Articles | Volume 14, issue 6
Geosci. Model Dev., 14, 3577–3602, 2021
https://doi.org/10.5194/gmd-14-3577-2021
Geosci. Model Dev., 14, 3577–3602, 2021
https://doi.org/10.5194/gmd-14-3577-2021
Development and technical paper
11 Jun 2021
Development and technical paper | 11 Jun 2021

LISFLOOD-FP 8.0: the new discontinuous Galerkin shallow-water solver for multi-core CPUs and GPUs

James Shaw et al.

Related authors

Bare-earth DEM generation from ArcticDEM and its use in flood simulation
Yinxue Liu, Paul D. Bates, and Jeffery C. Neal
Nat. Hazards Earth Syst. Sci., 23, 375–391, https://doi.org/10.5194/nhess-23-375-2023,https://doi.org/10.5194/nhess-23-375-2023, 2023
Short summary
LISFLOOD-FP 8.1: New GPU accelerated solvers for faster fluvial/pluvial flood simulations
Mohammad Kazem Sharifian, Georges Kesserwani, Alovya Ahmed Chowdhury, Jeffrey Neal, and Paul Bates
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-259,https://doi.org/10.5194/gmd-2022-259, 2022
Preprint under review for GMD
Short summary
An improved subgrid channel model with upwind form artificial diffusion for river hydrodynamics and floodplain inundation simulation
Youtong Rong, Paul Bates, and Jeffrey Neal
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-234,https://doi.org/10.5194/gmd-2022-234, 2022
Preprint under review for GMD
Short summary
A climate-conditioned catastrophe risk model for UK flooding
Paul D. Bates, James Savage, Oliver Wing, Niall Quinn, Christopher Sampson, Jeffrey Neal, and Andrew Smith
EGUsphere, https://doi.org/10.5194/egusphere-2022-829,https://doi.org/10.5194/egusphere-2022-829, 2022
Short summary
Assessing flooding impact to riverine bridges: an integrated analysis
Maria Pregnolato, Andrew O. Winter, Dakota Mascarenas, Andrew D. Sen, Paul Bates, and Michael R. Motley
Nat. Hazards Earth Syst. Sci., 22, 1559–1576, https://doi.org/10.5194/nhess-22-1559-2022,https://doi.org/10.5194/nhess-22-1559-2022, 2022
Short summary

Related subject area

Hydrology
A simple, efficient, mass-conservative approach to solving Richards' equation (openRE, v1.0)
Andrew M. Ireson, Raymond J. Spiteri, Martyn P. Clark, and Simon A. Mathias
Geosci. Model Dev., 16, 659–677, https://doi.org/10.5194/gmd-16-659-2023,https://doi.org/10.5194/gmd-16-659-2023, 2023
Short summary
Customized deep learning for precipitation bias correction and downscaling
Fang Wang, Di Tian, and Mark Carroll
Geosci. Model Dev., 16, 535–556, https://doi.org/10.5194/gmd-16-535-2023,https://doi.org/10.5194/gmd-16-535-2023, 2023
Short summary
Implementation and sensitivity analysis of the Dam-Reservoir OPeration model (DROP v1.0) over Spain
Malak Sadki, Simon Munier, Aaron Boone, and Sophie Ricci
Geosci. Model Dev., 16, 427–448, https://doi.org/10.5194/gmd-16-427-2023,https://doi.org/10.5194/gmd-16-427-2023, 2023
Short summary
Regional coupled surface–subsurface hydrological model fitting based on a spatially distributed minimalist reduction of frequency domain discharge data
Nicolas Flipo, Nicolas Gallois, and Jonathan Schuite
Geosci. Model Dev., 16, 353–381, https://doi.org/10.5194/gmd-16-353-2023,https://doi.org/10.5194/gmd-16-353-2023, 2023
Short summary
Operational water forecast ability of the HRRR-iSnobal combination: an evaluation to adapt into production environments
Joachim Meyer, John Horel, Patrick Kormos, Andrew Hedrick, Ernesto Trujillo, and S. McKenzie Skiles
Geosci. Model Dev., 16, 233–250, https://doi.org/10.5194/gmd-16-233-2023,https://doi.org/10.5194/gmd-16-233-2023, 2023
Short summary

Cited articles

Arakawa, A. and Lamb, V. R.: Computational design of the basic dynamical processes of the UCLA general circulation model, Methods in Computational Physics: Advances in Research and Applications, 17, 173–265, https://doi.org/10.1016/B978-0-12-460817-7.50009-4, 1977. a
Ayog, J. L., Kesserwani, G., Shaw, J., Sharifian, M. K., and Bau, D.: Second-order discontinuous Galerkin flood model: comparison with industry-standard finite volume models, J. Hydrol., 594, 125924, https://doi.org/10.1016/j.jhydrol.2020.125924, 2021. a, b, c, d, e, f, g
Bates, P. D.: Integrating remote sensing data with flood inundation models: how far have we got?, Hydrol. Process., 26, 2515–2521, https://doi.org/10.1002/hyp.9374, 2012. a
Bates, P. D., Horritt, M. S., and Fewtrell, T. J.: A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling, J. Hydrol., 387, 33–45, https://doi.org/10.1016/j.jhydrol.2010.03.027, 2010. a, b
Bates, P. D., Pappenberger, F., and Romanowicz, R. J.: Uncertainty in flood inundation modelling, in: Applied uncertainty analysis for flood risk management, 232–269, https://doi.org/10.1142/9781848162716_0010, 2014. a
Download
Short summary
LISFLOOD-FP has been extended with new shallow-water solvers – DG2 and FV1 – for modelling all types of slow- or fast-moving waves over any smooth or rough surface. Using GPU parallelisation, FV1 is faster than the simpler ACC solver on grids with millions of elements. The DG2 solver is notably effective on coarse grids where river channels are hard to capture, improving predicted river levels and flood water depths. This marks a new step towards real-world DG2 flood inundation modelling.