Articles | Volume 14, issue 11
Geosci. Model Dev., 14, 6977–6999, 2021
https://doi.org/10.5194/gmd-14-6977-2021
Geosci. Model Dev., 14, 6977–6999, 2021
https://doi.org/10.5194/gmd-14-6977-2021
Model description paper
17 Nov 2021
Model description paper | 17 Nov 2021

ENSO-ASC 1.0.0: ENSO deep learning forecast model with a multivariate air–sea coupler

Bin Mu et al.

Related authors

Simulation, precursor analysis and targeted observation sensitive area identification for two types of ENSO using ENSO-MC v1.0
Bin Mu, Yuehan Cui, Shijin Yuan, and Bo Qin
Geosci. Model Dev., 15, 4105–4127, https://doi.org/10.5194/gmd-15-4105-2022,https://doi.org/10.5194/gmd-15-4105-2022, 2022
Short summary
Optimal Precursors Identification for North Atlantic Oscillation using CESM and CNOP Method
Bin Mu, Jing Li, Shijin Yuan, Xiaodan Luo, and Guokun Dai
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2020-27,https://doi.org/10.5194/npg-2020-27, 2020
Revised manuscript not accepted
Short summary
A Parallel Hybrid Intelligence Algorithm for Solving Conditional Nonlinear Optimal Perturbation to Identify Optimal Precursors of North Atlantic Oscillation
Bin Mu, Jing Li, Shijin Yuan, Xiaodan Luo, and Guokun Dai
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2019-25,https://doi.org/10.5194/npg-2019-25, 2019
Revised manuscript not accepted
Short summary
A novel approach for solving CNOPs and its application in identifying sensitive regions of tropical cyclone adaptive observations
Linlin Zhang, Bin Mu, Shijin Yuan, and Feifan Zhou
Nonlin. Processes Geophys., 25, 693–712, https://doi.org/10.5194/npg-25-693-2018,https://doi.org/10.5194/npg-25-693-2018, 2018
Short summary

Related subject area

Climate and Earth system modeling
Simulation, precursor analysis and targeted observation sensitive area identification for two types of ENSO using ENSO-MC v1.0
Bin Mu, Yuehan Cui, Shijin Yuan, and Bo Qin
Geosci. Model Dev., 15, 4105–4127, https://doi.org/10.5194/gmd-15-4105-2022,https://doi.org/10.5194/gmd-15-4105-2022, 2022
Short summary
Stable climate simulations using a realistic general circulation model with neural network parameterizations for atmospheric moist physics and radiation processes
Xin Wang, Yilun Han, Wei Xue, Guangwen Yang, and Guang J. Zhang
Geosci. Model Dev., 15, 3923–3940, https://doi.org/10.5194/gmd-15-3923-2022,https://doi.org/10.5194/gmd-15-3923-2022, 2022
Short summary
Description of historical and future projection simulations by the global coupled E3SMv1.0 model as used in CMIP6
Xue Zheng, Qing Li, Tian Zhou, Qi Tang, Luke P. Van Roekel, Jean-Christophe Golaz, Hailong Wang, and Philip Cameron-Smith
Geosci. Model Dev., 15, 3941–3967, https://doi.org/10.5194/gmd-15-3941-2022,https://doi.org/10.5194/gmd-15-3941-2022, 2022
Short summary
Training a supermodel with noisy and sparse observations: a case study with CPT and the synch rule on SPEEDO – v.1
Francine Schevenhoven and Alberto Carrassi
Geosci. Model Dev., 15, 3831–3844, https://doi.org/10.5194/gmd-15-3831-2022,https://doi.org/10.5194/gmd-15-3831-2022, 2022
Short summary
GREB-ISM v1.0: A coupled ice sheet model for the Globally Resolved Energy Balance model for global simulations on timescales of 100 kyr
Zhiang Xie, Dietmar Dommenget, Felicity S. McCormack, and Andrew N. Mackintosh
Geosci. Model Dev., 15, 3691–3719, https://doi.org/10.5194/gmd-15-3691-2022,https://doi.org/10.5194/gmd-15-3691-2022, 2022
Short summary

Cited articles

Balmaseda, M. A., Davey, M. K., and Anderson, D. L.: Decadal and seasonal dependence of ENSO prediction skill, J. Climate, 8, 2705–2715, 1995. 
Barnston, A. G., Tippett, M. K., L'Heureux, M. L., Li, S., and DeWitt, D. G.: Skill of real-time seasonal ENSO model predictions during 2002–11: Is our capability increasing?, B. Am. Meteorol. Soc., 93, 631–651, 2012. 
Bayr, T., Dommenget, D., and Latif, M.: Walker circulation controls ENSO atmospheric feedbacks in uncoupled and coupled climate model simulations, Clim. Dynam., 54, 2831–2846, https://doi.org/10.1007/s00382-020-05152-2, 2020. 
Behringer, D. W. and Xue, Y.: Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean, in: Proc. Eighth Symp. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, 2004. 
Bellenger, H., Guilyardi, É., Leloup, J., Lengaigne, M., and Vialard, J.: ENSO representation in climate models: From CMIP3 to CMIP5, Clim. Dynam., 42, 1999–2018, 2014. 
Download
Short summary
Considering the sophisticated energy exchanges and multivariate coupling in ENSO, we subjectively incorporate the prior physical knowledge into the modeling process and build up an ENSO deep learning forecast model with a multivariate air–sea coupler, named ENSO-ASC, the performance of which outperforms the other state-of-the-art models. The extensive experiments indicate that ENSO-ASC is a powerful tool for both the ENSO prediction and for the analysis of the underlying complex mechanisms.