Articles | Volume 14, issue 8
https://doi.org/10.5194/gmd-14-4865-2021
https://doi.org/10.5194/gmd-14-4865-2021
Model description paper
 | 
05 Aug 2021
Model description paper |  | 05 Aug 2021

Model cascade from meteorological drivers to river flood hazard: flood-cascade v1.0

Peter Uhe, Daniel Mitchell, Paul D. Bates, Nans Addor, Jeff Neal, and Hylke E. Beck

Related authors

Global scale evaluation of precipitation datasets for hydrological modelling
Solomon Hailu Gebrechorkos, Julian Leyland, Simon J. Dadson, Sagy Cohen, Louise Slater, Michel Wortmann, Philip J. Ashworth, Georgina L. Bennett, Richard Boothroyd, Hannah Cloke, Pauline Delorme, Helen Griffith, Richard Hardy, Laurence Hawker, Stuart McLelland, Jeffrey Neal, Andrew Nicholas, Andrew J. Tatem, Ellie Vahidi, Yinxue Liu, Justin Sheffield, Daniel R. Parsons, and Stephen E. Darby
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-251,https://doi.org/10.5194/hess-2023-251, 2023
Preprint under review for HESS
Short summary
Global application of a regional frequency analysis on extreme sea levels
Thomas P. Collings, Niall D. Quinn, Ivan D. Haigh, Joshua Green, Izzy Probyn, Hamish Wilkinson, Sanne Muis, William V. Sweet, and Paul D. Bates
EGUsphere, https://doi.org/10.5194/egusphere-2023-2267,https://doi.org/10.5194/egusphere-2023-2267, 2023
Short summary
Current and Future Rainfall-Driven Flood Risk From Hurricanes in Puerto Rico Under 1.5 °C and 2 °C Climate Change
Leanne Archer, Jeffrey Neal, Paul Bates, Emily Vosper, Dereka Carroll, Jeison Sosa, and Daniel Mitchell
EGUsphere, https://doi.org/10.5194/egusphere-2023-1574,https://doi.org/10.5194/egusphere-2023-1574, 2023
Short summary
Deep Dive into Global Hydrologic Simulations: Harnessing the Power of Deep Learning and Physics-informed Differentiable Models (δHBV-globe1.0-hydroDL)
Dapeng Feng, Hylke Beck, Jens de Bruijn, Reetik Kumar Sahu, Yusuke Satoh, Yoshihide Wada, Jiangtao Liu, Ming Pan, Kathryn Lawson, and Chaopeng Shen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-190,https://doi.org/10.5194/gmd-2023-190, 2023
Preprint under review for GMD
Short summary
On the time scale of meteorological, soil moisture, and snow drought indices to assess streamflow drought over catchments with different hydrological regime: a case study using a hundred Chilean catchments
Oscar M. Baez-Villanueva, Mauricio Zambrano-Bigiarini, Diego G. Miralles, Hylke E. Beck, Jonatan F. Siegmund, Camila Alvarez-Garreton, Koen Verbist, René Garreaud, Juan Pablo Boisier, and Mauricio Galleguillos
EGUsphere, https://doi.org/10.5194/egusphere-2023-1911,https://doi.org/10.5194/egusphere-2023-1911, 2023
Short summary

Related subject area

Hydrology
pyESDv1.0.1: an open-source Python framework for empirical-statistical downscaling of climate information
Daniel Boateng and Sebastian G. Mutz
Geosci. Model Dev., 16, 6479–6514, https://doi.org/10.5194/gmd-16-6479-2023,https://doi.org/10.5194/gmd-16-6479-2023, 2023
Short summary
Representing the impact of Rhizophora mangroves on flow in a hydrodynamic model (COAWST_rh v1.0): the importance of three-dimensional root system structures
Masaya Yoshikai, Takashi Nakamura, Eugene C. Herrera, Rempei Suwa, Rene Rollon, Raghab Ray, Keita Furukawa, and Kazuo Nadaoka
Geosci. Model Dev., 16, 5847–5863, https://doi.org/10.5194/gmd-16-5847-2023,https://doi.org/10.5194/gmd-16-5847-2023, 2023
Short summary
Dynamically weighted ensemble of geoscientific models via automated machine-learning-based classification
Hao Chen, Tiejun Wang, Yonggen Zhang, Yun Bai, and Xi Chen
Geosci. Model Dev., 16, 5685–5701, https://doi.org/10.5194/gmd-16-5685-2023,https://doi.org/10.5194/gmd-16-5685-2023, 2023
Short summary
Enhancing the representation of water management in global hydrological models
Guta Wakbulcho Abeshu, Fuqiang Tian, Thomas Wild, Mengqi Zhao, Sean Turner, A. F. M. Kamal Chowdhury, Chris R. Vernon, Hongchang Hu, Yuan Zhuang, Mohamad Hejazi, and Hong-Yi Li
Geosci. Model Dev., 16, 5449–5472, https://doi.org/10.5194/gmd-16-5449-2023,https://doi.org/10.5194/gmd-16-5449-2023, 2023
Short summary
NEOPRENE v1.0.1: a Python library for generating spatial rainfall based on the Neyman–Scott process
Javier Diez-Sierra, Salvador Navas, and Manuel del Jesus
Geosci. Model Dev., 16, 5035–5048, https://doi.org/10.5194/gmd-16-5035-2023,https://doi.org/10.5194/gmd-16-5035-2023, 2023
Short summary

Cited articles

Scharffenberg, W.: Hydrologic Modeling System HEC-HMS User's Manual, Tech. Rep., United States Army Corps of Engineers, available at: https://www.hec.usace.army.mil/software/hec-hms/documentation/HEC-HMS_Users_Manual_4.2.pdf (last access: 22 July 2021), 2016. a
Addor, N., Rössler, O., Köplin, N., Huss, M., Weingartner, R., and Seibert, J.: Robust changes and sources of uncertainty in the projected hydrological regimes of Swiss catchments, Water Resour. Res., 50, 7541–7562, https://doi.org/10.1002/2014WR015549, 2014. a
Alfieri, L., Bisselink, B., Dottori, F., Naumann, G., de Roo, A., Salamon, P., Wyser, K., and Feyen, L.: Global projections of river flood risk in a warmer world, Earth's Future, 5, 171–182, https://doi.org/10.1002/2016EF000485, 2017. a, b
Allen, G. H. and Pavelsky, T. M.: Global extent of rivers and streams, Science, 361, 585–588, https://doi.org/10.1126/science.aat0636, 2018. a
Bates, P. D., Horritt, M. S., and Fewtrell, T. J.: A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling, J. Hydrol., 387, 33–45, https://doi.org/10.1016/j.jhydrol.2010.03.027, 2010. a, b
Download
Short summary
We present a cascade of models to compute high-resolution river flooding. This takes meteorological inputs, e.g., rainfall and temperature from observations or climate models, and takes them through a series of modeling steps. This is relevant to evaluating current day and future flood risk and impacts. The model framework uses global data sets, allowing it to be applied anywhere in the world.