Articles | Volume 14, issue 6
https://doi.org/10.5194/gmd-14-3577-2021
https://doi.org/10.5194/gmd-14-3577-2021
Development and technical paper
 | 
11 Jun 2021
Development and technical paper |  | 11 Jun 2021

LISFLOOD-FP 8.0: the new discontinuous Galerkin shallow-water solver for multi-core CPUs and GPUs

James Shaw, Georges Kesserwani, Jeffrey Neal, Paul Bates, and Mohammad Kazem Sharifian

Related authors

Global scale evaluation of precipitation datasets for hydrological modelling
Solomon Hailu Gebrechorkos, Julian Leyland, Simon J. Dadson, Sagy Cohen, Louise Slater, Michel Wortmann, Philip J. Ashworth, Georgina L. Bennett, Richard Boothroyd, Hannah Cloke, Pauline Delorme, Helen Griffith, Richard Hardy, Laurence Hawker, Stuart McLelland, Jeffrey Neal, Andrew Nicholas, Andrew J. Tatem, Ellie Vahidi, Yinxue Liu, Justin Sheffield, Daniel R. Parsons, and Stephen E. Darby
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-251,https://doi.org/10.5194/hess-2023-251, 2023
Preprint under review for HESS
Short summary
Global application of a regional frequency analysis on extreme sea levels
Thomas P. Collings, Niall D. Quinn, Ivan D. Haigh, Joshua Green, Izzy Probyn, Hamish Wilkinson, Sanne Muis, William V. Sweet, and Paul D. Bates
EGUsphere, https://doi.org/10.5194/egusphere-2023-2267,https://doi.org/10.5194/egusphere-2023-2267, 2023
Short summary
Current and Future Rainfall-Driven Flood Risk From Hurricanes in Puerto Rico Under 1.5 °C and 2 °C Climate Change
Leanne Archer, Jeffrey Neal, Paul Bates, Emily Vosper, Dereka Carroll, Jeison Sosa, and Daniel Mitchell
EGUsphere, https://doi.org/10.5194/egusphere-2023-1574,https://doi.org/10.5194/egusphere-2023-1574, 2023
Short summary
An improved subgrid channel model with upwind-form artificial diffusion for river hydrodynamics and floodplain inundation simulation
Youtong Rong, Paul Bates, and Jeffrey Neal
Geosci. Model Dev., 16, 3291–3311, https://doi.org/10.5194/gmd-16-3291-2023,https://doi.org/10.5194/gmd-16-3291-2023, 2023
Short summary
Assessing the next generation of Global Flood Models in the Central Highlands of Vietnam
Laurence Hawker, Jeffrey Neal, James Savage, Thomas Kirkpatrick, Rachel Lord, Yanos Zylberberg, Andre Groeger, Truong Dang Thuy, Sean Fox, Felix Agyemang, and Khanh Pham Nam
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-93,https://doi.org/10.5194/nhess-2023-93, 2023
Revised manuscript under review for NHESS
Short summary

Related subject area

Hydrology
pyESDv1.0.1: an open-source Python framework for empirical-statistical downscaling of climate information
Daniel Boateng and Sebastian G. Mutz
Geosci. Model Dev., 16, 6479–6514, https://doi.org/10.5194/gmd-16-6479-2023,https://doi.org/10.5194/gmd-16-6479-2023, 2023
Short summary
Representing the impact of Rhizophora mangroves on flow in a hydrodynamic model (COAWST_rh v1.0): the importance of three-dimensional root system structures
Masaya Yoshikai, Takashi Nakamura, Eugene C. Herrera, Rempei Suwa, Rene Rollon, Raghab Ray, Keita Furukawa, and Kazuo Nadaoka
Geosci. Model Dev., 16, 5847–5863, https://doi.org/10.5194/gmd-16-5847-2023,https://doi.org/10.5194/gmd-16-5847-2023, 2023
Short summary
Dynamically weighted ensemble of geoscientific models via automated machine-learning-based classification
Hao Chen, Tiejun Wang, Yonggen Zhang, Yun Bai, and Xi Chen
Geosci. Model Dev., 16, 5685–5701, https://doi.org/10.5194/gmd-16-5685-2023,https://doi.org/10.5194/gmd-16-5685-2023, 2023
Short summary
Enhancing the representation of water management in global hydrological models
Guta Wakbulcho Abeshu, Fuqiang Tian, Thomas Wild, Mengqi Zhao, Sean Turner, A. F. M. Kamal Chowdhury, Chris R. Vernon, Hongchang Hu, Yuan Zhuang, Mohamad Hejazi, and Hong-Yi Li
Geosci. Model Dev., 16, 5449–5472, https://doi.org/10.5194/gmd-16-5449-2023,https://doi.org/10.5194/gmd-16-5449-2023, 2023
Short summary
NEOPRENE v1.0.1: a Python library for generating spatial rainfall based on the Neyman–Scott process
Javier Diez-Sierra, Salvador Navas, and Manuel del Jesus
Geosci. Model Dev., 16, 5035–5048, https://doi.org/10.5194/gmd-16-5035-2023,https://doi.org/10.5194/gmd-16-5035-2023, 2023
Short summary

Cited articles

Arakawa, A. and Lamb, V. R.: Computational design of the basic dynamical processes of the UCLA general circulation model, Methods in Computational Physics: Advances in Research and Applications, 17, 173–265, https://doi.org/10.1016/B978-0-12-460817-7.50009-4, 1977. a
Ayog, J. L., Kesserwani, G., Shaw, J., Sharifian, M. K., and Bau, D.: Second-order discontinuous Galerkin flood model: comparison with industry-standard finite volume models, J. Hydrol., 594, 125924, https://doi.org/10.1016/j.jhydrol.2020.125924, 2021. a, b, c, d, e, f, g
Bates, P. D.: Integrating remote sensing data with flood inundation models: how far have we got?, Hydrol. Process., 26, 2515–2521, https://doi.org/10.1002/hyp.9374, 2012. a
Bates, P. D., Horritt, M. S., and Fewtrell, T. J.: A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling, J. Hydrol., 387, 33–45, https://doi.org/10.1016/j.jhydrol.2010.03.027, 2010. a, b
Bates, P. D., Pappenberger, F., and Romanowicz, R. J.: Uncertainty in flood inundation modelling, in: Applied uncertainty analysis for flood risk management, 232–269, https://doi.org/10.1142/9781848162716_0010, 2014. a
Download
Short summary
LISFLOOD-FP has been extended with new shallow-water solvers – DG2 and FV1 – for modelling all types of slow- or fast-moving waves over any smooth or rough surface. Using GPU parallelisation, FV1 is faster than the simpler ACC solver on grids with millions of elements. The DG2 solver is notably effective on coarse grids where river channels are hard to capture, improving predicted river levels and flood water depths. This marks a new step towards real-world DG2 flood inundation modelling.