Articles | Volume 14, issue 8
Geosci. Model Dev., 14, 4865–4890, 2021
https://doi.org/10.5194/gmd-14-4865-2021
Geosci. Model Dev., 14, 4865–4890, 2021
https://doi.org/10.5194/gmd-14-4865-2021
Model description paper
05 Aug 2021
Model description paper | 05 Aug 2021

Model cascade from meteorological drivers to river flood hazard: flood-cascade v1.0

Peter Uhe et al.

Related authors

FarmCan: a physical, statistical, and machine learning model to forecast crop water deficit for farms
Sara Sadri, James S. Famiglietti, Ming Pan, Hylke E. Beck, Aaron Berg, and Eric F. Wood
Hydrol. Earth Syst. Sci., 26, 5373–5390, https://doi.org/10.5194/hess-26-5373-2022,https://doi.org/10.5194/hess-26-5373-2022, 2022
Short summary
LISFLOOD-FP 8.1: New GPU accelerated solvers for faster fluvial/pluvial flood simulations
Mohammad Kazem Sharifian, Georges Kesserwani, Alovya Ahmed Chowdhury, Jeffrey Neal, and Paul Bates
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-259,https://doi.org/10.5194/gmd-2022-259, 2022
Preprint under review for GMD
Short summary
An improved subgrid channel model with upwind form artificial diffusion for river hydrodynamics and floodplain inundation simulation
Youtong Rong, Paul Bates, and Jeffrey Neal
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-234,https://doi.org/10.5194/gmd-2022-234, 2022
Preprint under review for GMD
Short summary
A climate-conditioned catastrophe risk model for UK flooding
Paul D. Bates, James Savage, Oliver Wing, Niall Quinn, Christopher Sampson, Jeffrey Neal, and Andrew Smith
EGUsphere, https://doi.org/10.5194/egusphere-2022-829,https://doi.org/10.5194/egusphere-2022-829, 2022
Short summary
Bare-earth DEM Generation from ArcticDEM, and Its Use in Flood Simulation
Yinxue Liu, Paul Bates, and Jeffery Neal
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-210,https://doi.org/10.5194/nhess-2022-210, 2022
Preprint under review for NHESS
Short summary

Related subject area

Hydrology
SIMO v1.0: simplified model of the vertical temperature profile in a small, warm, monomictic lake
Kristina Šarović, Melita Burić, and Zvjezdana B. Klaić
Geosci. Model Dev., 15, 8349–8375, https://doi.org/10.5194/gmd-15-8349-2022,https://doi.org/10.5194/gmd-15-8349-2022, 2022
Short summary
Thermal modeling of three lakes within the continuous permafrost zone in Alaska using the LAKE 2.0 model
Jason A. Clark, Elchin E. Jafarov, Ken D. Tape, Benjamin M. Jones, and Victor Stepanenko
Geosci. Model Dev., 15, 7421–7448, https://doi.org/10.5194/gmd-15-7421-2022,https://doi.org/10.5194/gmd-15-7421-2022, 2022
Short summary
Water balance model (WBM) v.1.0.0: a scalable gridded global hydrologic model with water-tracking functionality
Danielle S. Grogan, Shan Zuidema, Alex Prusevich, Wilfred M. Wollheim, Stanley Glidden, and Richard B. Lammers
Geosci. Model Dev., 15, 7287–7323, https://doi.org/10.5194/gmd-15-7287-2022,https://doi.org/10.5194/gmd-15-7287-2022, 2022
Short summary
Coupling a large-scale hydrological model (CWatM v1.1) with a high-resolution groundwater flow model (MODFLOW 6) to assess the impact of irrigation at regional scale
Luca Guillaumot, Mikhail Smilovic, Peter Burek, Jens de Bruijn, Peter Greve, Taher Kahil, and Yoshihide Wada
Geosci. Model Dev., 15, 7099–7120, https://doi.org/10.5194/gmd-15-7099-2022,https://doi.org/10.5194/gmd-15-7099-2022, 2022
Short summary
RavenR v2.1.4: an open-source R package to support flexible hydrologic modelling
Robert Chlumsky, James R. Craig, Simon G. M. Lin, Sarah Grass, Leland Scantlebury, Genevieve Brown, and Rezgar Arabzadeh
Geosci. Model Dev., 15, 7017–7030, https://doi.org/10.5194/gmd-15-7017-2022,https://doi.org/10.5194/gmd-15-7017-2022, 2022
Short summary

Cited articles

Scharffenberg, W.: Hydrologic Modeling System HEC-HMS User's Manual, Tech. Rep., United States Army Corps of Engineers, available at: https://www.hec.usace.army.mil/software/hec-hms/documentation/HEC-HMS_Users_Manual_4.2.pdf (last access: 22 July 2021), 2016. a
Addor, N., Rössler, O., Köplin, N., Huss, M., Weingartner, R., and Seibert, J.: Robust changes and sources of uncertainty in the projected hydrological regimes of Swiss catchments, Water Resour. Res., 50, 7541–7562, https://doi.org/10.1002/2014WR015549, 2014. a
Alfieri, L., Bisselink, B., Dottori, F., Naumann, G., de Roo, A., Salamon, P., Wyser, K., and Feyen, L.: Global projections of river flood risk in a warmer world, Earth's Future, 5, 171–182, https://doi.org/10.1002/2016EF000485, 2017. a, b
Allen, G. H. and Pavelsky, T. M.: Global extent of rivers and streams, Science, 361, 585–588, https://doi.org/10.1126/science.aat0636, 2018. a
Bates, P. D., Horritt, M. S., and Fewtrell, T. J.: A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling, J. Hydrol., 387, 33–45, https://doi.org/10.1016/j.jhydrol.2010.03.027, 2010. a, b
Download
Short summary
We present a cascade of models to compute high-resolution river flooding. This takes meteorological inputs, e.g., rainfall and temperature from observations or climate models, and takes them through a series of modeling steps. This is relevant to evaluating current day and future flood risk and impacts. The model framework uses global data sets, allowing it to be applied anywhere in the world.