Articles | Volume 14, issue 11
Geosci. Model Dev., 14, 6977–6999, 2021
https://doi.org/10.5194/gmd-14-6977-2021
Geosci. Model Dev., 14, 6977–6999, 2021
https://doi.org/10.5194/gmd-14-6977-2021

Model description paper 17 Nov 2021

Model description paper | 17 Nov 2021

ENSO-ASC 1.0.0: ENSO deep learning forecast model with a multivariate air–sea coupler

Bin Mu et al.

Related authors

Simulation, Precursor Analysis and Targeted Observation Sensitive Area Identification for Two Types of ENSO using ENSO-MC v1.0
Bin Mu, Yuehan Cui, Shijin Yuan, and Bo Qin
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-396,https://doi.org/10.5194/gmd-2021-396, 2022
Preprint under review for GMD
Short summary
Optimal Precursors Identification for North Atlantic Oscillation using CESM and CNOP Method
Bin Mu, Jing Li, Shijin Yuan, Xiaodan Luo, and Guokun Dai
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2020-27,https://doi.org/10.5194/npg-2020-27, 2020
Revised manuscript not accepted
Short summary
A Parallel Hybrid Intelligence Algorithm for Solving Conditional Nonlinear Optimal Perturbation to Identify Optimal Precursors of North Atlantic Oscillation
Bin Mu, Jing Li, Shijin Yuan, Xiaodan Luo, and Guokun Dai
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2019-25,https://doi.org/10.5194/npg-2019-25, 2019
Revised manuscript not accepted
Short summary
A novel approach for solving CNOPs and its application in identifying sensitive regions of tropical cyclone adaptive observations
Linlin Zhang, Bin Mu, Shijin Yuan, and Feifan Zhou
Nonlin. Processes Geophys., 25, 693–712, https://doi.org/10.5194/npg-25-693-2018,https://doi.org/10.5194/npg-25-693-2018, 2018
Short summary

Related subject area

Climate and Earth system modeling
ChAP 1.0: a stationary tropospheric sulfur cycle for Earth system models of intermediate complexity
Alexey V. Eliseev, Rustam D. Gizatullin, and Alexandr V. Timazhev
Geosci. Model Dev., 14, 7725–7747, https://doi.org/10.5194/gmd-14-7725-2021,https://doi.org/10.5194/gmd-14-7725-2021, 2021
Short summary
Non-Hydrostatic RegCM4 (RegCM4-NH): model description and case studies over multiple domains
Erika Coppola, Paolo Stocchi, Emanuela Pichelli, Jose Abraham Torres Alavez, Russell Glazer, Graziano Giuliani, Fabio Di Sante, Rita Nogherotto, and Filippo Giorgi
Geosci. Model Dev., 14, 7705–7723, https://doi.org/10.5194/gmd-14-7705-2021,https://doi.org/10.5194/gmd-14-7705-2021, 2021
Short summary
Robustness of neural network emulations of radiative transfer parameterizations in a state-of-the-art general circulation model
Alexei Belochitski and Vladimir Krasnopolsky
Geosci. Model Dev., 14, 7425–7437, https://doi.org/10.5194/gmd-14-7425-2021,https://doi.org/10.5194/gmd-14-7425-2021, 2021
Short summary
NorCPM1 and its contribution to CMIP6 DCPP
Ingo Bethke, Yiguo Wang, François Counillon, Noel Keenlyside, Madlen Kimmritz, Filippa Fransner, Annette Samuelsen, Helene Langehaug, Lea Svendsen, Ping-Gin Chiu, Leilane Passos, Mats Bentsen, Chuncheng Guo, Alok Gupta, Jerry Tjiputra, Alf Kirkevåg, Dirk Olivié, Øyvind Seland, Julie Solsvik Vågane, Yuanchao Fan, and Tor Eldevik
Geosci. Model Dev., 14, 7073–7116, https://doi.org/10.5194/gmd-14-7073-2021,https://doi.org/10.5194/gmd-14-7073-2021, 2021
Short summary
Topography-based local spherical Voronoi grid refinement on classical and moist shallow-water finite-volume models
Luan F. Santos and Pedro S. Peixoto
Geosci. Model Dev., 14, 6919–6944, https://doi.org/10.5194/gmd-14-6919-2021,https://doi.org/10.5194/gmd-14-6919-2021, 2021
Short summary

Cited articles

Balmaseda, M. A., Davey, M. K., and Anderson, D. L.: Decadal and seasonal dependence of ENSO prediction skill, J. Climate, 8, 2705–2715, 1995. 
Barnston, A. G., Tippett, M. K., L'Heureux, M. L., Li, S., and DeWitt, D. G.: Skill of real-time seasonal ENSO model predictions during 2002–11: Is our capability increasing?, B. Am. Meteorol. Soc., 93, 631–651, 2012. 
Bayr, T., Dommenget, D., and Latif, M.: Walker circulation controls ENSO atmospheric feedbacks in uncoupled and coupled climate model simulations, Clim. Dynam., 54, 2831–2846, https://doi.org/10.1007/s00382-020-05152-2, 2020. 
Behringer, D. W. and Xue, Y.: Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean, in: Proc. Eighth Symp. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, 2004. 
Bellenger, H., Guilyardi, É., Leloup, J., Lengaigne, M., and Vialard, J.: ENSO representation in climate models: From CMIP3 to CMIP5, Clim. Dynam., 42, 1999–2018, 2014. 
Download
Short summary
Considering the sophisticated energy exchanges and multivariate coupling in ENSO, we subjectively incorporate the prior physical knowledge into the modeling process and build up an ENSO deep learning forecast model with a multivariate air–sea coupler, named ENSO-ASC, the performance of which outperforms the other state-of-the-art models. The extensive experiments indicate that ENSO-ASC is a powerful tool for both the ENSO prediction and for the analysis of the underlying complex mechanisms.