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Abstract. The El Niño–Southern Oscillation (ENSO) is an
extremely complicated ocean–atmosphere coupling event,
the development and decay of which are usually modulated
by the energy interactions between multiple physical vari-
ables. In this paper, we design a multivariate air–sea coupler
(ASC) based on the graph using features of multiple physical
variables. On the basis of this coupler, an ENSO deep learn-
ing forecast model (named ENSO-ASC) is proposed, whose
structure is adapted to the characteristics of the ENSO dy-
namics, including the encoder and decoder for capturing and
restoring the multi-scale spatial–temporal correlations, and
two attention weights for grasping the different air–sea cou-
pling strengths on different start calendar months and varied
effects of physical variables in ENSO amplitudes. In addi-
tion, two datasets modulated to the same resolutions are used
to train the model. We firstly tune the model performance to
optimal and compare it with the other state-of-the-art ENSO
deep learning forecast models. Then, we evaluate the ENSO
forecast skill from the contributions of different predictors,
the effective lead time with different start calendar months,
and the forecast spatial uncertainties, to further analyze the
underlying ENSO mechanisms. Finally, we make ENSO pre-
dictions over the validation period from 2014 to 2020. Exper-
iment results demonstrate that ENSO-ASC outperforms the
other models. Sea surface temperature (SST) and zonal wind
are two crucial predictors. The correlation skill of the Niño
3.4 index is over 0.78, 0.65, and 0.5 within the lead time
of 6, 12, and 18 months respectively. From two heat map
analyses, we also discover the common challenges in ENSO
predictability, such as the forecasting skills declining faster
when making forecasts through June–July–August and the
forecast errors being more likely to show up in the western

and central tropical Pacific Ocean in longer-term forecasts.
ENSO-ASC can simulate ENSO with different strengths,
and the forecasted SST and wind patterns reflect an obvious
Bjerknes positive feedback mechanism. These results indi-
cate the effectiveness and superiority of our model with the
multivariate air–sea coupler in predicting ENSO and analyz-
ing the underlying dynamic mechanisms in a sophisticated
way.

1 Introduction

The El Niño–Southern Oscillation (ENSO) can induce global
climate extremes and ecosystem impacts (Zhang et al.,
2016), which are the dominant sources of interannual climate
changes. The El Niño (La Niña) is the ocean phenomena of
ENSO and is usually considered as the large-scale positive
(negative) sea surface temperature (SST) anomalies in the
tropical Pacific Ocean. The Niño 3 (Niño 4) index is the com-
mon indicator for ENSO research to measure the cold tongue
(warm pool) variabilities, which is the averaged SST anoma-
lies covering the Niño 3 (Niño 4) region (see Fig. 1). Besides
these two indicators, the ONI (oceanic Niño index, 3-month
running mean of SST anomalies in the Niño 3.4 region) has
become the de facto standard to identify the occurrence of
El Niño and La Niña events: if the ONIs of 5 consecutive
months are over 0.5 ◦C (below −0.5 ◦C), El Niño (La Niña)
occurs.

Conventional forecast approaches mainly rely on numer-
ical climate models. However, it is worth noting that the
model biases of traditional approach have always been a
problem for accurate ENSO predictions (Xue et al., 2013).
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Figure 1. Regions most affected by ENSO events. The blue rect-
angle covers the Niño 3 region (5◦ N–5◦ S, 150◦W–90◦W), and
the green rectangle covers the Niño 4 region (5◦ N–5◦ S, 160◦ E–
150◦W).

In addition, many other intrinsic factors also limit the ENSO
predictability such as natural decadal variations in ENSO
amplitudes. For example, predictability tends to be higher
when the ENSO cycle is strong than when it is weak (Barn-
ston et al., 2012; Balmaseda et al., 1995; McPhaden, 2012).
Recently, due to deluges of multi-source real-world geo-
science data starting to accumulate, e.g., remote sensing and
buoy observation, meteorological researchers were inspired
to build lightweight and convenient data-driven models at a
low computational cost (Rolnick et al., 2019), which lead to a
wave of formulating ENSO forecast with deep learning tech-
niques, producing more skilful ENSO predictions (Ham et
al., 2019).

In the field of deep learning, ENSO prediction is usually
regarded as forecasting the future evolution tendency of SST
and related Niño indexes directly, subsequently analyzing the
associated sophisticated mechanisms, and measuring the in-
trinsic characteristics such as intensity and duration. There-
fore, the simplest but most practical forecast manners can be
divided into two categories intuitively: Niño index forecast
and SST pattern forecast.

As for Niño index forecasting, many favorable neural net-
works have made accurate predictions 6, 9 and 12 months
ahead. For instance, ensemble QESN (McDermott and
Wikle, 2017), BAST-RNN (McDermott and Wikle, 2019)
and LSTM (long short-term memory) (Broni-Bedaiko et al.,
2019) are representative works. These studies demonstrate
that the deep learning can well capture the nonlinear charac-
teristics of non-stationary time series and attain outstanding
regressions on Niño index.

Notwithstanding the successful attempts on the Niño index
regression, there still exist many pitfalls in measuring ENSO
forecast skills by only one single scalar. For example, the
important spatial–temporal energy propagations and telecon-

nections cannot be described by the indexes. It may lead to
the blind pursuit of the accuracy of a certain indicator while
seriously hampering the grasp of underlying physical mech-
anisms. Therefore, many studies are suggestive of exploiting
spatial–temporal dependencies and predicting the evolution
of SST patterns. Ham et al. (2019) apply transfer learning
(Yosinski et al., 2014) to historical simulations from CMIP5
(Coupled Model Intercomparison Project phase5, Bellenger
et al., 2014) and reanalysis data with a CNN model to predict
ENSO events, resulting in a robust and long-term forecast
for up to 1.5 years, which outperforms the current numeri-
cal predictions. (Though the output of their model is still the
Niño 3.4 index, they construct the model and make forecasts
by absorbing the historical spatial–temporal features from
variable patterns instead of previous index records, so we
mark this study as SST pattern forecasts in this paper.) Mu
et al. (2019) and He et al. (2019) built a ConvLSTM (Shi et
al., 2015) model to capture the spatial–temporal dependen-
cies of ENSO SST patterns over multiple time horizons and
obtained better predictions. Zheng et al. (2020) constructed
a purely satellite-data-driven deep learning model to forecast
the evolutions of tropical instability wave, which is closely
related to ENSO phenomena, and obtained accurate and ef-
ficient forecasts. These deep learning models tend to simu-
late the behaviors of numerical climate models, the inputs of
which are historical geoscience data and the outputs of which
are the forecasted SST patterns.

The reason for the great progress in these works is no
accident. On the one hand, the deep learning models have
much more complex structures and can mine the compli-
cated features hidden in the samples more effectively, which
allows them to be substantially more expressive with blend-
ing the non-stationarity in temporal and the multi-scale tele-
connections in spatial. On the other hand, it is very conve-
nient to migrate deep learning computer vision technologies
to ENSO forecasting due to the nature analogy between the
format of image/video frame data and meteorological time-
series grid data, which offers promises for extracting spatial–
temporal mechanisms of ENSO via advanced deep learning
techniques. Therefore, the data-driven deep learning can be
a reliable alternative to traditional numerical models and a
powerful tool for the ENSO forecasting.

However, there are still some obstacles in the deep learn-
ing modeling process for ENSO forecasting. Very often, most
existing models are confined to limited or even single in-
put predictors, such as only using historical SST (and wind)
data as the model input. Meanwhile, the climate deep learn-
ing models are rarely adaptively customized to the specific
physical mechanisms of ENSO. These situations lead to poor
interpretability and low confidence of ENSO-related deep
learning models. ENSO is an extremely complicated ocean–
atmosphere coupling event, and the development and de-
cay phases are closely associated with some crucial dynamic
mechanisms and Walker circulation (Bayr et al., 2020),
whose status have great impacts. Walker circulation is usu-
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ally modulated by multi-physical variables (such as SST,
wind, precipitation, etc.), and there are always coupling in-
teractions between different variables. More specifically, the
varieties of the Walker circulation have strong temporal-lag
effects on ENSO (“memory effects”). The position of the as-
cending branch is also a very important climatic condition
for the occurrence of El Niño. Such a priori ENSO knowl-
edge has not been effectively used in deep learning model.

Therefore, in order to further improve the ENSO predic-
tion skill, there is an essential principle that should be re-
flected in climate deep learning models: subjectively incor-
porating the a priori ENSO knowledge into the deep learn-
ing formalization and deriving hand-crafted features to make
predictions.

In this paper, according to the important synergies of
multiple variables in crucial ENSO dynamic mechanisms
and Walker circulation, we select six indispensable variables
(SST, u wind, v wind, rain, cloud, and vapor) that are in-
duced from ENSO-related key processes to build a mul-
tivariate air–sea coupler (ASC) based on a graph mathe-
matically, which emphasizes the energy exchange between
multiple variables. We then leverage this coupler to build
up the ENSO deep learning forecast model, named ENSO-
ASC, with an encoder–coupler–decoder structure to extract
the multi-scale spatial–temporal features of multiple physical
variables. Two attention weights are also proposed to grasp
the different air–sea coupling strengths on different start cal-
endar months and varied effects of these variables. A loss
function combining MSE (mean squared error) and MAE
(mean absolute error) is used to guide the model training pre-
cisely, and SSIM (structural similarity) (Wang et al., 2004)
and PSNR (peak signal-to-noise ratio) are used as metrics to
evaluate the spatial consistency of the forecasted patterns.

Two datasets are applied for model training to ensure that
the systematic forecast errors are fully corrected after tuning
by the higher quality dataset: we first train the ENSO-ASC
on the numerous reanalysis samples from January 1850 to
December 2015 and subsequently on the high-quality remote
sensing samples from December 1997 to December 2012 for
fine-tuning. This procedure is also known as transfer learn-
ing. These two datasets are modulated to the same resolution.
The validation period is from January 2014 to August 2020 in
the remote sensing dataset. The gap between the fine-tuning
set and validation set is used to remove the possible influence
of oceanic memory (Ham et al., 2019).

This is the first time that a multivariate air–sea coupler has
been designed that considers energy interactions. We eval-
uate the ENSO-ASC from three aspects: firstly, we evalu-
ate the model performance from the perspective of model
structure, including the input sequence length, the benefits
of transfer learning, multivariate air–sea coupler, and the at-
tention weights, and tune the model structure to optimal.
Then, we analyze the ENSO forecast skill of the ENSO-ASC
from the meteorological aspects, including the contributions
of different input physical variables, the effectiveness of fore-

cast lead time, the forecast skill changes with different start
calendar months, and the forecast spatial uncertainties. Sub-
sequently, we make the real-world ENSO simulations during
the validation period by tracing the evolutions of multiple
physical variables. From the experiment results, ENSO-ASC
performs better in both SSIM and PSNR of the forecasted
SST patterns, which effectively raises the upper limitation
of ENSO forecasts. The forecasted ENSO events are more
consistent with real-world observations and the related Niño
indexes have higher correlations with observations than tra-
ditional methods and current state-of-the-art deep learning
models, which is over 0.78/0.65/0.5 within the lead time of
6/12/18 months for Niño 3.4 index. SST and zonal wind are
two crucial predictors, which can be considered as the major
triggers of ENSO. A temporal heat map analysis illustrates
that the ENSO forecasting skills decline faster when mak-
ing forecasts through June–July–August, and a spatial heat
map analysis shows that the forecast errors are more likely to
show up over the central tropical Pacific Ocean in longer-
term forecasts. Meanwhile, in the validation period from
2014 to 2020, the multivariate air–sea coupler can capture the
latent ENSO dynamical mechanisms and provide multivari-
ate evolution simulations with a high degree of physical con-
sistency: The positive SST anomalies first show up over the
eastern equatorial Pacific with the westerly wind anomalies
in the western and central tropical Pacific Ocean (vice versa
in the La Niña events), which induces Bjerknes positive feed-
back mechanism. It is worth noting that for the simulation
of the 2015–2016 super El Niño, ENSO-ASC captures its
strong evolutions of SST anomalies over the northeast sub-
tropical Pacific in the peak phase and successfully predicts
its very-high-intensity and very-long-duration, while many
dynamic or statistical models fail. At the same time, ENSO-
ASC can also reduce false alarm rate such as in 2014. From
the mathematical expression, the multivariate air–sea coupler
captures the spatial–temporal multi-scale oscillations of the
Walker circulation and performs the ocean–atmosphere en-
ergy exchange simultaneously, which tries to avoid the in-
terval flux exchange in geoscience fluid programming of tra-
ditional numerical climate models. In conclusion, the graph-
based multivariate air–sea coupler not only exhibits effective-
ness and superiority to predict sophisticated climate phenom-
ena, but is also a promising tool for exploiting the underlying
dynamic mechanisms in the future.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the proposed multivariate air–sea coupler.
Section 3 describes the ENSO deep learning forecast model
with the coupler (ENSO-ASC) in detail. Section 4 illustrates
the datasets, experiment schemas and result analyses. Finally,
Sect. 5 offers further discussions and summarizes the paper.
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2 Multivariate air–sea coupler based on graph

ENSO is the most dominant phenomenon of air–sea coupling
over the equatorial Pacific, and many complex dynamical
mechanisms modulate the ENSO amplitudes. Bjerknes posi-
tive feedback (Bjerknes, 1969) is one of the most significant
effects, the processes of which are highly related to the status
of the Walker circulation. There are energy interactions be-
tween the multiple physical variables influenced by Walker
circulation every moment, and the ENSO-related SST vari-
eties are greatly affected by such air–sea coupling activities
(Gao and Zhang, 2017; Lau et al., 1989; Lau et al., 1996).

Many atmospheric and oceanic anomalies are known as
triggers of ENSO events, which establish the Bjerknes posi-
tive feedback. The warming SST anomalies propagate to the
central and eastern equatorial Pacific gradually. As SST grad-
ually rises, it is virtually impossible for the equatorial Pacific
to enter a never-ending warm state. Therefore, some nega-
tive feedback will cause turnabouts from warm phases to cold
phases (Wang et al., 2017). These negative feedback mecha-
nisms all emphasize air–sea interactions. For example, west-
erly wind anomalies in the central tropical Pacific Ocean in-
duce the upwelling Rossby and downwelling Kevin oceanic
waves, both of which propagate and reflect on the continen-
tal boundary and then tend to push the warm pool back to its
original position in the western Pacific. From the perspective
of ENSO life cycle, atmospheric and oceanic variables play
crucial roles together.

Meanwhile, during the development and decay phases of
ENSO, there also exist nonlinear interactions between at-
mospheric and oceanic variables. Wind anomalies are the
most obvious and direct response of the ENSO-driven large-
scale oceanic varieties, and they will change the ocean–
atmosphere heat transmissions (Cheng et al., 2019). Once the
ocean status changes, the thermal energy contained in the sea
will escalate or dissipate into the air, hindering or promoting
the precipitation and surface humidity over the equatorial Pa-
cific. These changes also give feedback on the ENSO.

Meteorological researchers have already identified the key
physical processes in ENSO in recent years. If such knowl-
edge can be incorporated into ENSO deep learning forecast
modeling subjectively, breaking away from the current limi-
tation of using single predictors, the accuracy of ENSO pre-
diction will promise breakthroughs. In this paper, we choose
six ENSO-related indispensable variables from two differ-
ent multivariate datasets as shown in Table 1, which all have
strong correlations within the evolution of ENSO events ac-
cording to Bjerknes positive feedback and other dynamical
processes. Furthermore, in order to comprehensively repre-
sent the coupling interactions, a multivariate air–sea cou-
pler coupler(G) is designed to simulate their synergies with
an undirected graph G= (V ,A) as shown in Fig. 2, where
V = (fv1fv2 , . . .,fvN ) represents the vertices of the graph
and fvi is the feature of every physical variable vi (i =
1,2, . . .,N). A ∈ RN×N is the pre-designed adjacency ma-

Figure 2. A description of our proposed multivariate air–sea cou-
pler, which utilizes the spatial–temporal features of multiple physi-
cal variables to simulate the energy exchanging simultaneously.

trix, where Ai,j = 1 (Ai,j = 0) represents the existing (non-
existent) energy interactions between the connected variables
vi and vj . The variables exchange energies simultaneously
every moment, and the directions of edges in this graph can
be neglected because the energy interactions are two-way
(transfer and feedback).

Here, V in G is not the physical variable on a single grid
point, but the features of the entire variable pattern. The rea-
son lies in the following: on the one hand, the coupler will
pay more attention to the global and local spatial–temporal
correlations in the variable fields of ENSO rather than the
variations on an isolated grid. On the other hand, the coupler
will provide a higher computational efficiency and consume
a lower calculation resource for ENSO forecasting. Improve-
ments to the couplers, such as designing individual graph for
smaller-scale regions and even a single grid, are future con-
siderations.

3 ENSO-ASC: ENSO deep learning forecast model
with the multivariate air–sea coupler

Inspired by previous ENSO deep learning forecast models,
we can define the ENSO forecast as a multivariate spatial–
temporal sequence forecast problem as illustrated in Eq. (1),

ŝ = Fθ (s
scm), {sst,uwind,vwind,rain,cloud,vapor} ⊆ sscm, (1)

where sscm
∈ RN×M is N multivariate observations in his-

torical M months (N = 6), and ŝ ∈ RN×H is the prediction
result for future H months (H can be also treated as forecast
lead time). scm∈ {Jan,Feb, . . .,Dec} (start calendar month)
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represents the last month in the input series sscm. Fθ repre-
sents the forecast system (θ denotes the trainable parameters
in the system).

In order to incorporate the multivariate coupler, we break
down the conventional formulation and redefine the mul-
tivariate ENSO forecast model as the encoder–coupler–
decoder structure shown as in Eqs. (2) to (4),

encoder: fvi = encoderi(sscmi ), (2)

coupler: fc = coupler(G)

= coupler((fv1 ||fv2 ||. . .||fvN ), A), (3)
decoder: ŝi = decoderi(fvi ||fci ), (4)

where the sscm
i (i = 1,2, . . .,N) represents the individual

physical data and fvi represents the corresponding extracted
features by respective encoders. The coupler ( q) simulates
the latent multivariate interactions on the physical features
and the pre-designed interaction graph A, where the oper-
ator || represents the concatenation of features of different
physical variables. Then the respective decoders will restore
the physical features end-to-end by the coupled multivari-
ate features fci and original physical features fvi , the con-
catenation of which can be regarded as skip-layer connec-
tions. These connections can propagate the low-level feature
to high levels of the model directly, preserving the raw infor-
mation and accelerating feature transfers to some extent. The
sub-modules encoderi( q), coupler( q), and decoderi( q) form
the ENSO-ASC together.

As mentioned before, the strength of the multivariate cou-
pling and the effects of multivariate temporal memories in
ENSO are changing with different input sequence length M
and forecast start calendar month scm. In order to grasp such
effects on forecasts, we design two self-supervised atten-
tion weights, α = (a1,a2, . . .,aM) and β = (b1,b2, . . .,bN ),
in the encoder and coupler respectively to capture the dy-
namic time-series non-stationarity and re-weight the multi-
variate contributions. The final formulation of the forecast
model can be written as shown in Eqs. (5) to (7) and in Fig. 3,
where ◦ represents the element-wise multiplication.

encoder: fvi = α ◦ encoderi(sscmi ) (5)

coupler: fc = coupler(β ◦G)

= coupler((b1fv1 ||b2fv2 ||. . .||bNfvN ), A) (6)
decoder: ŝi = decoderi(fvi ||fci ) (7)

In addition, there are basically two forecast strategies
for ENSO prediction: direct multi-step (DMS) and iterated
multi-step (IMS) (Chevillon, 2007). The former means pre-
dicting the future H th-month multivariate pattern directly,
and the latter means utilizing the forecast output result as
the input for future iterated predictions. Figure 4 displays the
differences between DMS and IMS. In general, DMS is often
unstable and more difficult to train for a deep learning model

(Shi and Yeung, 2018). Therefore, we choose IMS to han-
dle chaos data and provide more accuracy predictions, that
is, forecasting the next 1-month (H = 1) multivariate data
in the model, and then using this output as model input to
continuously predict the future evolutions. We also design a
combined loss function to train our model and use two spa-
tial metrics to evaluate the forecast results. The intentions
and detailed implementations of every part in the model are
interpreted as the following sections.

3.1 Encoder: stacked ConvLSTM layers for extracting
spatial–temporal features

The ENSO evolution has a strong correlation with historical
atmospheric and oceanic memory (W. Zhang et al., 2019).
An ENSO deep learning forecast model should be able to si-
multaneously extract the long-term spatial–temporal features
from multivariate geoscience grid data and effectively mine
the complicated nonlinearity hidden in the data. Stacked
ConvLSTM layers are constructed as the skeleton of the en-
coder (see orange arrows in Fig. 5) for each chosen physical
variable individually.

In order to capture the multi-scale spatial teleconnec-
tions in ENSO amplitudes, we set a 3D max-pool layer be-
tween two ConvLSTM layers respectively (as blue arrows
in Fig. 5), the stride of which on the time axis is set to 1
to retain the sequence length M . Considering these obtained
multi-scale spatial features after every 3D max-pool layers,
we design the skip-layer connections shown in the grey box
in Fig. 5. These layers propagate and cascade the raw fea-
tures of the same variable from its encoder (lower levels) to
its decoder (higher levels) directly (See Fig. 9) like dense
connections (Huang et al., 2017). Such a structure can pre-
serve more details at multi-scale spatial teleconnections and
also solve the problem of gradient disappearance. In addi-
tion, we design the encoders and decoders to be symmetric,
ensuring that the feature maps in these connections have the
same shape.

Since we set H = 1 as the IMS forecast strategy, the fea-
ture maps on the encoder all have a time axis, which the de-
coders do not have. The memory effects on the forecast are
mutative with different input sequence lengths and forecast
start calendar months; if we propagate all time steps’ feature
maps from the encoder to the coupler and the decoder, it is
too redundant and even causes over-averaged forecast results,
which hinders the descriptions of the special seasonal ampli-
tudes. Therefore, before the skip-layer connections, we first
determine the attention weights to dynamically fuse multiple
time steps’ feature maps in the encoder, which can capture
the seasonal periodicity hidden in the physical variables and
is also called temporal attention weight α (shown as ⊕ sym-
bols in Fig. 5).

After obtaining sequential feature maps T =

[t1, t2, . . ., tm]m= 1,2, . . .,M from each 3D max-pool
layer, we first flatten every time step feature map

https://doi.org/10.5194/gmd-14-6977-2021 Geosci. Model Dev., 14, 6977–6999, 2021
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Figure 3. The structure of ENSO-ASC. There are six encoders for the chosen variables to extract spatial–temporal information and a
multivariate air–sea coupler to simulate interactions. After interactions, we design six decoders to restore the major variable SST and other
variables. The training loss and performance metrics are also displayed.

Figure 4. Two common ways in sequence prediction for ENSO forecasts: direct multi-step (DMS) and iterated multi-step (IMS).

Figure 5. A detailed structure for encoder: a stacked ConvLSTM
encoder for extracting spatial–temporal features simultaneously.
There is also temporal attention weight for skip-layer connections
in the grey box.

tm ∈ R
w×h×c by the width w, height h, and channel c

as t ′m ∈ R
1×(w×h×c) and then cascade them together along

the time axis as T ′ =
[
t ′1, t
′

2, . . ., t
′
m

]
m= 1,2, . . .,M , where

T ′ ∈ RM×(w×h×c). We apply Eq. (8) on T ′ to determine the
self-supervised attentive weight α ∈ RM for each time step’s
feature map tm.

α = softmax(Wαt tanh
(
WtT

′
+ bt

)
+ bαt ), (8)

where Wt ∈ R
d1×M and Wαt ∈ R

d1 are transformation ma-
trices, d1 is a hyper parameter, and bt ∈ R

d1 and bαt ∈ R are
biases. Every dimension in α represents the contribution to
the forecast of corresponding time step, and we use Eq. (9) to
fuse the original feature T = [t1, t2, . . ., tm]m= 1,2, . . .,M .

T̃ = h(α,T )=

M∑
m=1

(αm ◦ tm), (9)

where T̃ is the aggregated feature map for skip-layer connec-
tions, and function h( q) represents the summary of element-
wise multiplication.

The feature map sizes are described in Fig. 5 in detail. The
sizes of ConvLSTM kernels are all 3× 3 and the channel
sizes are [2,4,8,16] during forward propagation, where the
changes between adjacent layers are smooth and small. The
final output (with size of 16×40×55) of the encoder is gen-
erated by a convolution layer of 32× 5× 5 with stride 5 and
output a feature map with size of 8× 11× 32, which is used
to filter the noise derived by such the deep-layer structure.
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Figure 6. Multivariate coupling interactions within K-order neigh-
bors (taking SST as the center).

3.2 Multivariate air–sea coupler: learning multivariate
synergies via graph convolution

From the perspective of ENSO dynamics, the occurrences of
ENSO are accompanied by energy interactions. Based on our
formalization and chosen physical variables, we define the
corresponding adjacency matrix A ∈ R6×6 and degree ma-
trix D ∈ R6×6 (the diagonal matrix, the value on the diagonal
indicates the number of other vertices connected to this ver-
tices) as in Eq. (10), which means all physical variables have
coupling interactions with each other (fully connected).

A=

 1 · · · 1
...

. . .
...

1 · · · 1

D=

 6 · · · 0
...

. . .
...

0 · · · 6

 (10)

In practical implementation mathematically, we use a graph
Laplacian matrix L to normalize the energy flow of original
adjacency matrix A as in Eq. (11), where In is an identity
matrix with the order n× n. L can be considered as the di-
rections in which the excess unstable energy will propagate
to other variables when the entire system is perturbed (such
as external wind forcing).

L= In−D−
1
2 AD−

1
2 (11)

Meanwhile, the interactions between ENSO-related vari-
ables are cascaded, which means that the effects between
physical variables are multi-order as depicted in Fig. 6. For
example, the precipitation anomalies affect the wind anoma-
lies, which in turn affect the evolutions of SST, as depicted
in Fig. 6 (right). According to the properties of the Laplacian
matrix, LK is employed to determine the cascaded interac-
tions betweenK-order neighbors. So, if we considerK-order
effects, the whole process is defined by Eq. (12),

P (l+1)
= σ

(
K∑
k=1

2(k)LKP (l)

)
, (12)

where 2(k) represents the latent trainable multivariate in-
teractions. K represents the truncated order of effects con-

cerned. P (l) represents the input features before coupling in-
teractions and P (l+1) represents the coupled features. Each
row in both P (l) and P (l+1) represents the same variables.
Activation function σ increases the nonlinearity. Figure 7 il-
lustrates the above process mathematically, which is named
as the K-order graph convolution layer.

The K-order graph convolution network (GCN) in
Eq. (12) is actually the higher-order extension of original
GCN (Bruna et al., 2013). Furthermore, we use Chebyshev
polynomial TK(L̃) to approximate the higher-order polyno-
mial

[
L1,L2, . . .,LK

]
k = 1,2, . . .,K to accelerate calcula-

tion, where L̃= 2L/λmax−In scales L within [−1,1] to sat-
isfy the Chebyshev polynomial and λmax is the maximum
Eigen value of L (Hammond et al., 2011; Defferrard et al.,
2016). This approximation accelerates the calculation of the
K-order GCN by reducing the computational complexity
from O(n2) to O(K |ε|) (|ε| is the edge count in the graph).
Based on such neural structure, we construct the multivariate
air–sea coupler (ASC) to learn synergies related to ENSO as
in Fig. 8.

After obtaining the spatial–temporal features (Such as the
colored feature maps in Fig. 8) from multivariate encoders
respectively, we first flatten and cascade them as P (l) like the
blue box in Fig. 8. As mentioned above, each row of P (l)

represents different variables. P (l) is marked as multivariate
feature map and acts as the input of the coupler. The coupler
is designed as a dual-layer summation structure like the yel-
low box in Fig. 8. The input for the second layer is the sum
of the input and the output of the first layer, and the output of
the second layer is determined by the weighted fusion of the
outputs of these two layers in the manner designed by Chen
et al. (2019), which is the residual learning to enhance the
generalization ability of the network (He et al., 2016).

Because the variables contribute differently to the ENSO
forecast, especially in different start calendar months, we
propose the multivariate self-supervised attention weight for
determining the effects for the input physical variables as ⊗
symbols in Fig. 8. Before P (l) passes into the multivariate
coupler, the weight β ∈ RN for each variable is determined
by Eq. (13).

β = softmax
(

Wβp tanh
(

WpP
(l)
+ bp

)
+ bβp

)
, (13)

where Wp ∈ R
d2×N and Wβp ∈ R

d2 are transformation ma-
trices, d2 is a hyper parameter, and bp ∈ Rd2 and bβp ∈ R
are biases. Then we use Eq. (14) to calculate the modulated
multi-physical variable feature map, where g( q) represents
the element-wise multiplication.

P (l) = g
(
β,P (l)

)
= β �P (l) (14)

In the multivariate air–sea coupler, the corresponding loca-
tions of physical variables on the input feature map and out-
put feature map are fixed. For example, if we set the SST
feature in the last row of the input multivariate feature map
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Figure 7. K-order graph convolution layer. K is the truncated order and LK represents the interactions between K-order neighbors. Each
row in p(l) and p(l+1) represents features of different physical variables, and their positions are not changed during forward propagation.

Figure 8. A detailed structure for multivariate air–sea coupler be-
tween encoder and decoder: pre-processes for input (upper row),
and dual-layer structure for residual learning (lower row). There is
also a multivariate attention weight in the coupler.

of the coupler, the SST feature will be in the last row of the
output multivariate feature map as shown in Fig. 7 and will
be propagated to the decoder for pattern prediction later.

3.3 Decoder: end-to-end learning to restore the
forecasted multivariate patterns

ENSO evolution is considered as a hydrodynamic process.
Meteorologists usually use linear methods, such as empiri-
cal orthogonal function (EOF) or singular value decompo-
sition (SVD) methods to extract features and then analyze
the potential characteristics and predict the future evolution
of ENSO. In these methods, complex dynamical processes
are usually simplified to facilitate calculations while un-
known detailed processes are not comprehensively revealed
or even neglected, which leads to low prediction accuracy.
Therefore, we use the end-to-end learning to restore the evo-
lutions of multi-physical variable patterns. The multi-scale
spatial–temporal correlations should be also considered in
this process, so the decoder consists of stacked transform-
convolution layers and up-sampling layers.

From the output feature map of the multivariate air–sea
coupler, we pick up the corresponding row (taking SST as

Figure 9. A detailed structure for decoder, skip-layer connections
from encoder for helping end-to-end learning to restore the fore-
casted patterns at different spatial scales.

an example) as PSST (such as the red row and red circle in
Fig. 8) and reshape it into original shape P ′SST ∈ R

w×h×c.
Then P ′SST is gradually amplified and restored in the de-
coder by the stacked transform–convolution layers and up-
sampling layers (see Fig. 9). Skip-layer feature maps from
the encoder are cascaded with corresponding layers with the
same shape. The sizes of convolution kernels are all 3× 3
which is the same with that in the encoder, and the channel
sizes are [16,8,4,2,1] to shrink the channel size gradually
during forward propagation.

3.4 Loss functions for model training

Our goal is to predict the evolutions of multiple physical vari-
ables (marked as ŝ) as accurately as possible compared with
the real-world observation s. Therefore, we combine two dif-
ferent measurements together as the loss function l in Eq.
(15) to ensure the result precision of multivariate patterns
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grid by grid, MSE= 1
N�

∑
N

∑
�

(
ŝi,j − si,j

)2
MAE= 1

N�

∑
N

∑
�

∣∣ŝi,j − si,j ∣∣
l =MSE+MAE

, (i,j) ∈� , (15)

where N is the number of variables and � represents the
number of grid points for every physical pattern; (i,j) rep-
resent different latitude and longitude; l is the sum of MSE
and MAE, where MSE is used to preserve the smoothness of
the forecasted patterns; and MAE is used to retain the peak
distribution of all grid points.

3.5 Metrics to evaluate the forecast results

According to the loss function, the calculation processes in
Eq. (15) mainly focus on the comparisons of a single grid
in fields. However, the detailed spatial distributions of every
physical variable, such as the location of the max value re-
gion for SST and wind anomalies, are more important in the
ENSO forecast. Therefore, we use the following two com-
mon spatial metrics for the forecasted patterns to evaluate
the ENSO forecast skill: PSNR and SSIM as in Eqs. (16) and
(17).

PSNR= 10× log10

(
MAX2

MSE

)
(16)

luminance=
2µ2

ŝ
µ2

s+c1

µ2
ŝ
+µ2

s+c1

contrast= 2σŝs+c2
σ 2
ŝ
+σ 2

s +c2

structure= σŝs+c3
σŝσs+c3

SSIM= luminancea · contrastb · structurec

(17)

In PSNR, MAX is the maximum among all grids. In ENSO-
ASC, before the historical multivariate data are propagated
into the model, we first normalize them in the range [0,1] as
in Eq. (18). Therefore, MAX is set to 1.

x∗ =
x− xmin

xmax− xmin
(18)

SSIM is a combined metric of luminance, contrast, and struc-
ture between two patterns. µŝ (µs) is the average for ŝ (s),
and σŝ (σs) is the corresponding standard deviations. σŝs rep-
resents the covariance, and a = b = c = 1 for fair measure-
ment of every ingredient of SSIM. c1, c2, and c3 are all trivial
values for preventing the denominator from being 0.

Besides these two metrics, the correlations between the
calculated and the official Niño indexes will be also used to
evaluate forecast skills.

4 Experiment results and analysis

4.1 Dataset description

After the deep learning model structure is determined, the
quantity and quality of the training dataset affect the forecast

performance decisively. As the improvement of observation
ability, there are growing ways to provide multiple real-world
observations, such as remote sensing satellites and buoy ob-
servation, which is more and more beneficial to building our
ENSO forecast model. However, one of the biggest limita-
tions in high-quality climate datasets is that the real-world
observation period is too short to provide adequate samples.
For example, extensive satellite observations have started in
the 1980s, and the number of El Niño that occurred ever since
then is also small, which can easily lead to the under-fitting
of the deep learning network.

To greatly increase the quantity of training data, we uti-
lize the transfer learning technique to train our model with
long-term climate reanalysis data and high-resolution remote
sensing data progressively. These two datasets both provide
multivariate global gridded data. The reanalysis data are
supported by NOAA/CIRES (https://rda.ucar.edu/datasets/
ds131.2/index.html, last access: 15 November 2021), which
is a 6-hourly multivariate global climate dataset from Jan-
uary 1850 to December 2015 with 2◦. The remote sensing
data are obtained from Remote Sensing Systems (REMSS,
http://www.remss.com/, last access: 15 November 2021),
which is a daily multivariate global climate dataset from De-
cember 1997 to August 2020, and the resolution is much
higher than reanalysis data with 0.25◦. According to our
chosen physical variables, we obtain the corresponding sub-
datasets, and all the variables are preprocessed and aver-
aged monthly. The detailed dataset descriptions are shown
in Table 1. Note that we try to choose physical variables in
NOAA/CIRES with the same meaning as that in REMSS,
such as CWAT, CLOUD, RH and VAPOR. Some variables
can only find the closest match in these two datasets though
they describe the slightly different characteristics in ocean–
atmosphere cycle, such as PWAT and RAIN.

In addition, we also collect the historical Niño 3, Niño 4,
and Niño 3.4 index data from the China Meteorological Ad-
ministration National Climate Centre (https://cmdp.ncc-cma.
net/, last access: 15 November 2021). We pick up the records
from January 2014 to August 2020 for the result analysis of
following experiments.

The major active region of ENSO is concentrated in the
tropical Pacific, so we crop the multivariate data with the re-
gion (40◦ N–40◦ S, 160◦ E–90◦W) as the geographic bound-
aries of ENSO-ASC, which covers Niño 3 and Niño 4 re-
gions. The reanalysis data have the size (40, 55) for every
single-month variable, and the remote sensing data have the
size (320, 440). In order to unify and improve dataset qual-
ity, we use bicubic interpolation (Keys, 1981) to enlarge the
reanalysis data by 8× magnification and a soft-impute algo-
rithm (Mazumder et al., 2010) to fill up missing values in
both datasets. We train the model first on the whole reanal-
ysis dataset and subsequently on the remote sensing dataset
from December 1997 to December 2012 for fine-tuning. The
samples from January 2014 to August 2020 in the remote
sensing dataset are considered as the validation set. There is
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Table 1. Multi-physical variables in the corresponding two datasets.

NOAA/CIRES REMSS
Variable Description Variable Description

SST Sea surface temperature SST Sea surface temperature
PWAT Precipitation water (atmospheric column) RAIN Rate of liquid water precipitation
CWAT Cloud water (atmospheric column) CLOUD Total cloud liquid water (atmospheric column)
RH Surface relative humidity VAPOR Total gaseous water (atmospheric column)
UWIND Surface zonal wind speed UWIND Zonal wind speed
VWIND Surface meridional wind speed VWIND Meridional wind speed

Note: The reanalysis dataset is provided by NOAA/CIRES, which is from January 1850 to December 2015 with 2 by 2◦, and the remote sensing dataset
is provided by REMSS, which is from December 1997 to August 2020 with 0.25 by 0.25◦. In REMSS, UWIND and VWIND is collected from
REMSS/CCMP (https://www.remss.com/measurements/ccmp/, last access: 15 November 2021), and other variables are collected from REMSS/TMI
(1997–2012, http://www.remss.com/missions/tmi/, last access: 15 November 2021) and REMSS/AMSR2 (2012–2020,
http://www.remss.com/missions/amsr/, last access: 15 November 2021). We try to choose physical variables in NOAA/CIRES with the same meaning as
that in REMSS, such as CWAT, CLOUD, RH, and VAPOR. Limited by these two datasets, some variables can only find the closest match though they
describe the different characteristics in ocean–atmosphere cycle, such as PWAT and RAIN.

a 1-year gap between the fine-tuning set and validation set to
reduce the possible influence of oceanic memory.

4.2 Experiment setting

We train and evaluate the ENSO-ASC on a high-performance
server. Based on our proposed model, some hyper-parameter
settings are determined by referring to the existing comput-
ing resources as following: K = 4, d1 = d2 = 16, which is
the optimal parameter combination after extensive experi-
ments (this process has been ignored because it is not the
focus in this paper). Adjacency matrix A and corresponding
Laplacian matrix L̃ are designed as in Sect. 3. All the follow-
ing analyses are based on the stable results through repeated
experiments.

We evaluate the ENSO-ASC from three aspects. Firstly,
according to our proposed ENSO forecast formalization in
Eqs. (5) to (7), there are several factors that may influence the
performance from the perspective of model structure: the in-
put sequence length M , the multivariate coupler coupler( q),
the attention weights α and β, and the benefits of transfer
training. We design some comparison experiments to investi-
gate the model performance and determine the optimal model
structure. A comparison with the other state-of-the-art mod-
els is also included. Secondly, we evaluate the forecast skill
of the ENSO-ASC from the meteorological aspects accord-
ing to Eqs. (5) to (7): the contributions of different input
physical variables V in the pre-designed coupling graph G,
the effective forecast lead month in IMS strategy, the forecast
skill with different start calendar month scm, and the spatial
uncertainties in longer-term forecasts. Finally, we forecast
the real-world ENSO over the validation period and compare
our results with the observations.

4.3 Evaluation of model performance

4.3.1 Influence of the input sequence length

Input sequence length M is very important for the fore-
casting model, due to the rich spatial–temporal information
contained in it. In general, the longer sequence length M ,
the better the ENSO forecast skill. However, a longer in-
put sequence will also increase the computational burden
and raise the requirements for data quantity and quality in
the training and calculation of complex deep learning net-
works, especially under such a high resolution of our model.
Therefore, the balance between forecast performance and ef-
ficiency must be considered. We gradually increase the se-
quence lengthM to detect the changes in forecast skills. Fig-
ure 10 displays the results. As the sequence length gradually
increases, two metrics become better (larger). When the se-
quence length is greater than 3 months, the growth rate slows
down. While the sequence length is less than 3 months, the
forecast skill increases rapidly.

It is obvious that the increase in sequence length cannot
lead to an unlimited improvement in forecast skill. In ENSO-
ASC, making predictions with the previous 3 months’ multi-
variate data is a more efficient choice. In fact, lots of success-
ful works imply that a climate deep learning model does not
require a longer input sequence to make skilful predictions,
such as using previous 2 continuous time-step data to esti-
mate the intensity of tropical cyclone (R. Zhang et al., 2019)
and using previous 3-month ocean heat content and wind to
predict ENSO evolution (Ham et al., 2019). A long-term tem-
poral sequence contains strong trends and periodicities, but
the underlying chaos is more dominant, which seriously hin-
ders the prediction. The subsequent experiments will all ap-
ply the historical 3-month multivariate sequence (M = 3) as
model input.
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Figure 10. The performances of the ENSO-ASC when the input sequence length increases under IMS forecast strategy.

Figure 11. The loss changes when training with only reanalysis
dataset (blue line), with only remote sensing dataset (green line)
and transfer learning on these two datasets in order (black arrow
and yellow line after 90 epochs).

4.3.2 Benefit of the transfer learning

For the model training, we use the transfer learning to over-
come the insufficient sample challenge and obtain the op-
timally trained model. More specifically, we first train the
model on a reanalysis dataset with 90 epochs and subse-
quently on a remote sensing dataset until total convergence
(about 110 epochs). Here, 90 epochs are enough for training
the ENSO-ASC on the reanalysis dataset until convergence,
because the interpolated reanalysis data are smoother and
lack details, which leads to easy training. In order to verify
the benefit of the transfer learning, we also make comparative
experiments by only training our model on a remote sensing
dataset. The training process needs more epochs (such as 200
epochs), because the remote sensing dataset contains much
more detailed high-level climate information.

The averaged loss changes for different training sets are
depicted in Fig. 11. We can see that when training with the re-

analysis dataset, the loss drops quickly, while when training
with the remote sensing dataset, the model converges slowly
and the loss is large. After using transfer learning, the loss on
the remote sensing dataset are improved at least 15 %, which
demonstrates that the systematic errors of ENSO-ASC are
indeed corrected to some extent.

Comparing with remote sensing dataset, training with re-
analysis dataset always yields a much smaller loss. It is due
to the smoothness and lack of details of the reanalysis dataset
as mentioned above that to the model can learn the char-
acteristics more easily. However, the high-resolution remote
sensing dataset reflects the real-world status more accurately,
which contains more comprehensive and nonlinear details
and amplitudes under a high resolution. If we have efficient
remote sensing data, the forecast skill will be further im-
proved.

4.3.3 Effectiveness of the multivariate air–sea coupler

We subjectively incorporate a priori ENSO coupled interac-
tions into the graph-based multivariate coupler and select six
critical physical variables as the predictors of the ENSO-
ASC. The formalization not only treats each physical vari-
able as a separate individual but emphasizes the nonlinear
interactions between them. However, it is not clear whether
such graph formalization is the reason for the improvement
of ENSO forecast performance. In order to validate the effec-
tiveness of our proposed formalization, we design two other
deep learning couplers for ENSO forecast with the same
datasets and transfer learning and then compare the perfor-
mance with the ENSO-ASC.

The first coupler replaces GCN with a dual-layer 3D-
convolution block, which treats all variables as a whole sys-
tem and ignores the specific directions and neighbor-orders
in coupling interactions between them. The second coupler
just replaces the GCN with the concatenation of features
from multivariate encoders, which treats the multiple vari-
ables as the channel stacking (or data overlay) and simply
extracts global features of them together (the cascaded mul-
tivariate features are propagated to the decoders for every
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Figure 12. The performances of the ENSO-ASC when replacing the multivariate air–sea coupler with other deep learning structures.

variable directly). The results are illustrated in Fig. 12. Obvi-
ously, our graph formalization achieves the best performance
with measurements of SSIM and PSNR; the Conv3D cou-
pler is slightly worse. The results indicate that using a graph
to simulate multivariate interactions is a more reasonable ap-
proach, which can learn more ENSO-related dynamical inter-
actions and underlying physical processes than other formal-
izations. Besides this, the comparative experiments also ex-
hibit some inspiration: when building a climate forecast deep
learning network that incorporates physical mechanisms, it is
necessary to customize a suitable structure to represent and
reflect specific mechanisms mathematically.

We design a fully connected adjacency matrix A in a GCN
coupler, which means we consider that all physical vari-
ables have interactions with each other. Conv3D also entirely
extracts the features of all variables. Under these circum-
stances, why does a GCN coupler have better performance
than Conv3D coupler? From the perspective of mathematics,
GCN will consider the pair-wise coupling between variables
and learn the features of every coupled interaction accord-
ing to the hidden nonlinearity in samples individually as in
Eq. (12). But the Conv3D coupler inherits the characteristics
of the global sharing and local connection in classic convo-
lution, which rather treats all variables equally and lack de-
scriptions of the special interactions.

4.3.4 Effects of attention weights

We customize two attention weights in the model to dynam-
ically represent the effects of different temporal memories
and multiple variables. Here, we analyze the influences of
two proposed self-supervised attention weights by removing
one of them from ENSO-ASC; the results are illustrated in
Fig. 13. The results suggest the prediction skill will decline
when one of the attention weights is removed. More specif-
ically, the reduction of performance is larger when the mul-
tivariate attention is removed for shorter forecasts (less than
about 9 months), and when the temporal attention is removed
for longer forecasts (more than about 15 months). This is be-

cause of higher multivariate correlations and lower temporal
non-stationarity in the short term. But the temporal memory
effects dominate the long-term evolution.

In fact, due to the self-supervised attentive weights α and
β, though the multivariate graph and model structure are
fixed, the forecast skills will not change too much with the
different start calendar months and variable combinations
(see Sect. 4.4). However, if these two weights are unset,
the model will not be able to distinguish the contributions
of multivariate oceanic memories in different forecast start
months adaptively, seriously misleading the forecasts.

Indeed, it may be a better choice for ENSO forecast to
establish and filter the optimal model for different start cal-
endar months, forecast lead times, and various predictors, but
it also consumes more resources and time. These two atten-
tive weights α and β can reasonably prune the model within
the acceptable range of prediction errors. In operational fore-
casts, separate modeling for different scenarios can be used
to pursue higher accuracy and skills.

4.3.5 Comparison with other state-of-the-art ENSO
deep learning models

We compare the ENSO-ASC with other state-of-the-art data-
driven ENSO forecast models, including (1) convolutional
neural networks (encoder–decoder structure with 12 layers,
which has the same trainable layer number with our model);
(2) long short-term memory networks (6 LSTM layers and
final fully connect layer); (3) a ConvLSTM network (CL-6
means a 6-layer structure, CL-12 means a 12-layer structure);
and (4) a 3D-convolution coupler to simulate multivariate
interactions as mentioned above (Conv3D). In order to en-
sure the fairness of the comparison, we utilize the same input
physical variables, training and validation datasets, and train-
ing criteria for the above models, then train them via transfer
learning with plenty of epochs to achieve their optimal per-
formances. Table 2 displays the comparative results with 12-,
15-, and 18-month forecasts. In general, the forecast models
considering ENSO spatial–temporal correlations (e.g., Con-
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Figure 13. The performances of the ENSO-ASC when removing one of the attention weights.

Table 2. Performance comparisons with other state-of-the-art deep
learning models.

Model 12-month 15-month 18-month

SSIM/PSNR SSIM/PSNR SSIM/PSNR

CNN 86.32/17.47 83.97/14.40 79.85/12.20
LSTM 88.57/18.08 84.19/15.41 81.59/13.58
CL-6 88.70/18.37 84.36/16.25 81.73/14.04
CL-12 89.78/19.45 84.74/17.34 82.03/15.37
Conv3D 90.93/20.16 85.59/18.01 82.50/15.98
ENSO-ASC 92.65/22.05 90.31/20.97 87.53/17.17

vLSTM, Conv3D) outperform the basic deep learning mod-
els (e.g., CNN, LSTM), which implies that the complicated
network structures can mine the sophisticated dependencies
deeply hidden in long-term ENSO evolutions more effec-
tively. As the lead time increases, the performances of mod-
els gradually decrease. However, the ENSO-ASC still main-
tains high accuracy and is always better than other models
with an improvement of about 5 %, which indicates the su-
periority of our model.

Considering the calculation ingredients of PSNR and
SSIM according to Eq. (11): the calculation of PSNR con-
tains MSE, which is the metric for individual grids, while
SSIM measures the spatial characteristics and distributions
of two patterns from many correlation coefficients, which can
represent a measurement for evolution tendency and physi-
cal consistency to some extent. Based on the above analy-
sis, Table 2 also indicates that the forecast results of ENSO-
ASC exhibit an excellent physical consistency beyond other
models, the SSIM of which is much better, especially in the
longer lead time. In addition, the ENSO-ASC pays more at-
tention to the detailed spatial distributions, which is benefi-
cial for the further analysis of ENSO dynamical mechanisms.

On the other hand, the ENSO-ASC is the first attempt to
forecast ENSO at such a high resolution (0.25◦). Despite

the difficulty of training increasing, our model still achieves
good results. Interestingly, though the ENSO-ASC involves
the most trainable parameters, its convergence epoch is one-
fifth on average of other forecast models.

4.4 Analysis of ENSO forecast skill

4.4.1 Contributions of different predictors to the
forecast skill

The superiority of our proposed model derives from the
graph formalization, and the special multivariate coupler can
effectively express the processes of synergies between multi-
physical variables. From another perspective, the improve-
ment of the forecast skill is not only due to graph formal-
ization, but also the utilization of multiple variables highly
related to ENSO compared to using limited variables to pre-
dict ENSO as in previous works. For ENSO forecasting, SST
is definitely the most critical predictor. Besides SST, other
variables have different contributions to the forecast results.
Therefore, we design an ablation experiment by removing
one of predictors from our proposed model and detect the re-
duction of forecast skill (Table 3 above). Meanwhile, we also
add one extra predictor (from surface air temperature, surface
pressure, and ocean heat content respectively) into our pro-
posed model to investigate the improvement of forecast skill
(Table 3 below). Here, the input sequence length is still set to
3.

Table 3 (above) shows that when a variable is removed
from the input of the deep learning model, the ENSO forecast
skill will be reduced. More specifically, when the zonal wind
speed (UWIND) is removed, the reduction is the largest.
From the perspective of ENSO physical mechanism, zonal
wind anomalies (ZWAs) always play a necessary role and are
even considered as the co-trigger or driver of ENSO events.
As an atmospheric variable, ZWA often gives a direct feed-
back on oceanic varieties with a shorter response time than
oceanic memory. ENSO-ASC uses historical 3-month multi-
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Table 3. Model performance when one existing variable is removed or one extra variable is added.

Removed variable 12-month 15-month 18-month

SSIM/PSNR SSIM/PSNR SSIM/PSNR

− 92.65/22.05 90.31/20.97 87.53/18.17
RAIN 91.46/21.34 88.74/18.32 85.86/17.35
CLOUD 91.53/21.65 88.81/18.54 85.93/16.16
VAPOR 91.52/21.65 88.82/18.53 85.92/16.16
UWIND 90.08/20.93 87.03/17.81 83.72/13.58
VWIND 91.47/21.62 88.65/18.42 85.31/15.07

Added variable 12-month 15-month 18-month

SSIM/PSNR SSIM/PSNR SSIM/PSNR

Surface pressure 92.74/22.13 90.33/20.99 87.64/17.26
Surface air temperature 92.75/22.15 90.40/21.07 87.71/17.25
Upper ocean heat content 92.98/22.14 90.45/21.10 87.79/17.34

variate data to predict ENSO evolution, which is quite a short
sequence length. Under such sequence length, wind speed
(including u wind and v wind) has a relatively high corre-
lation with SST. In addition, RAIN is another variable that
slightly affects the forecast. This is because the precipitation
process has a straightforward contact with the sea surface,
and the energy transfer is easier.

Table 3 indicates that the model performance improves a
little when adding surface air temperature, surface pressure,
and ocean heat content into the multivariate coupler. This is
because the multivariate graph with existing variables in the
ENSO-ASC can almost describe a relatively complete en-
ergy loop in the Walker circulation, so the effects of the extra
added variables to the ENSO forecasts are not obvious. It is
worth noting that the input sequence length should be longer
when feeding the ocean heat content into the multivariate
coupler, because this predictor has long memory (Ham et al.,
2019; McPhaden, 2003; Jin, 1997; Meinen and McPhaden,
2000). However, as the input sequence length varies from
3 to 9 months, the forecast skills of ENSO-ASC have not
actually changed much. This is mainly because the global
spatial teleconnections and temporal lagged correlations by
the Walker circulation and ocean waves (such as Kelvin and
Rossby waves) (Exarchou et al., 2021; Dommenget et al.,
2006) are not caught in the model, the input region of which
mainly covers the equatorial Pacific. In addition, the model
contains only one long memory predictor besides SST.

Among the three extra added physical variables, the up-
per ocean heat content is a very concerning variable, which
can reflect the vertical and horizontal propagations of ocean
waves and help interpret the dynamical mechanisms. There-
fore, we conduct the comparison via two modified ENSO-
ASC models with the same output of SST + u wind, v wind,
rain, cloud, and vapor, while with the different input. One
uses upper ocean heat content + u wind, v wind, rain, cloud,
and vapor, marked as EXAM; another uses SST + u wind,

v wind, rain, cloud, and vapor, marked as CTRL. The results
are shown in Table 4.

The forecast skill of EXAM is slightly lower than CTRL.
The upper ocean heat content is the average of the oceanic
temperature from the sea surface to the upper 300 m. When
using it as a predictor to forecast SST, our model will extract
the features of oceanic temperature not only from sea surface
but also from the deeper ocean, which inevitably introduces
more noise. This may be a reason for the above result. There-
fore, we still use SST instead of the upper ocean heat content
as the key predictor which would bring higher forecast skills.

In the subsequent experiments, the model will use the cho-
sen 6 variables (SST, u wind, v wind, rain, cloud, and vapor),
and the input sequence length is set to 3.

4.4.2 Analysis of effective forecast lead month

The accuracy of long-term prediction is the most crucial is-
sue for meteorological research. In ENSO events, though the
periodicity dominates the amplitude, the intrinsic intensity
and duration often induce large uncertainties and forecast er-
rors. Therefore, over the validation period, we make predic-
tions with multiple lead times and calculate the correspond-
ing Niño indexes from the forecasted SST patterns to inves-
tigate the effective forecast lead month of our model. The
correlations between forecasted Niño indexes and the official
records are depicted in Fig. 14. As the lead time gradually in-
creases to 24 months, the correlation skill slowly decreases.
It is worth noting that when the lead time is from 10 to 13
months, the reduction of the forecast skills slows down a lit-
tle. This is because the periodicity in ENSO events becomes
stronger after a 1-year iteration in IMS strategy. These re-
sults demonstrate that the ENSO-ASC can provide reliable
predictions up to at least 18 to 20 months on average (with
correlations over 0.5). Within a 6-month lead time, the cor-
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Table 4. Model performance comparison when using upper ocean heat content to replace SST in the input.

Model paradigm 12-month 15-month 18-month

SSIM/PSNR SSIM/PSNR SSIM/PSNR

CTRL: SST + others→ SST + others 92.65/22.05 90.31/20.97 87.53/18.17
EXAM: upper ocean heat content + others→SST + others 90.96/20.87 88.45/18.23 84.76/14.90

Note: Model paradigm represents the input and the output for the ENSO-ASC, where→ means “forecast”. “Others” represents five variables,
including u wind, v wind, rain, cloud, and vapor. The first row is the control experiment, which is the same with the result in Table 3, and the
second row is the examined experiment, which replaces SST by the upper ocean heat content in the model input.

Figure 14. The correlation skills between the forecast results of the
ENSO-ASC and real-world observations on three Niño indexes with
the forecast lead time increasing over the validation period.

relation skill is over about 0.78, and from a 6- to 12-month
lead time, correlation skill is over about 0.65.

In addition, the forecast skills for the Niño 3 index and
Niño 3.4 index are a little higher than that of Niño 4 index.
This indicates that our model has higher forecast skill for
the EP-El Niño events (the active area of SST anomalies is
mainly over the eastern tropical Pacific Ocean) than the CP-
El Niño events (the active area of SST anomalies is mainly
over the western and central tropical Pacific Ocean). This is
because the input area of the model mainly covers the en-
tire tropical Pacific, which can be considered as the sensitive
area for EP-El Niño events and is more favorable for the pre-
diction of EP-El Niño events. As for the prediction of CP-
El Niño events, extratropical Pacific or other oceanic regions
may have stronger impacts on the western–central equatorial
Pacific (Park et al., 2018).

4.4.3 Temporal persistence barrier with different start
calendar months

Deep learning models can extend the effective lead time of
ENSO forecasts, which means it can raise the upper limita-
tion of ENSO prediction to some extent. From the perspec-

tive of IMS strategy, if a well-trained model can predict next-
month SST perfectly (in other words, with a very low predic-
tion error), the model can iterate a lot theoretically. However,
our proposed model is affected by a variety of factors, which
leads to performance degradation.

One of the disadvantages in IMS strategy is that once a
relatively large forecast error shows up in a certain iteration,
such a forecast error will be continuously amplified in sub-
sequent iterations. In ENSO forecasting, such a forecast skill
decline is regarded as a persistence barrier and usually occurs
in spring (i.e., spring predictability barrier, SPB) (Webster,
1995; Zheng and Zhu, 2010). SPB limits the long-term fore-
cast skill in not only numerical models but some other statis-
tical models (Kirtman et al., 2001). For further investigation
into the performance degradation, we firstly make continu-
ous predictions over the validation period from different start
calendar months with different lead times and then calculate
the correlations between the calculated Niño 3.4 index with
the official records. Figure 15 shows the results.

In Fig. 15, the darker the cells’ color, the higher the corre-
lations between the forecast and observation, the higher the
forecast skill. The hatching cells represent that the correla-
tions exceed 0.5. Overall, making ENSO forecast with start
calendar months MAM (March, April, and May) is not very
reliable, while the long-term forecast of ENSO is more accu-
rate with start months JAS (July, August, and September). In
addition, there exist two obvious color change zones among
all cells, which means the correlations drop significantly in
such zones (cell color becomes lighter), and both of them
occur in the months JJA (June, July, and August) depicted
as the white numbers on the cells. The first zone reduces
the correlations by about 0.03, and the second zone makes
the reduction by about 0.06. It demonstrates that when mak-
ing forecasts through the months JJA, the ENSO predictions
tend to be much less successful. This is why the model ex-
hibits more skilful forecasts with the start months JAS, which
avoids forecasting through the months JJA as much as pos-
sible and preserves more accurate features during iterations,
resulting in a relatively long and efficient lead time. Analo-
gous to SPB in traditional ENSO forecasting, our proposed
ENSO-ASC has a forecast persistence barrier in boreal sum-
mer (JJA). This may be because the real-world dataset con-
tains more frequency CP-El Niño samples after 1990s (Kao
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Figure 15. The correlation skill heat map between the forecast results of the ENSO-ASC and real-world observations on Niño 3.4 index with
different forecast start months over the validation period. The hatching cells represent the correlations exceed 0.5, and the white numbers on
the cells mean the calendar months.

and Yu, 2009; Kug et al., 2009), which are significantly im-
pacted by the summer predictability barrier (Ren et al., 2019;
Ren et al., 2016). At the same time, it also implies that there
are still forecast obstacles that need to be circumvented in
the ENSO deep learning forecast model, and more unknown
key factors need to be considered and explored, such as more
variables, larger input regions, more complex mechanisms,
etc. Great progress will be made by building deep learning
models based on prior meteorological knowledge in the fu-
ture.

4.4.4 Spatial uncertainties with a longer lead time

In ENSO forecasts, the areas where the forecast uncertainties
occur are usually not randomly distributed, and such areas
should be given more attention in operational target observa-
tion. Over the validation period, we make 12-month and 18-
month forecasts and then compare the forecast results with
observations. More specifically, we calculate covariance be-
tween forecast sequence ŝ and observation s for every grid
point and combine them as a spatial heat map.

The results are shown in Fig. 16. The spatial uncertain-
ties first show up over the western equatorial Pacific, and
then as the lead time increases, the uncertainty area gradu-
ally expands eastward to the central equatorial Pacific. It in-
dicates that the Niño 3 and Niño 3.4 regions both have very
high forecasting skills with a short forecast lead time (See
Fig. 14 in 12-month forecast), while the predictability for the
central equatorial Pacific gradually drops with a longer lead
time, which leads to a rapid reduction of forecast skill for
Niño 3.4 and Niño 4 regions shown as a 15-month forecast
in Fig. 14. This reminds us that the areas with larger forecast
uncertainties should be observed using a higher frequency.
Besides this, another possible reason is that the multivari-
ate input region is confined to the Pacific, but the ocean–
atmosphere coupling interactions in the western tropical Pa-
cific can be profoundly influenced by extratropical Pacific
areas and other ocean basins as mentioned above. Therefore,

our proposed model has relatively weak ability to capture the
development of SST over the western–central equatorial Pa-
cific.

4.5 Simulation of the real-world ENSO events

Since the 21st century, the occurrences of ENSO are more
and more frequent. In particular, the duration and intensity
of ENSO have largely changed. For example, many numeri-
cal climate models failed to forecast the 2015–2016 super El
Niño. We simulate several ENSO events during the valida-
tion period and compare the forecast results with real-world
observations. As mentioned above, wind (uwind and v wind)
is also a relatively important and sensitive predictor in the
ENSO-ASC for ENSO forecasts. Therefore, we make long-
term forecasts and mainly trace the evolutions of SST and
wind (u wind and v wind). Note that all of the following pat-
terns describe the evolutions of SST and wind anomalies by
subtracting the climatology (climate mean state, the monthly
averaged SST and wind from 1981 to 2010) of that month
from the forecasted SST and wind patterns.

Figure 17 displays the evolutions of SST and wind anoma-
lies in the growth phase of the 2015–2016 super El Niño
event from April to June 2015, where (a)–(c) sub-figures are
forecasts and (d)–(f) sub-figures are observations. Figure 18
displays the peak phase from September 2015 to Febru-
ary 2016, where (a)–(f) sub-figures are forecasts and (g)–(l)
sub-figures are observations. These two results are both with
the forecast start time of January 2015. During the growth
phase, the warming SST anomalies first show up over the
eastern tropical Pacific Ocean, which reduce the east–west
gradient of SST. Meanwhile, the westerly wind anomalies
over the western–central equatorial Pacific further enhance
the SST anomalies over the central–eastern equatorial Pa-
cific and weaken the Walker circulation (Fig. 17a–c). The
SST and wind anomalies trigger the Bjerknes positive feed-
back together, which causes SST anomalies to be continu-
ously amplified. During the peak phase, in addition to the lo-
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Figure 16. The spatial covariance heat map between the forecast results of the ENSO-ASC and real-world observations with 12 and 18 lead
months over the validation period.

Figure 17. The growth phase of SST and wind anomalies in the 2015–2016 super Niño event from April 2015 to June 2015. Panels (a)–(c)
show the forecast results of the ENSO-ASC and (d)–(f) show real-world observations.

cal evolutions of the equatorial Pacific SST anomalies, there
are obvious warm SST anomalies over the northeast subtropi-
cal Pacific near Baja, California, induced by the extratropical
atmospheric varieties (Yu et al., 2010; Yu and Kim, 2011),
which gradually propagate southwestward and merge with
the warm SST anomalies over the central equatorial Pacific
(Fig. 18a–d). In conclusion, the ENSO-ASC can track the
large-scale oceanic–atmospheric varieties steadily and can
successfully predict the ENSO with strong intensity and long
duration, while many dynamic or statistical models fail. At
the same time, our proposed model makes the prediction at
the beginning of the calendar year and produces a quite low
prediction error, which demonstrates that the model can over-
come or eliminate the negative impacts of SPB to some ex-
tent.

Besides the super El Niño event, the ENSO-ASC also has
high simulation capabilities for weak nonlinear unstable evo-
lutions. In reality, neutral or weak events actually account for

most of the time. Judging from the saliency of the extracted
features, neutral or weak events may contain more “mediocre
and fuzzy” characteristics, which lead to some difficulties in
accurately grasping their meta features during evolutions. For
example, it is much easier to overestimate or underestimate
their intensities. Therefore, we chose a hindcast over the val-
idation period. Figure 19 shows the peak phase of a weak La
Niña event from September to November 2017 with the fore-
cast start time of June 2016, where (a)–(c) sub-figures are
forecasts and (d)–(f) sub-figures are observations. From its
evolution, there are negative SST anomalies over the eastern
equatorial Pacific and easterly wind anomalies in the western
tropical Pacific Ocean, which will enhance the Walker circu-
lation. In addition, Bjerknes positive feedback is the domi-
nant factor favoring the rapid anomaly growth in this simula-
tion.

Another ENSO forecast limitation is to predict the neu-
ral year as the event of El Niño (or La Niña), which is also
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Figure 18. The peak phase of SST and wind anomalies in the 2015–2016 super Niño event from September 2015 to February 2016. Pan-
els (a)–(f) show the forecast results of the ENSO-ASC and (g)–(l) show real-world observations.

known as the false alarm rate. Figure 20 displays the neutral
event from January to March 2020 with the forecast start time
of January 2019 (its ONI has not yet reached the intensity of
El Niño). After calculating the corresponding Niño index, we
can determine that the ENSO-ASC can accurately avoid the
false alarm and credibly reflect the real magnitude of the de-
velopment of important variables such as SST. We have also
verified the case in 2014 and the result is consistent with the
facts. Many operational centers erroneously predicted that an
El Niño would develop in 2014, but it did not.

The forecasted SST and wind anomaly patterns have a
consistent intensity and tendency with the observations. Our
model can achieve better forecast skills in a variety of situ-

ations because our proposed deep learning coupler compre-
hensively absorbs the sophisticated oceanic and atmospheric
varieties, and its deep and intricate structure can almost sim-
ulate the air–sea energy exchange simultaneously, while tra-
ditional geoscience fluid programming in numerical climate
models usually applies interval flux exchange and parameter-
ized approximation for unknown mechanisms, blocking the
continuous interactions.

5 Discussions and conclusions

ENSO is a very complicated air–sea coupled phenomenon,
the life cycle of which is closely related to the large-scale
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Figure 19. The same with Fig. 17 but for the growth phase of SST and wind anomalies of 2017 weak La Niña event from September to
November 2017.

Figure 20. The same with Fig. 17 but for the neural SST and wind anomalies evolutions in January to March 2020.

nonlinear interactions between various oceanic and atmo-
spheric processes. ENSO is one of the most critical fac-
tors that cause extreme climatic and socioeconomic effects.
Therefore, meteorological researchers are starting to find
more accurate and less consuming data-driven models to
forecast ENSO, especially deep learning methods. There are
already many successful attempts that have extended the ef-
fective forecast lead time of ENSO up to 1.5 years. They all
extract the rich spatial–temporal information deeply hidden
in the historical geoscience data.

However, most of the models use limited variables or
even a single variable to predict ENSO, ignoring the cou-
pling multivariate interactions in ENSO events. At the same
time, the generic ENSO deep learning forecast models seem
to have reached the performance bottleneck, which means
deeper or more complex model structures can neither ex-
tend the effective forecast lead time nor provide a more de-
tailed description for dynamical evolutions. In order to over-
come these two barriers, we subjectively incorporate a priori
ENSO knowledge into the deep learning formalization and
derive hand-crafted features into models to make predictions.
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More specifically, considering the multivariate coupling in
the Walker circulation related to ENSO amplitudes, we select
six indispensable physical variables and focus on the syner-
gies between them in ENSO events. Instead of simple vari-
able stacking, we treat them as separate individuals and in-
geniously formulate the nonlinear interactions between them
on a graph. Based on such formalization, we design a mul-
tivariate air–sea coupler (ASC) by graph convolution mathe-
matically, which can mine the coupling interactions between
every physical variable in pairs and perform the multivariate
synergies simultaneously.

We then implement an ENSO deep learning forecast
model (ENSO-ASC) with the encoder–coupler–decoder
structure, and two self-supervised attention weights are also
designed. The multivariate time-series data are firstly prop-
agated to the encoder to extract spatial–temporal features
respectively. Then the multivariate features are aggregated
together for interactions in the multivariate air–sea coupler.
Finally, the coupled features are divided separately, and the
corresponding feature of a certain variable is restored to fore-
cast patterns in the decoder. IMS strategy is applied to make
predictions, which is a more stable forecasting method. We
use transfer learning to provide a better model initialization
and overcome the problem of a lack of observation samples.
The model is first trained on the reanalysis dataset and subse-
quently on the remote sensing dataset. After constructing the
model structure, we design extensive experiments to investi-
gate the model performance and ENSO forecast skill. Several
successful simulations in the validation period are also pro-
vided. Some conclusions can be summarized as follows:

1. According to the forecast model described in Eqs. (5) to
(7), we adjust the model settings of the input sequence
length M , the multivariate coupler coupler( q), the at-
tention weights α and β, and the transfer training and
then investigate the performance changes. The optimal
input sequence length of the model is 3 according to
the trade-off between forecast skill and computational
resource consumption. It implies that the ENSO deep
learning forecast model does not need a relatively long-
sequence input. Although the long sequence contains a
rich tendency and periodicity of ENSO events, the me-
teorological chaos is more dominant, which seriously
hinders the prediction. Transfer learning is a practical
method. Training the model on the reanalysis dataset
and subsequently on the remote sensing dataset can
effectively reduce the systematic forecast errors by at
least 15 %. When replacing the graph-based multivari-
ate air–sea coupler in ENSO forecast model with other
deep learning structures, the forecast skill drops obvi-
ously. This demonstrates that the graph formalization
is a powerful expression for simulating underlying air–
sea interactions, and a corresponding the ENSO fore-
cast model with novel multivariate air–sea coupler can
forecast more realistic meteorological details. This also

demonstrates that it is critical to choose suitable deep
learning structures to incorporate prior climate mecha-
nisms for improving forecast skills. The self-supervised
attention weights are also promising tools to grasp the
contributions of different predictors and memory vari-
eties of different forecast start calendar months. In ad-
dition, in comparison with other state-of-the-art ENSO
forecast models, the ENSO-ASC achieves at least 5 %
improvement in SSIM and PSNR for long-term fore-
casts.

2. By performing the ablation experiment, the forecast
skill drops significantly when removing the zonal wind
from the model input, which is because it is a co-trigger
of Bjerknes positive feedback in ENSO events and gives
a direct feedback on oceanic varieties with a shorter lag
time. Adding extra predictors can slightly improve the
performance; this is because the existing multivariate
graph can almost describe a relatively complete energy
loop in the Walker circulation. By tracing the upper lim-
itation of forecast lead time, the ENSO-ASC can pro-
vide a reliable high-resolution ENSO forecast up to at
least 18 to 20 months on average judging from the corre-
lation skills of Niño indexes greater than 0.5. Within a 6-
month lead time, the correlation skill is over about 0.78,
and from a 6- to 12-month lead time, correlation skill
is over about 0.65. The corresponding correlation skills
decline slowly from a 10- to 13-month lead time and
then declined rapidly. This is because of the stronger
periodicity in ENSO events after a 1-year iteration of
IMS strategy. At the same time, the different forecast
start calendar months also influence the forecast skills.
The temporal heat map analysis shows that an obvious
skill reduction usually shows up in JJA and produces a
boreal summer persistence barrier in our model. In ad-
dition, from the spatial uncertainty heat map, our model
exhibits larger forecast uncertainties over the western–
central equatorial Pacific. Such spatial–temporal pre-
dictability barriers are widely present in dynamic or sta-
tistical models, but the ENSO-ASC effectively prolongs
the forecast lead time and reduces corresponding uncer-
tainties to a large extent.

3. Some successful simulations exhibit the effectiveness
and superiority of the ENSO-ASC. We make real-world
ENSO simulations during the validation period by trac-
ing the evolutions of SST and wind anomalies (u wind
and v wind). In the forecasted El Niño (La Niña) events,
the sea–air patterns clearly display that the positive
(negative) SST anomalies first show up over the eastern
equatorial Pacific with westerly (easterly) wind anoma-
lies in the western–central tropical Pacific Ocean, which
induces the Bjerknes positive feedback mechanism. As
for the 2015–2016 super El Niño, the ENSO-ASC cap-
tures the strong evolutions of SST anomalies over the
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northeast subtropical Pacific in the peak phase and suc-
cessfully predicts its very high intensity and very long
duration, while many dynamic or statistical models fail.
ENSO-ASC can also credibly reflect the real situation
and reduce the false alarm rate of ENSO such as that
in 2014. In conclusion, our model can track the large-
scale oceanic and atmospheric varieties and simulate
the air–sea energy exchange simultaneously. It demon-
strates that the multivariate air–sea coupler effectively
simulates the oscillations of the Walker circulation and
reveals more complex dynamic mechanisms such as
Bjerknes positive feedback.

The extensive experiments demonstrate that the ENSO fore-
cast model with a multivariate air–sea coupler (ENSO-ASC)
is a powerful tool for analysis of ENSO-related complex
mechanisms. Meteorological research does not only pursue
skilful models and accurate forecasts but also requires a com-
prehensive understanding of the potential dynamical mecha-
nisms. In the future, we will extend our model to more global
physical variables with informative vertical layers, such as
the thermocline depth, and the ocean temperature heat con-
tent, to explore the global spatial remote teleconnections,
temporal lagged correlations, and the optimal precursor etc.
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