Articles | Volume 14, issue 11
https://doi.org/10.5194/gmd-14-6977-2021
https://doi.org/10.5194/gmd-14-6977-2021
Model description paper
 | 
17 Nov 2021
Model description paper |  | 17 Nov 2021

ENSO-ASC 1.0.0: ENSO deep learning forecast model with a multivariate air–sea coupler

Bin Mu, Bo Qin, and Shijin Yuan

Related authors

IceTFT v1.0.0: interpretable long-term prediction of Arctic sea ice extent with deep learning
Bin Mu, Xiaodan Luo, Shijin Yuan, and Xi Liang
Geosci. Model Dev., 16, 4677–4697, https://doi.org/10.5194/gmd-16-4677-2023,https://doi.org/10.5194/gmd-16-4677-2023, 2023
Short summary
Simulation, precursor analysis and targeted observation sensitive area identification for two types of ENSO using ENSO-MC v1.0
Bin Mu, Yuehan Cui, Shijin Yuan, and Bo Qin
Geosci. Model Dev., 15, 4105–4127, https://doi.org/10.5194/gmd-15-4105-2022,https://doi.org/10.5194/gmd-15-4105-2022, 2022
Short summary
Optimal Precursors Identification for North Atlantic Oscillation using CESM and CNOP Method
Bin Mu, Jing Li, Shijin Yuan, Xiaodan Luo, and Guokun Dai
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2020-27,https://doi.org/10.5194/npg-2020-27, 2020
Revised manuscript not accepted
Short summary
A Parallel Hybrid Intelligence Algorithm for Solving Conditional Nonlinear Optimal Perturbation to Identify Optimal Precursors of North Atlantic Oscillation
Bin Mu, Jing Li, Shijin Yuan, Xiaodan Luo, and Guokun Dai
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2019-25,https://doi.org/10.5194/npg-2019-25, 2019
Revised manuscript not accepted
Short summary
A novel approach for solving CNOPs and its application in identifying sensitive regions of tropical cyclone adaptive observations
Linlin Zhang, Bin Mu, Shijin Yuan, and Feifan Zhou
Nonlin. Processes Geophys., 25, 693–712, https://doi.org/10.5194/npg-25-693-2018,https://doi.org/10.5194/npg-25-693-2018, 2018
Short summary

Related subject area

Climate and Earth system modeling
Development of a plant carbon–nitrogen interface coupling framework in a coupled biophysical-ecosystem–biogeochemical model (SSiB5/TRIFFID/DayCent-SOM v1.0)
Zheng Xiang, Yongkang Xue, Weidong Guo, Melannie D. Hartman, Ye Liu, and William J. Parton
Geosci. Model Dev., 17, 6437–6464, https://doi.org/10.5194/gmd-17-6437-2024,https://doi.org/10.5194/gmd-17-6437-2024, 2024
Short summary
Dynamical Madden–Julian Oscillation forecasts using an ensemble subseasonal-to-seasonal forecast system of the IAP-CAS model
Yangke Liu, Qing Bao, Bian He, Xiaofei Wu, Jing Yang, Yimin Liu, Guoxiong Wu, Tao Zhu, Siyuan Zhou, Yao Tang, Ankang Qu, Yalan Fan, Anling Liu, Dandan Chen, Zhaoming Luo, Xing Hu, and Tongwen Wu
Geosci. Model Dev., 17, 6249–6275, https://doi.org/10.5194/gmd-17-6249-2024,https://doi.org/10.5194/gmd-17-6249-2024, 2024
Short summary
Implementation of a brittle sea ice rheology in an Eulerian, finite-difference, C-grid modeling framework: impact on the simulated deformation of sea ice in the Arctic
Laurent Brodeau, Pierre Rampal, Einar Ólason, and Véronique Dansereau
Geosci. Model Dev., 17, 6051–6082, https://doi.org/10.5194/gmd-17-6051-2024,https://doi.org/10.5194/gmd-17-6051-2024, 2024
Short summary
HSW-V v1.0: localized injections of interactive volcanic aerosols and their climate impacts in a simple general circulation model
Joseph P. Hollowed, Christiane Jablonowski, Hunter Y. Brown, Benjamin R. Hillman, Diana L. Bull, and Joseph L. Hart
Geosci. Model Dev., 17, 5913–5938, https://doi.org/10.5194/gmd-17-5913-2024,https://doi.org/10.5194/gmd-17-5913-2024, 2024
Short summary
A 3D-Var assimilation scheme for vertical velocity with CMA-MESO v5.0
Hong Li, Yi Yang, Jian Sun, Yuan Jiang, Ruhui Gan, and Qian Xie
Geosci. Model Dev., 17, 5883–5896, https://doi.org/10.5194/gmd-17-5883-2024,https://doi.org/10.5194/gmd-17-5883-2024, 2024
Short summary

Cited articles

Balmaseda, M. A., Davey, M. K., and Anderson, D. L.: Decadal and seasonal dependence of ENSO prediction skill, J. Climate, 8, 2705–2715, 1995. 
Barnston, A. G., Tippett, M. K., L'Heureux, M. L., Li, S., and DeWitt, D. G.: Skill of real-time seasonal ENSO model predictions during 2002–11: Is our capability increasing?, B. Am. Meteorol. Soc., 93, 631–651, 2012. 
Bayr, T., Dommenget, D., and Latif, M.: Walker circulation controls ENSO atmospheric feedbacks in uncoupled and coupled climate model simulations, Clim. Dynam., 54, 2831–2846, https://doi.org/10.1007/s00382-020-05152-2, 2020. 
Behringer, D. W. and Xue, Y.: Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean, in: Proc. Eighth Symp. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, 2004. 
Bellenger, H., Guilyardi, É., Leloup, J., Lengaigne, M., and Vialard, J.: ENSO representation in climate models: From CMIP3 to CMIP5, Clim. Dynam., 42, 1999–2018, 2014. 
Download
Short summary
Considering the sophisticated energy exchanges and multivariate coupling in ENSO, we subjectively incorporate the prior physical knowledge into the modeling process and build up an ENSO deep learning forecast model with a multivariate air–sea coupler, named ENSO-ASC, the performance of which outperforms the other state-of-the-art models. The extensive experiments indicate that ENSO-ASC is a powerful tool for both the ENSO prediction and for the analysis of the underlying complex mechanisms.