a well-researched topic (Mockus, 2012; Jones et al., 1998),
and is often referred to as Bayesian optimisation.

Along with extensions to practical use, there are a few
methodological extensions to this work that can be envi-
sioned. With our emulator framework, model predictions
should be valid for any future or alternative scenario, assum-
ing the driving data for said scenario do not exceed the ex-
tremes of the driving data used to train the emulator. If the
driving data for a new scenario go beyond the extremes from
the training data, then the emulator will begin to extrapo-
late, and accuracy will decrease when and where the training
data extremes are exceeded. With a changing climate, this is
more likely to occur (although one would hope that the driv-
ing data, such as the air temperature, will not soon constantly
exceed the highest value observed in the historical training
record). This potential problem could be avoided by training
a land surface emulator using partially artificial driving data,
along with observed driving data as we have, with the arti-
ficial driving data providing coverage for potential extreme,
unseen, scenarios.

Also, for the outlined emulator framework, the modifica-
tion wherein the high dimensional spatiotemporal output is
converted to a large set of 1D outputs allows the informa-
tion in the forcing data to be readily incorporated and the
dimension of the output to be shrunk. However, removing
the time structure (instead of only the spatial) is, in many
cases, a simplification rather than an assumption. Re-adding
the time structure may be an interesting direction for future
work. This could be via a dynamic emulator as discussed pre-
viously, by using dimension reduction techniques over the
time dimension, or by including previous time steps of the
driving data W(t−i)s as inputs to the emulator. The current
modifications explained in Sect. 2.2 seem to provide an ac-
ceptably accurate emulator. Although the 95 % certainty in-
tervals produced by the PFT-specific emulators for JULES
contain the truth roughly 95 % of the time, the emulators can
still be considerably erroneous on rare occasions. Also, even
though GPP is always greater than 0, sometimes the emula-
tors will predict GPP to be less than 0 (which is easily recti-
fied by converting any negative predictions to 0, but this does
distort the uncertainty intervals when GPP is predicted to be
small/negative). As such, it should be noted that, just like a
LSM, an emulator can always be improved upon.

Regarding JULES itself, the preliminary sensitivity anal-
ysis in Sect. 3.2 identified that, in general, the forcing data
have a greater influence on GPP than the parameter settings.
This is perhaps obvious as the amount of plant activity de-
pends heavily on the environment but this does suggest im-
proving the accuracy of environmental data should be a key
priority for practitioners working with JULES. This agrees
with the results from McNeall et al. (2020). The sensitivity
analysis performed in Sect. 3.2 was only a preliminary, auto-
matic, sensitivity analysis. A more comprehensive sensitivity
analysis using this emulator (perhaps in the format of Oakley
and O’Hagan, 2004) is left for future work.

For the tuning procedure, more waves of simulations could
be added until no greater improvements could be made. Al-
ternatively, one non-implausible parameter setting could be
hand-selected via expert opinion. Additionally, the obser-
vational data used were of relatively poor quality, with a
large observational error that would have hindered the re-
jection of some poor parameter choices. All low values of
GPP (< 2 gC m−2 d−1) were also excluded from the observa-
tional data because of a mismatch between the two sources
of data (Appendix D), which means that many parameter
choices which poorly recreate low GPP may not have been
rejected. Better observational data, with lower observational
uncertainty and requiring fewer deletions/with less missing
data, would further shrink the parameter space, improving
the tuning results.

Similarly, while the obtained tuning for JULES ensured
that the remaining parameter settings match well with the
observed GPP, this does not necessarily mean that the param-
eters will match well with other outputs of JULES. Emulat-
ing and matching multiple distinct outputs is an interesting
avenue for future experimentation with JULES, especially
when it is entirely possible that certain parameter settings
will be good for one output but mutually exclusive parameter
settings will be good for a different output (this effect was
observed by McNeall et al., 2020). This would mean that no
parameter settings will provide an overall good match (the
so-called terminal case, Salter et al., 2019), and suggests the
degree of model discrepancy is larger than initially thought.
Discovering which observations a LSM can and cannot re-
produce, and which parameter settings are better and which
are worse, can be useful information for quantifying and rec-
tifying the flaws in a LSM.

As an additional note regarding tuning: reducing the set of
non-implausible parameter settings does not necessarily im-
pose any individual bounds on the various parameters. For
example, if there were only two parameters, both promot-
ing plant growth, then it is entirely reasonable to believe a
large value for the first and a small value for the second could
match with reality, while believing that a small value in the
first and a large in the second could also match with reality.
What would be important here, is to rule out small values for
both and large values for both. With 53 parameters, rather
than just 2, this situation is essentially guaranteed.
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A technique related to tuning is that of data assimilation
(Reich and Cotter, 2015), which is common in the wider
environmental science community, the best known applica-
tion being weather forecasting. With data assimilation at each
time step within a specific simulation, the simulation results
(the state variables) are adjusted to match more closely to
the observed data, before resolving the next time step. This
goal is somewhat related to tuning, because both can result
in better matched simulations and observations but the way
in which this is done and the overall experimental objectives
differ. One could tune a model’s parameters but then also
perform data assimilation on a final simulation. Data assimi-
lation methodology can also be used to simultaneously tune
model parameters and adjust the model state, avoiding the
need for a specialised tuning procedure but it is not clear if
such a strategy is effective (Rougier, 2013).

As a reminder, a key benefit of an emulator is its com-
putational speed compared to running the full model. For
comparison, simulations of JULES over Great Britain on a
1.5 km× 1.5 km resolution can take approximately 9.5 h per
decade for the spin up (a warm-up period where detailed out-
puts are not produced) and approximately 25.5 h per decade
in similar model runs to the ones used in this paper. These
were run on 72 processors on the Met Office and NERC
Supercomputer Node phase 2 (MONSooN2). The emula-
tor, however, on a higher 1 km× 1 km resolution, for Great
Britain, takes roughly 20 s on a personal laptop for an 8-day
prediction using 1 core. This would correspond to approxi-
mately 2.5 h per decade. There are a few important caveats
to this which can make the emulator even faster in practice.
Firstly, the emulator predictions are fully parallelizable, and
so speed increases are easily achieved through using more
cores. Secondly, these emulator prediction times are for a
personal laptop, which we would expect to perform worse
than a supercomputer. Thirdly, sparse GPs still scale with the
number of training points used, and the 9 120 000 data points
used for this emulator are probably excessive by at least 1
order of magnitude. Fourthly, and perhaps most importantly,
the emulator does not need spin-up time, and does not need to
be run for a whole time series. This makes it easier to directly
obtain the desired information, for the desired times and de-
sired locations; long run periods are not always needed. For
example, the tuning performed in Sect. 3.3 did not need the
entirety of Great Britain for the entire historical record and
instead the emulator was able to explore many different val-
ues of the tuning parameters for a select few times and lo-
cations, something which would not be possible without an
emulator.

As a final comment from this work, hopefully we have
highlighted the relative accessibility of modern statistical
techniques. Gaussian process emulators are sophisticated but
they can also be intuitive, whilst also being incredibly ca-
pable. Software for implementing GP emulators is readily
available and abundant. Compared to the expertise required
to initially develop a complex LSM, relatively basic exper-

tise is required to extract substantially more value from the
model using an emulator.

Appendix A: Sparse Gaussian processes

What follows is a technical overview for sparse GPs and how
they are fit. Full discussion and derivation is left to the cited
references. Implementation for sparse GPs is readily accessi-
ble via publicly available software such as the python pack-
age GPflow.

Consider a mean zero GP (as used throughout this arti-
cle)4, with kernel K(·, ·). An alternative way to express the
GP formulation for an ensemble of model output, y, is:

y | f ,σ 2
∼ N(f ,σ 2I) (A1)

f ∼ N(0,Knn), (A2)

where Knn is the matrix k(X,X). This formulation says that
the model data are an observation of an underlying GP, f ,
and will allow for computational simplifications.

Posterior inference requires the inversion of Knn, which
becomes impractical if n is large, and is particularly prob-
lematic for fully Bayesian inference (which requires this in-
version for every proposed parameter sample) but also for
methods where the parameters are optimised and plugged in.

A solution to this lies in a variational approximation to
posterior inference based on augmenting f with m� n

pseudo-simulations, u, at input locations Z, called “inducing
points”. Variational methods propose an approximate para-
metric posterior distribution, q(·), known as the variational
posterior, and find the parameters for q()which minimise the
Kullback-Leibler divergence between q() and the true pos-
terior. This is equivalent to maximising a well known lower
bound on the marginal likelihood (Salimbeni and Deisenroth,
2017):

L= Eq(f ,u)

[
log

p(y,f ,u)

q(f ,u)

]
. (A3)

Taking the variational posterior as q(f ,u)= p(f | u)q(u),
with q(u)=N (u;m,S) (where the slight abuse of notation,
N (u;m,S), is used to represent the normal density for u
with mean m and variance S) leads to p(f | u) cancelling
in Eq. (A3), because p(y,f ,u)= p(y | f )p(f | u)p(u):

L= Eq(f ,u)

[
log

p(y | f )p(u)

q(u)

]
.

Additionally, u can be analytically integrated out from
q(f ,u) (required for the expectation) to leave:

q(f |m,S)=N (f | µ,6),
4This is a modelling choice that is common with some au-

thors (Binois et al., 2018), whilst more complex mean functions
are favoured by others (Bower et al., 2010). A discussion of these
choices can be found in Sect. 2.7 of Rasmussen and Williams (2006)
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with

µ=KnmK−1
mmm

6 =Knn−KnmK−1
mm(Kmm−S)K−1

mmKT
nm,

where Kmm is the matrix k(Z,Z), and Knm is the matrix
k(X,Z). This formulation only requires the inversion of
m×mmatrices, providing a significant computational speed-
up.

Collecting the terms of L that depend on u gives

L= Eq(f |m,S)
[
logp(y | f )

]
+Eq(u)

[
log

p(u)

q(u)

]
, (A4)

where the second term is the KL divergence between prior
p(u) and q(u). The first term can be expressed as a sum of
univariate expectations of individual data points so that

L=

n∑
i=1

Eq(fi |m,S)
[
logp(yi | fi)

]
+Eq(u)

[
log

p(u)

q(u)

]
.

As such, during optimisation of L for the various parame-
ters (m,S, Z and the covariance hyperparameters), the data
can be subsampled at each iteration (still obtaining an unbi-
ased estimator for L). These smaller subsamples are called
minibatches, and provide a second computational speed-up
(Hensman et al., 2013).

Appendix B: Choosing JULES runs

Throughout this article we mentioned how the various
JULES simulations were chosen to maintain a good cover-
age of the forcing dataW ts and the tuning parameters θ . The
sheer number of runs that were possible under this frame-
work reduces the importance of carefully selected simula-
tions, but we will outline our method here for completeness.

In JULES, because outputs at time t are dependent on state
variables from time t − 1, a grid cell must be run for the en-
tire time range of interest (rather than only for the time steps
required). As such, we could not simply select W ts to have
good coverage, we instead had to select a set of grid cells
such that the resulting set of W ts had good coverage. To do
so we condensed the time series wt for a given grid cell s into
its historical mean ŵs from 2000–2009, and ensured that a
good coverage of these means were obtained.

To ensure that a good coverage was obtained we used the
combination of three distinct scores. The first score is the
minimum distance between any two ŵs within a potential
set of these historical means, Ŵs . The distance between any
two ŵs represents how similar any two grid cells are, and so
maximising this minimum distance M ensures that no two
chosen grid cells are too similar.

The second score is based on Latin hypercubes. Latin hy-
percubes are designs where, after binning each dimension
di , each bin in each dimension is forced to contain only one

point (McKay et al., 1979). A Latin hypercube ensures that
every dimension has good coverage. As we are not design-
ing our grid cells from scratch, and instead have a large set
to choose from (those that exist in Great Britain), obtaining
an actual Latin hypercube is most likely impossible. Instead,
we score a potential set of Ŵs based on how close to a Latin
hypercube it is. Our Latin hypercube score is:

L=
∑
di

∑
b

|Pb−Ab|, (B1)

where b is the index for a bin, Pb is the preferred number of
points in the bin, and Ab is the actual number of points in
the bin. In a real Latin hypercube, because there would be
as many bins b as desired points in the ensemble, Pb would
always equal 1, and Ab would always equal 1. As such, for a
real Latin hypercube, L= 0. The further away Ŵs is from 0,
the less like a Latin hypercube it is. Because we are dealing
with a large number of desired data points, we set the number
of bins in each dimension equal to 20, and so Pb is equal to
n/20 (where n is the number of desired ensemble members).

These two scores together constitute a type of “maximin
Latin hypercube score”. Normally this would be sufficient,
but as mentioned before, we have had to work with the his-
torical means Ŵs rather than the actual inputs Wts . The intra-
cell variation does still matter for the emulator, as a grid cell
which has a very variable climate is more useful, providing
more information into how JULES reacts to different forcing
values. As such, our third score, C, is simply the difference
between the historical 90th percentile and the historical 10th
percentile (summed over each grid cell in the potential set of
grid cells Ŵts , summed over each forcing dimension), pro-
viding a measure of how variable that grid cell is.5

To select a set of grid cells to run JULES for, we then
combine these individual scores as:6

λMM − λLL+ λCC. (B2)

A set of grid cells with a higher combined score is a better set
of grid cells to run. We randomly obtain many potential sets
of grid cells and score each of them, the highest scoring set
of grid cells is then the one chosen. The λi in this equation
are weights to ensure the three component scores are on the
same scale, and equal 1/(max(i)−min(i)).

To choose the set of parameters that go with the grid cells,
many Latin hypercubes (of dimension 53) were generated
(which is possible because the tuning parameters θ can take
any value in their domain), and the combined design (Ŵs,θ)

with the maximum minimum distance was chosen.
5Note that, for M , L, and C here, the forcing data dimensions

are all scaled to be between 0 and 1, ensuring a fair balance for each
dimension

6When using this equation to choose a subset of non-implausible
parameter settings to use in the second wave of history matching,
the λCC term is excluded (as it does not exist for parameter set-
tings).
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More potential designs can be obtained if these schemes
are run for a longer period of time, thus providing a better
final result. The wave 1 grid cell selection scheme, the wave 1
θ selection scheme and the calibration data grid cell selection
scheme were all run for 5 h. For the wave 2 design the grid
cell selection scheme and the θ selection schemes were all
run for 1 h. These times are certainly excessive, especially
given the large number of JULES runs obtained, and a much
shorter run time would have been sufficient.

Appendix C: JULES Configuration

The JULES configuration used in this study is JULES ver-
sion 5.6, based on Blyth et al. (2019). Full details are pro-
vided in that paper, but here we provide relevant background
information for interpreting the emulator results. We also
note any changes from Blyth et al. (2019). The five PFTs
used were chosen for their relevance to UK landscapes,
three non-vegetated surfaces can also be present in each
grid cell: lakes, urban, and bare soil. The fractional cover-
age of these eight tiles is prescribed in each grid cell based
on the CEH (UK Centre for Ecology & Hydrology) Land
Cover Map 2000 (Fuller et al., 2002). The soil is repre-
sented by four discrete layers (0.0–0.1, 0.1–0.35, 0.35–1.0,
and 1.0–3.0 m), with the Van Genuchten approach used for
calculating soil hydrology. The relevant parameters are cal-
culated from textures taken from the Harmonised World Soil
Database (Nachtergaele et al., 2012). These parameters are:
dry thermal conductivity (hcon), hydraulic conductivity at
saturation (satcon), volumetric water content at the wilting
point, a critical point (below which GPP is reduced due to
soil moisture stress), and the saturation point (vwilt, vcrit,
and vsat, respectively). In this work, each layer is treated as
a different input to the emulator, and only the top and bottom
layers are considered, as the central two mimicked the outer
two. The topographic slope is also used to calculate satura-
tion excess run-off; this is derived from a 50 m resolution
database – the CEH Institute of Hydrology Digital Terrain
Model (IHDTM) (Morris and Flavin, 1990, 1994).

The driving meteorology, described in Robinson et al.
(2017), is a combination of gridded daily precipitation obser-
vations and other meteorological observations. The original
data resolution was 40 km, and this was downscaled to 1 km
based on topography (Blyth et al., 2019). There are eight me-
teorological driving variables: the diurnal temperature range
(dtr), air temperature (tas) specific humidity (huss), precipita-
tion (precip), air pressure (psurf), longwave radiation (rlds),
shortwave radiation (rsds), and wind speed (sfcWind). We
take values for these forcing variables from the CHESS data
set (Robinson et al., 2017).

The model is run at a half-hour time step. The daily driv-
ing meteorology is interpolated to half-hourly using a dis-
aggregation scheme (Blyth et al., 2019). Model fluxes such
as GPP, NPP, respiration, latent heat, sensible heat, and run-

off are calculated every half hour. At the end of each day,
a phenology scheme updates leaf area index based on tem-
perature functions of leaf growth and senescence. Every 10
days, the dynamic vegetation component of JULES (TRIF-
FID) updates vegetation and soil carbon stores. Competition
between vegetation types is turned off in this configuration
of the model. Note that in Blyth et al. (2019), LAI was pre-
scribed rather than predicted, and TRIFFID was not used to
update carbon stores.

Appendix D: Tuning Data

In the tuning procedure, we used the MOD17A2HGF and
MYD17A2HGF Version 6 gap-filled GPP data as a test for
model tuning and calibration (Running and Zhao, 2019a, b).
The observed GPP data are a cumulative 8-day composite
of values within 500 m, from the Terra (MOD17A2HGF)
and Aqua (MYD17A2HGF) satellites. The data were down-
loaded from the NASA Application for Extracting and Ex-
ploring Analysis Ready Samples (AppEEARS, AppEEARS
Team, 2020). The dataset comes with quality flags, and we
only included “good quality” data with clear skies and where
the main (RT) method was used, yielding either “best re-
sult possible” or “good very usable” result. We extracted
the 500 m pixel closest to the centre of the CHESS grid cell
used in the JULES simulation. When both Terra and Aqua
had “good” retrievals for a given time and location, we used
an average of the two. An additional constraint was neces-
sary, as sometimes one satellite retrieved a moderately high
GPP while the other retrieved a distinctly smaller value. As
a conservative fix, we ignored both retrievals when a value
< 2 gC m−2 d−1 was retrieved.

Code and data availability. The JULES outputs were obtained
from running JULES version 5.6, at revision 15927, using the
model setup specified in Rose suite u-bo065. Both the JULES
code and Rose suite are available via UK Met Office (2022) at
https://code.metoffice.gov.uk. Simulations used to fit the emulator
are available at https://doi.org/10.5285/789bea37-0450-4822-9857-
3dc848feb937 (Baker et al., 2021). Python code to build and vali-
date the emulator is provided in the Supplement.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-15-1913-2022-supplement.
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