Articles | Volume 14, issue 6
https://doi.org/10.5194/gmd-14-3577-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-3577-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
LISFLOOD-FP 8.0: the new discontinuous Galerkin shallow-water solver for multi-core CPUs and GPUs
Department of Civil and Structural Engineering, The University of Sheffield, Western Bank, Sheffield, UK
Georges Kesserwani
CORRESPONDING AUTHOR
Department of Civil and Structural Engineering, The University of Sheffield, Western Bank, Sheffield, UK
Jeffrey Neal
School of Geographical Sciences, University of Bristol, Bristol, UK
Paul Bates
School of Geographical Sciences, University of Bristol, Bristol, UK
Mohammad Kazem Sharifian
Department of Civil and Structural Engineering, The University of Sheffield, Western Bank, Sheffield, UK
Related authors
No articles found.
Alovya Chowdhury and Georges Kesserwani
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-152, https://doi.org/10.5194/gmd-2024-152, 2024
Preprint under review for GMD
Short summary
Short summary
LISFLOOD-FP 8.2 is a framework for running real-world simulations of rapid, multiscale floods driven by impact events like tsunamis. It builds on the LISFLOOD-FP 8.0 and 8.1 papers published in GMD: whereas LISFLOOD-FP 8.0 focussed on GPU-parallelisation, and LISFLOOD-FP 8.1 focussed on static mesh adaptivity of (multi)wavelets, LISFLOOD-FP 8.2 combines GPU-parallelisation with multiwavelet dynamic mesh adaptivity to drastically reduce simulation runtimes, achieving up to a 4.5-fold speedup.
Joshua Green, Ivan Haigh, Niall Quinn, Jeff Neal, Thomas Wahl, Melissa Wood, Dirk Eilander, Marleen de Ruiter, Philip Ward, and Paula Camus
EGUsphere, https://doi.org/10.5194/egusphere-2024-2247, https://doi.org/10.5194/egusphere-2024-2247, 2024
Short summary
Short summary
Compound flooding, involving the combination or successive occurrence of two or more flood drivers, can amplify flood impacts in coastal/estuarine regions. This paper reviews the practices, trends, methodologies, applications, and findings of coastal compound flooding literature at regional to global scales. We explore the types of compound flood events, their mechanistic processes, and the range of terminology. Lastly, this review highlights knowledge gaps and implications for future practices.
Solomon H. Gebrechorkos, Julian Leyland, Simon J. Dadson, Sagy Cohen, Louise Slater, Michel Wortmann, Philip J. Ashworth, Georgina L. Bennett, Richard Boothroyd, Hannah Cloke, Pauline Delorme, Helen Griffith, Richard Hardy, Laurence Hawker, Stuart McLelland, Jeffrey Neal, Andrew Nicholas, Andrew J. Tatem, Ellie Vahidi, Yinxue Liu, Justin Sheffield, Daniel R. Parsons, and Stephen E. Darby
Hydrol. Earth Syst. Sci., 28, 3099–3118, https://doi.org/10.5194/hess-28-3099-2024, https://doi.org/10.5194/hess-28-3099-2024, 2024
Short summary
Short summary
This study evaluated six high-resolution global precipitation datasets for hydrological modelling. MSWEP and ERA5 showed better performance, but spatial variability was high. The findings highlight the importance of careful dataset selection for river discharge modelling due to the lack of a universally superior dataset. Further improvements in global precipitation data products are needed.
Thomas P. Collings, Niall D. Quinn, Ivan D. Haigh, Joshua Green, Izzy Probyn, Hamish Wilkinson, Sanne Muis, William V. Sweet, and Paul D. Bates
Nat. Hazards Earth Syst. Sci., 24, 2403–2423, https://doi.org/10.5194/nhess-24-2403-2024, https://doi.org/10.5194/nhess-24-2403-2024, 2024
Short summary
Short summary
Coastal areas are at risk of flooding from rising sea levels and extreme weather events. This study applies a new approach to estimating the likelihood of coastal flooding around the world. The method uses data from observations and computer models to create a detailed map of where these coastal floods might occur. The approach can predict flooding in areas for which there are few or no data available. The results can be used to help prepare for and prevent this type of flooding.
Laurence Hawker, Jeffrey Neal, James Savage, Thomas Kirkpatrick, Rachel Lord, Yanos Zylberberg, Andre Groeger, Truong Dang Thuy, Sean Fox, Felix Agyemang, and Pham Khanh Nam
Nat. Hazards Earth Syst. Sci., 24, 539–566, https://doi.org/10.5194/nhess-24-539-2024, https://doi.org/10.5194/nhess-24-539-2024, 2024
Short summary
Short summary
We present a global flood model built using a new terrain data set and evaluated in the Central Highlands of Vietnam.
Leanne Archer, Jeffrey Neal, Paul Bates, Emily Vosper, Dereka Carroll, Jeison Sosa, and Daniel Mitchell
Nat. Hazards Earth Syst. Sci., 24, 375–396, https://doi.org/10.5194/nhess-24-375-2024, https://doi.org/10.5194/nhess-24-375-2024, 2024
Short summary
Short summary
We model hurricane-rainfall-driven flooding to assess how the number of people exposed to flooding changes in Puerto Rico under the 1.5 and 2 °C Paris Agreement goals. Our analysis suggests 8 %–10 % of the population is currently exposed to flooding on average every 5 years, increasing by 2 %–15 % and 1 %–20 % at 1.5 and 2 °C. This has implications for adaptation to more extreme flooding in Puerto Rico and demonstrates that 1.5 °C climate change carries a significant increase in risk.
Youtong Rong, Paul Bates, and Jeffrey Neal
Geosci. Model Dev., 16, 3291–3311, https://doi.org/10.5194/gmd-16-3291-2023, https://doi.org/10.5194/gmd-16-3291-2023, 2023
Short summary
Short summary
A novel subgrid channel (SGC) model is developed for river–floodplain modelling, allowing utilization of subgrid-scale bathymetric information while performing computations on relatively coarse grids. By including adaptive artificial diffusion, potential numerical instability, which the original SGC solver had, in low-friction regions such as urban areas is addressed. Evaluation of the new SGC model through structured tests confirmed that the accuracy and stability have improved.
Mohammad Kazem Sharifian, Georges Kesserwani, Alovya Ahmed Chowdhury, Jeffrey Neal, and Paul Bates
Geosci. Model Dev., 16, 2391–2413, https://doi.org/10.5194/gmd-16-2391-2023, https://doi.org/10.5194/gmd-16-2391-2023, 2023
Short summary
Short summary
This paper describes a new release of the LISFLOOD-FP model for fast and efficient flood simulations. It features a new non-uniform grid generator that uses multiwavelet analyses to sensibly coarsens the resolutions where the local topographic variations are smooth. Moreover, the model is parallelised on the graphical processing units (GPUs) to further boost computational efficiency. The performance of the model is assessed for five real-world case studies, noting its potential applications.
Paul D. Bates, James Savage, Oliver Wing, Niall Quinn, Christopher Sampson, Jeffrey Neal, and Andrew Smith
Nat. Hazards Earth Syst. Sci., 23, 891–908, https://doi.org/10.5194/nhess-23-891-2023, https://doi.org/10.5194/nhess-23-891-2023, 2023
Short summary
Short summary
We present and validate a model that simulates current and future flood risk for the UK at high resolution (~ 20–25 m). We show that UK flood losses were ~ 6 % greater in the climate of 2020 compared to recent historical values. The UK can keep any future increase to ~ 8 % if all countries implement their COP26 pledges and net-zero ambitions in full. However, if only the COP26 pledges are fulfilled, then UK flood losses increase by ~ 23 %; and potentially by ~ 37 % in a worst-case scenario.
Yinxue Liu, Paul D. Bates, and Jeffery C. Neal
Nat. Hazards Earth Syst. Sci., 23, 375–391, https://doi.org/10.5194/nhess-23-375-2023, https://doi.org/10.5194/nhess-23-375-2023, 2023
Short summary
Short summary
In this paper, we test two approaches for removing buildings and other above-ground objects from a state-of-the-art satellite photogrammetry topography product, ArcticDEM. Our best technique gives a 70 % reduction in vertical error, with an average difference of 1.02 m from a benchmark lidar for the city of Helsinki, Finland. When used in a simulation of rainfall-driven flooding, the bare-earth version of ArcticDEM yields a significant improvement in predicted inundation extent and water depth.
Maria Pregnolato, Andrew O. Winter, Dakota Mascarenas, Andrew D. Sen, Paul Bates, and Michael R. Motley
Nat. Hazards Earth Syst. Sci., 22, 1559–1576, https://doi.org/10.5194/nhess-22-1559-2022, https://doi.org/10.5194/nhess-22-1559-2022, 2022
Short summary
Short summary
The interaction of flow, structure and network is complex, and yet to be fully understood. This study aims to establish rigorous practices of computational fluid dynamics (CFD) for modelling hydrodynamic forces on inundated bridges, and understanding the consequences of such impacts on the surrounding network. The objectives of this study are to model hydrodynamic forces as the demand on the bridge structure, to advance a structural reliability and network-level analysis.
Gang Zhao, Paul Bates, Jeffrey Neal, and Bo Pang
Hydrol. Earth Syst. Sci., 25, 5981–5999, https://doi.org/10.5194/hess-25-5981-2021, https://doi.org/10.5194/hess-25-5981-2021, 2021
Short summary
Short summary
Design flood estimation is a fundamental task in hydrology. We propose a machine- learning-based approach to estimate design floods anywhere on the global river network. This approach shows considerable improvement over the index-flood-based method, and the average bias in estimation is less than 18 % for 10-, 20-, 50- and 100-year design floods. This approach is a valid method to estimate design floods globally, improving our prediction of flood hazard, especially in ungauged areas.
Mohammad Shirvani and Georges Kesserwani
Nat. Hazards Earth Syst. Sci., 21, 3175–3198, https://doi.org/10.5194/nhess-21-3175-2021, https://doi.org/10.5194/nhess-21-3175-2021, 2021
Short summary
Short summary
Flooding in and around urban hubs can stress people. Immediate evacuation is a usual countermeasure taken at the onset of a flooding event. The flood–pedestrian simulator simulates evacuation of people prior to and during a flood event. It provides information on the spatio-temporal responses of individuals, evacuation time, and possible safe destinations. This study demonstrates the simulator when considering more realistic human body and age characteristics and responses to floodwater.
Peter Uhe, Daniel Mitchell, Paul D. Bates, Nans Addor, Jeff Neal, and Hylke E. Beck
Geosci. Model Dev., 14, 4865–4890, https://doi.org/10.5194/gmd-14-4865-2021, https://doi.org/10.5194/gmd-14-4865-2021, 2021
Short summary
Short summary
We present a cascade of models to compute high-resolution river flooding. This takes meteorological inputs, e.g., rainfall and temperature from observations or climate models, and takes them through a series of modeling steps. This is relevant to evaluating current day and future flood risk and impacts. The model framework uses global data sets, allowing it to be applied anywhere in the world.
Oliver E. J. Wing, Andrew M. Smith, Michael L. Marston, Jeremy R. Porter, Mike F. Amodeo, Christopher C. Sampson, and Paul D. Bates
Nat. Hazards Earth Syst. Sci., 21, 559–575, https://doi.org/10.5194/nhess-21-559-2021, https://doi.org/10.5194/nhess-21-559-2021, 2021
Short summary
Short summary
Global flood models are difficult to validate. They generally output theoretical flood events of a given probability rather than an observed event that they can be tested against. Here, we adapt a US-wide flood model to enable the rapid simulation of historical flood events in order to more robustly understand model biases. For 35 flood events, we highlight the challenges of model validation amidst observational data errors yet evidence the increasing skill of large-scale models.
Thomas O'Shea, Paul Bates, and Jeffrey Neal
Nat. Hazards Earth Syst. Sci., 20, 2281–2305, https://doi.org/10.5194/nhess-20-2281-2020, https://doi.org/10.5194/nhess-20-2281-2020, 2020
Short summary
Short summary
Outlined here is a multi-disciplinary framework for analysing and evaluating the nature of vulnerability to, and capacity for, flood hazard within a complex urban society. It provides scope beyond the current, reified, descriptors of
flood riskand models the role of affected individuals within flooded areas. Using agent-based modelling coupled with the LISFLOOD-FP hydrodynamic model, potentially influential behaviours that give rise to the flood hazard system are identified and discussed.
Giuliano Di Baldassarre, Heidi Kreibich, Sergiy Vorogushyn, Jeroen Aerts, Karsten Arnbjerg-Nielsen, Marlies Barendrecht, Paul Bates, Marco Borga, Wouter Botzen, Philip Bubeck, Bruna De Marchi, Carmen Llasat, Maurizio Mazzoleni, Daniela Molinari, Elena Mondino, Johanna Mård, Olga Petrucci, Anna Scolobig, Alberto Viglione, and Philip J. Ward
Hydrol. Earth Syst. Sci., 22, 5629–5637, https://doi.org/10.5194/hess-22-5629-2018, https://doi.org/10.5194/hess-22-5629-2018, 2018
Short summary
Short summary
One common approach to cope with floods is the implementation of structural flood protection measures, such as levees. Numerous scholars have problematized this approach and shown that increasing levels of flood protection can generate a false sense of security and attract more people to the risky areas. We briefly review the literature on this topic and then propose a research agenda to explore the unintended consequences of structural flood protection.
Keith J. Beven, Susana Almeida, Willy P. Aspinall, Paul D. Bates, Sarka Blazkova, Edoardo Borgomeo, Jim Freer, Katsuichiro Goda, Jim W. Hall, Jeremy C. Phillips, Michael Simpson, Paul J. Smith, David B. Stephenson, Thorsten Wagener, Matt Watson, and Kate L. Wilkins
Nat. Hazards Earth Syst. Sci., 18, 2741–2768, https://doi.org/10.5194/nhess-18-2741-2018, https://doi.org/10.5194/nhess-18-2741-2018, 2018
Short summary
Short summary
This paper discusses how uncertainties resulting from lack of knowledge are considered in a number of different natural hazard areas including floods, landslides and debris flows, dam safety, droughts, earthquakes, tsunamis, volcanic ash clouds and pyroclastic flows, and wind storms. As every analysis is necessarily conditional on the assumptions made about the nature of sources of such uncertainties it is also important to follow the guidelines for good practice suggested in Part 2.
Keith J. Beven, Willy P. Aspinall, Paul D. Bates, Edoardo Borgomeo, Katsuichiro Goda, Jim W. Hall, Trevor Page, Jeremy C. Phillips, Michael Simpson, Paul J. Smith, Thorsten Wagener, and Matt Watson
Nat. Hazards Earth Syst. Sci., 18, 2769–2783, https://doi.org/10.5194/nhess-18-2769-2018, https://doi.org/10.5194/nhess-18-2769-2018, 2018
Short summary
Short summary
Part 1 of this paper discussed the uncertainties arising from gaps in knowledge or limited understanding of the processes involved in different natural hazard areas. These are the epistemic uncertainties that can be difficult to constrain, especially in terms of event or scenario probabilities. A conceptual framework for good practice in dealing with epistemic uncertainties is outlined and implications of applying the principles to natural hazard science are discussed.
Andreas Paul Zischg, Guido Felder, Rolf Weingartner, Niall Quinn, Gemma Coxon, Jeffrey Neal, Jim Freer, and Paul Bates
Hydrol. Earth Syst. Sci., 22, 2759–2773, https://doi.org/10.5194/hess-22-2759-2018, https://doi.org/10.5194/hess-22-2759-2018, 2018
Short summary
Short summary
We developed a model experiment and distributed different rainfall patterns over a mountain river basin. For each rainfall scenario, we computed the flood losses with a model chain. The experiment shows that flood losses vary considerably within the river basin and depend on the timing of the flood peaks from the basin's sub-catchments. Basin-specific characteristics such as the location of the main settlements within the floodplains play an additional important role in determining flood losses.
Jannis M. Hoch, Jeffrey C. Neal, Fedor Baart, Rens van Beek, Hessel C. Winsemius, Paul D. Bates, and Marc F. P. Bierkens
Geosci. Model Dev., 10, 3913–3929, https://doi.org/10.5194/gmd-10-3913-2017, https://doi.org/10.5194/gmd-10-3913-2017, 2017
Short summary
Short summary
To improve flood hazard assessments, it is vital to model all relevant processes. We here present GLOFRIM, a framework for coupling hydrologic and hydrodynamic models to increase the number of physical processes represented in hazard computations. GLOFRIM is openly available, versatile, and extensible with more models. Results also underpin its added value for model benchmarking, showing that not only model forcing but also grid properties and the numerical scheme influence output accuracy.
Laurent Guillaume Courty, Adrián Pedrozo-Acuña, and Paul David Bates
Geosci. Model Dev., 10, 1835–1847, https://doi.org/10.5194/gmd-10-1835-2017, https://doi.org/10.5194/gmd-10-1835-2017, 2017
Short summary
Short summary
This paper presents Itzï, a new free software for the simulation of floods. It is integrated with a geographic information system (GIS), which reduces the human time necessary for preparing the entry data and analysing the results of the simulation.
Itzï uses a simplified numerical scheme that permits to obtain results faster than with other types of models using more complex equations.
In this article, Itzï is tested with three cases that show its suitability to simulate urban floods.
Melissa Wood, Renaud Hostache, Jeffrey Neal, Thorsten Wagener, Laura Giustarini, Marco Chini, Giovani Corato, Patrick Matgen, and Paul Bates
Hydrol. Earth Syst. Sci., 20, 4983–4997, https://doi.org/10.5194/hess-20-4983-2016, https://doi.org/10.5194/hess-20-4983-2016, 2016
Short summary
Short summary
We propose a methodology to calibrate the bankfull channel depth and roughness parameters in a 2-D hydraulic model using an archive of medium-resolution SAR satellite-derived flood extent maps. We used an identifiability methodology to locate the parameters and suggest the SAR images which could be optimally used for model calibration. We found that SAR images acquired around the flood peak provide best calibration potential for the depth parameter, improving when SAR images are combined.
K. J. Beven, S. Almeida, W. P. Aspinall, P. D. Bates, S. Blazkova, E. Borgomeo, K. Goda, J. C. Phillips, M. Simpson, P. J. Smith, D. B. Stephenson, T. Wagener, M. Watson, and K. L. Wilkins
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2015-295, https://doi.org/10.5194/nhess-2015-295, 2016
Preprint withdrawn
Short summary
Short summary
Uncertainties in natural hazard risk assessment are generally dominated by the sources arising from lack of knowledge or understanding of the processes involved. This is Part 2 of 2 papers reviewing these epistemic uncertainties and covers different areas of natural hazards including landslides and debris flows, dam safety, droughts, earthquakes, tsunamis, volcanic ash clouds and pyroclastic flows, and wind storms. It is based on the work of the UK CREDIBLE research consortium.
K. J. Beven, W. P. Aspinall, P. D. Bates, E. Borgomeo, K. Goda, J. W. Hall, T. Page, J. C. Phillips, J. T. Rougier, M. Simpson, D. B. Stephenson, P. J. Smith, T. Wagener, and M. Watson
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhessd-3-7333-2015, https://doi.org/10.5194/nhessd-3-7333-2015, 2015
Preprint withdrawn
Short summary
Short summary
Uncertainties in natural hazard risk assessment are generally dominated by the sources arising from lack of knowledge or understanding of the processes involved. This is Part 1 of 2 papers reviewing these epistemic uncertainties that can be difficult to constrain, especially in terms of event or scenario probabilities. It is based on the work of the CREDIBLE research consortium on Risk and Uncertainty in Natural Hazards.
R. Hostache, C. Hissler, P. Matgen, C. Guignard, and P. Bates
Hydrol. Earth Syst. Sci., 18, 3539–3551, https://doi.org/10.5194/hess-18-3539-2014, https://doi.org/10.5194/hess-18-3539-2014, 2014
C. C. Sampson, T. J. Fewtrell, F. O'Loughlin, F. Pappenberger, P. B. Bates, J. E. Freer, and H. L. Cloke
Hydrol. Earth Syst. Sci., 18, 2305–2324, https://doi.org/10.5194/hess-18-2305-2014, https://doi.org/10.5194/hess-18-2305-2014, 2014
B. Jongman, H. Kreibich, H. Apel, J. I. Barredo, P. D. Bates, L. Feyen, A. Gericke, J. Neal, J. C. J. H. Aerts, and P. J. Ward
Nat. Hazards Earth Syst. Sci., 12, 3733–3752, https://doi.org/10.5194/nhess-12-3733-2012, https://doi.org/10.5194/nhess-12-3733-2012, 2012
Related subject area
Hydrology
Generalised drought index: a novel multi-scale daily approach for drought assessment
Development and performance of a high-resolution surface wave and storm surge forecast model: application to a large lake
Deep dive into hydrologic simulations at global scale: harnessing the power of deep learning and physics-informed differentiable models (δHBV-globe1.0-hydroDL)
PyEt v1.3.1: a Python package for the estimation of potential evapotranspiration
Prediction of hysteretic matric potential dynamics using artificial intelligence: application of autoencoder neural networks
Regionalization in global hydrological models and its impact on runoff simulations: a case study using WaterGAP3 (v 1.0.0)
STORM v.2: A simple, stochastic rainfall model for exploring the impacts of climate and climate change at and near the land surface in gauged watersheds
Fluvial flood inundation and socio-economic impact model based on open data
RoGeR v3.0.5 – a process-based hydrological toolbox model in Python
Coupling a large-scale glacier and hydrological model (OGGM v1.5.3 and CWatM V1.08) – towards an improved representation of mountain water resources in global assessments
An open-source refactoring of the Canadian Small Lakes Model for estimates of evaporation from medium-sized reservoirs
EvalHyd v0.1.2: a polyglot tool for the evaluation of deterministic and probabilistic streamflow predictions
Modelling water quantity and quality for integrated water cycle management with the Water Systems Integrated Modelling framework (WSIMOD) software
HGS-PDAF (version 1.0): a modular data assimilation framework for an integrated surface and subsurface hydrological model
Wflow_sbm v0.7.3, a spatially distributed hydrological model: from global data to local applications
Reservoir Assessment Tool version 3.0: a scalable and user-friendly software platform to mobilize the global water management community
HydroFATE (v1): a high-resolution contaminant fate model for the global river system
Validation of a new global irrigation scheme in the land surface model ORCHIDEE v2.2
GPEP v1.0: the Geospatial Probabilistic Estimation Package to support Earth science applications
GEMS v1.0: Generalizable Empirical Model of Snow Accumulation and Melt, based on daily snow mass changes in response to climate and topographic drivers
mesas.py v1.0: a flexible Python package for modeling solute transport and transit times using StorAge Selection functions
rSHUD v2.0: advancing the Simulator for Hydrologic Unstructured Domains and unstructured hydrological modeling in the R environment
GLOBGM v1.0: a parallel implementation of a 30 arcsec PCR-GLOBWB-MODFLOW global-scale groundwater model
Development of inter-grid-cell lateral unsaturated and saturated flow model in the E3SM Land Model (v2.0)
The global water resources and use model WaterGAP v2.2e: description and evaluation of modifications and new features
pyESDv1.0.1: an open-source Python framework for empirical-statistical downscaling of climate information
Representing the impact of Rhizophora mangroves on flow in a hydrodynamic model (COAWST_rh v1.0): the importance of three-dimensional root system structures
Dynamically weighted ensemble of geoscientific models via automated machine-learning-based classification
Enhancing the representation of water management in global hydrological models
NEOPRENE v1.0.1: a Python library for generating spatial rainfall based on the Neyman–Scott process
Uncertainty estimation for a new exponential-filter-based long-term root-zone soil moisture dataset from Copernicus Climate Change Service (C3S) surface observations
Validating the Nernst–Planck transport model under reaction-driven flow conditions using RetroPy v1.0
DynQual v1.0: a high-resolution global surface water quality model
Data space inversion for efficient uncertainty quantification using an integrated surface and sub-surface hydrologic model
Simulation of crop yield using the global hydrological model H08 (crp.v1)
How is a global sensitivity analysis of a catchment-scale, distributed pesticide transfer model performed? Application to the PESHMELBA model
iHydroSlide3D v1.0: an advanced hydrological–geotechnical model for hydrological simulation and three-dimensional landslide prediction
GEB v0.1: a large-scale agent-based socio-hydrological model – simulating 10 million individual farming households in a fully distributed hydrological model
Tracing and visualisation of contributing water sources in the LISFLOOD-FP model of flood inundation (within CAESAR-Lisflood version 1.9j-WS)
Continental-scale evaluation of a fully distributed coupled land surface and groundwater model, ParFlow-CLM (v3.6.0), over Europe
Evaluating a global soil moisture dataset from a multitask model (GSM3 v1.0) with potential applications for crop threats
SERGHEI (SERGHEI-SWE) v1.0: a performance-portable high-performance parallel-computing shallow-water solver for hydrology and environmental hydraulics
A simple, efficient, mass-conservative approach to solving Richards' equation (openRE, v1.0)
Customized deep learning for precipitation bias correction and downscaling
Implementation and sensitivity analysis of the Dam-Reservoir OPeration model (DROP v1.0) over Spain
Regional coupled surface–subsurface hydrological model fitting based on a spatially distributed minimalist reduction of frequency domain discharge data
Operational water forecast ability of the HRRR-iSnobal combination: an evaluation to adapt into production environments
Prediction of algal blooms via data-driven machine learning models: an evaluation using data from a well-monitored mesotrophic lake
UniFHy v0.1.1: a community modelling framework for the terrestrial water cycle in Python
Basin-scale gyres and mesoscale eddies in large lakes: a novel procedure for their detection and characterization, assessed in Lake Geneva
João António Martins Careto, Rita Margarida Cardoso, Ana Russo, Daniela Catarina André Lima, and Pedro Miguel Matos Soares
Geosci. Model Dev., 17, 8115–8139, https://doi.org/10.5194/gmd-17-8115-2024, https://doi.org/10.5194/gmd-17-8115-2024, 2024
Short summary
Short summary
This study proposes a new daily drought index, the generalised drought index (GDI). The GDI not only identifies the same events as established indices but is also capable of improving their results. The index is empirically based and easy to compute, not requiring fitting the data to a probability distribution. The GDI can detect flash droughts and longer-term events, making it a versatile tool for drought monitoring.
Laura L. Swatridge, Ryan P. Mulligan, Leon Boegman, and Shiliang Shan
Geosci. Model Dev., 17, 7751–7766, https://doi.org/10.5194/gmd-17-7751-2024, https://doi.org/10.5194/gmd-17-7751-2024, 2024
Short summary
Short summary
We develop an operational forecast system, Coastlines-LO, that can simulate water levels and surface waves in Lake Ontario driven by forecasts of wind speeds and pressure fields from an atmospheric model. The model has relatively low computational requirements, and results compare well with near-real-time observations, as well as with results from other existing forecast systems. Results show that with shorter forecast lengths, storm surge and wave predictions can improve in accuracy.
Dapeng Feng, Hylke Beck, Jens de Bruijn, Reetik Kumar Sahu, Yusuke Satoh, Yoshihide Wada, Jiangtao Liu, Ming Pan, Kathryn Lawson, and Chaopeng Shen
Geosci. Model Dev., 17, 7181–7198, https://doi.org/10.5194/gmd-17-7181-2024, https://doi.org/10.5194/gmd-17-7181-2024, 2024
Short summary
Short summary
Accurate hydrologic modeling is vital to characterizing water cycle responses to climate change. For the first time at this scale, we use differentiable physics-informed machine learning hydrologic models to simulate rainfall–runoff processes for 3753 basins around the world and compare them with purely data-driven and traditional modeling approaches. This sets a benchmark for hydrologic estimates around the world and builds foundations for improving global hydrologic simulations.
Matevž Vremec, Raoul A. Collenteur, and Steffen Birk
Geosci. Model Dev., 17, 7083–7103, https://doi.org/10.5194/gmd-17-7083-2024, https://doi.org/10.5194/gmd-17-7083-2024, 2024
Short summary
Short summary
Geoscientists commonly use various potential evapotranpiration (PET) formulas for environmental studies, which can be prone to errors and sensitive to climate change. PyEt, a tested and open-source Python package, simplifies the application of 20 PET methods for both time series and gridded data, ensuring accurate and consistent PET estimations suitable for a wide range of environmental applications.
Nedal Aqel, Lea Reusser, Stephan Margreth, Andrea Carminati, and Peter Lehmann
Geosci. Model Dev., 17, 6949–6966, https://doi.org/10.5194/gmd-17-6949-2024, https://doi.org/10.5194/gmd-17-6949-2024, 2024
Short summary
Short summary
The soil water potential (SWP) determines various soil water processes. Since remote sensing techniques cannot measure it directly, it is often deduced from volumetric water content (VWC) information. However, under dynamic field conditions, the relationship between SWP and VWC is highly ambiguous due to different factors that cannot be modeled with the classical approach. Applying a deep neural network with an autoencoder enables the prediction of the dynamic SWP.
Jenny Kupzig, Nina Kupzig, and Martina Flörke
Geosci. Model Dev., 17, 6819–6846, https://doi.org/10.5194/gmd-17-6819-2024, https://doi.org/10.5194/gmd-17-6819-2024, 2024
Short summary
Short summary
Valid simulation results from global hydrological models (GHMs) are essential, e.g., to studying climate change impacts. Adapting GHMs to ungauged basins requires regionalization, enabling valid simulations. In this study, we highlight the impact of regionalization of GHMs on runoff simulations using an ensemble of regionalization methods for WaterGAP3. We have found that regionalization leads to temporally and spatially varying uncertainty, potentially reaching up to inter-model differences.
Manuel F. Rios Gaona, Katerina Michaelides, and Michael Bliss Singer
Geosci. Model Dev., 17, 5387–5412, https://doi.org/10.5194/gmd-17-5387-2024, https://doi.org/10.5194/gmd-17-5387-2024, 2024
Short summary
Short summary
STORM v.2 (short for STOchastic Rainfall Model version 2.0) is an open-source and user-friendly modelling framework for simulating rainfall fields over a basin. It also allows simulating the impact of plausible climate change either on the total seasonal rainfall or the storm’s maximum intensity.
Lukas Riedel, Thomas Röösli, Thomas Vogt, and David N. Bresch
Geosci. Model Dev., 17, 5291–5308, https://doi.org/10.5194/gmd-17-5291-2024, https://doi.org/10.5194/gmd-17-5291-2024, 2024
Short summary
Short summary
River floods are among the most devastating natural hazards. We propose a flood model with a statistical approach based on openly available data. The model is integrated in a framework for estimating impacts of physical hazards. Although the model only agrees moderately with satellite-detected flood extents, we show that it can be used for forecasting the magnitude of flood events in terms of socio-economic impacts and for comparing these with past events.
Robin Schwemmle, Hannes Leistert, Andreas Steinbrich, and Markus Weiler
Geosci. Model Dev., 17, 5249–5262, https://doi.org/10.5194/gmd-17-5249-2024, https://doi.org/10.5194/gmd-17-5249-2024, 2024
Short summary
Short summary
The new process-based hydrological toolbox model, RoGeR (https://roger.readthedocs.io/), can be used to estimate the components of the hydrological cycle and the related travel times of pollutants through parts of the hydrological cycle. These estimations may contribute to effective water resources management. This paper presents the toolbox concept and provides a simple example of providing estimations to water resources management.
Sarah Hanus, Lilian Schuster, Peter Burek, Fabien Maussion, Yoshihide Wada, and Daniel Viviroli
Geosci. Model Dev., 17, 5123–5144, https://doi.org/10.5194/gmd-17-5123-2024, https://doi.org/10.5194/gmd-17-5123-2024, 2024
Short summary
Short summary
This study presents a coupling of the large-scale glacier model OGGM and the hydrological model CWatM. Projected future increase in discharge is less strong while future decrease in discharge is stronger when glacier runoff is explicitly included in the large-scale hydrological model. This is because glacier runoff is projected to decrease in nearly all basins. We conclude that an improved glacier representation can prevent underestimating future discharge changes in large river basins.
M. Graham Clark and Sean K. Carey
Geosci. Model Dev., 17, 4911–4922, https://doi.org/10.5194/gmd-17-4911-2024, https://doi.org/10.5194/gmd-17-4911-2024, 2024
Short summary
Short summary
This paper provides validation of the Canadian Small Lakes Model (CSLM) for estimating evaporation rates from reservoirs and a refactoring of the original FORTRAN code into MATLAB and Python, which are now stored in GitHub repositories. Here we provide direct observations of the surface energy exchange obtained with an eddy covariance system to validate the CSLM. There was good agreement between observations and estimations except under specific atmospheric conditions when evaporation is low.
Thibault Hallouin, François Bourgin, Charles Perrin, Maria-Helena Ramos, and Vazken Andréassian
Geosci. Model Dev., 17, 4561–4578, https://doi.org/10.5194/gmd-17-4561-2024, https://doi.org/10.5194/gmd-17-4561-2024, 2024
Short summary
Short summary
The evaluation of the quality of hydrological model outputs against streamflow observations is widespread in the hydrological literature. In order to improve on the reproducibility of published studies, a new evaluation tool dedicated to hydrological applications is presented. It is open source and usable in a variety of programming languages to make it as accessible as possible to the community. Thus, authors and readers alike can use the same tool to produce and reproduce the results.
Barnaby Dobson, Leyang Liu, and Ana Mijic
Geosci. Model Dev., 17, 4495–4513, https://doi.org/10.5194/gmd-17-4495-2024, https://doi.org/10.5194/gmd-17-4495-2024, 2024
Short summary
Short summary
Water management is challenging when models don't capture the entire water cycle. We propose that using integrated models facilitates management and improves understanding. We introduce a software tool designed for this task. We discuss its foundation, how it simulates water system components and their interactions, and its customisation. We provide a flexible way to represent water systems, and we hope it will inspire more research and practical applications for sustainable water management.
Qi Tang, Hugo Delottier, Wolfgang Kurtz, Lars Nerger, Oliver S. Schilling, and Philip Brunner
Geosci. Model Dev., 17, 3559–3578, https://doi.org/10.5194/gmd-17-3559-2024, https://doi.org/10.5194/gmd-17-3559-2024, 2024
Short summary
Short summary
We have developed a new data assimilation framework by coupling an integrated hydrological model HydroGeoSphere with the data assimilation software PDAF. Compared to existing hydrological data assimilation systems, the advantage of our newly developed framework lies in its consideration of the physically based model; its large selection of different assimilation algorithms; and its modularity with respect to the combination of different types of observations, states and parameters.
Willem J. van Verseveld, Albrecht H. Weerts, Martijn Visser, Joost Buitink, Ruben O. Imhoff, Hélène Boisgontier, Laurène Bouaziz, Dirk Eilander, Mark Hegnauer, Corine ten Velden, and Bobby Russell
Geosci. Model Dev., 17, 3199–3234, https://doi.org/10.5194/gmd-17-3199-2024, https://doi.org/10.5194/gmd-17-3199-2024, 2024
Short summary
Short summary
We present the wflow_sbm distributed hydrological model, recently released by Deltares, as part of the Wflow.jl open-source modelling framework in the programming language Julia. Wflow_sbm has a fast runtime, making it suitable for large-scale modelling. Wflow_sbm models can be set a priori for any catchment with the Python tool HydroMT-Wflow based on globally available datasets, which results in satisfactory to good performance (without much tuning). We show this for a number of specific cases.
Sanchit Minocha, Faisal Hossain, Pritam Das, Sarath Suresh, Shahzaib Khan, George Darkwah, Hyongki Lee, Stefano Galelli, Konstantinos Andreadis, and Perry Oddo
Geosci. Model Dev., 17, 3137–3156, https://doi.org/10.5194/gmd-17-3137-2024, https://doi.org/10.5194/gmd-17-3137-2024, 2024
Short summary
Short summary
The Reservoir Assessment Tool (RAT) merges satellite data with hydrological models, enabling robust estimation of reservoir parameters like inflow, outflow, surface area, and storage changes around the world. Version 3.0 of RAT lowers the barrier of entry for new users and achieves scalability and computational efficiency. RAT 3.0 also facilitates open-source development of functions for continuous improvement to mobilize and empower the global water management community.
Heloisa Ehalt Macedo, Bernhard Lehner, Jim Nicell, and Günther Grill
Geosci. Model Dev., 17, 2877–2899, https://doi.org/10.5194/gmd-17-2877-2024, https://doi.org/10.5194/gmd-17-2877-2024, 2024
Short summary
Short summary
Treated and untreated wastewaters are sources of contaminants of emerging concern. HydroFATE, a new global model, estimates their concentrations in surface waters, identifying streams that are most at risk and guiding monitoring/mitigation efforts to safeguard aquatic ecosystems and human health. Model predictions were validated against field measurements of the antibiotic sulfamethoxazole, with predicted concentrations exceeding ecological thresholds in more than 400 000 km of rivers worldwide.
Pedro Felipe Arboleda-Obando, Agnès Ducharne, Zun Yin, and Philippe Ciais
Geosci. Model Dev., 17, 2141–2164, https://doi.org/10.5194/gmd-17-2141-2024, https://doi.org/10.5194/gmd-17-2141-2024, 2024
Short summary
Short summary
We show a new irrigation scheme included in the ORCHIDEE land surface model. The new irrigation scheme restrains irrigation due to water shortage, includes water adduction, and represents environmental limits and facilities to access water, due to representing infrastructure in a simple way. Our results show that the new irrigation scheme helps simulate acceptable land surface conditions and fluxes in irrigated areas, even if there are difficulties due to shortcomings and limited information.
Guoqiang Tang, Andrew W. Wood, Andrew J. Newman, Martyn P. Clark, and Simon Michael Papalexiou
Geosci. Model Dev., 17, 1153–1173, https://doi.org/10.5194/gmd-17-1153-2024, https://doi.org/10.5194/gmd-17-1153-2024, 2024
Short summary
Short summary
Ensemble geophysical datasets are crucial for understanding uncertainties and supporting probabilistic estimation/prediction. However, open-access tools for creating these datasets are limited. We have developed the Python-based Geospatial Probabilistic Estimation Package (GPEP). Through several experiments, we demonstrate GPEP's ability to estimate precipitation, temperature, and snow water equivalent. GPEP will be a useful tool to support uncertainty analysis in Earth science applications.
Atabek Umirbekov, Richard Essery, and Daniel Müller
Geosci. Model Dev., 17, 911–929, https://doi.org/10.5194/gmd-17-911-2024, https://doi.org/10.5194/gmd-17-911-2024, 2024
Short summary
Short summary
We present a parsimonious snow model which simulates snow mass without the need for extensive calibration. The model is based on a machine learning algorithm that has been trained on diverse set of daily observations of snow accumulation or melt, along with corresponding climate and topography data. We validated the model using in situ data from numerous new locations. The model provides a promising solution for accurate snow mass estimation across regions where in situ data are limited.
Ciaran J. Harman and Esther Xu Fei
Geosci. Model Dev., 17, 477–495, https://doi.org/10.5194/gmd-17-477-2024, https://doi.org/10.5194/gmd-17-477-2024, 2024
Short summary
Short summary
Over the last 10 years, scientists have developed StorAge Selection: a new way of modeling how material is transported through complex systems. Here, we present some new, easy-to-use, flexible, and very accurate code for implementing this method. We show that, in cases where we know exactly what the answer should be, our code gets the right answer. We also show that our code is closer than some other codes to the right answer in an important way: it conserves mass.
Lele Shu, Paul Ullrich, Xianhong Meng, Christopher Duffy, Hao Chen, and Zhaoguo Li
Geosci. Model Dev., 17, 497–527, https://doi.org/10.5194/gmd-17-497-2024, https://doi.org/10.5194/gmd-17-497-2024, 2024
Short summary
Short summary
Our team developed rSHUD v2.0, a toolkit that simplifies the use of the SHUD, a model simulating water movement in the environment. We demonstrated its effectiveness in two watersheds, one in the USA and one in China. The toolkit also facilitated the creation of the Global Hydrological Data Cloud, a platform for automatic data processing and model deployment, marking a significant advancement in hydrological research.
Jarno Verkaik, Edwin H. Sutanudjaja, Gualbert H. P. Oude Essink, Hai Xiang Lin, and Marc F. P. Bierkens
Geosci. Model Dev., 17, 275–300, https://doi.org/10.5194/gmd-17-275-2024, https://doi.org/10.5194/gmd-17-275-2024, 2024
Short summary
Short summary
This paper presents the parallel PCR-GLOBWB global-scale groundwater model at 30 arcsec resolution (~1 km at the Equator). Named GLOBGM v1.0, this model is a follow-up of the 5 arcmin (~10 km) model, aiming for a higher-resolution simulation of worldwide fresh groundwater reserves under climate change and excessive pumping. For a long transient simulation using a parallel prototype of MODFLOW 6, we show that our implementation is efficient for a relatively low number of processor cores.
Han Qiu, Gautam Bisht, Lingcheng Li, Dalei Hao, and Donghui Xu
Geosci. Model Dev., 17, 143–167, https://doi.org/10.5194/gmd-17-143-2024, https://doi.org/10.5194/gmd-17-143-2024, 2024
Short summary
Short summary
We developed and validated an inter-grid-cell lateral groundwater flow model for both saturated and unsaturated zone in the ELMv2.0 framework. The developed model was benchmarked against PFLOTRAN, a 3D subsurface flow and transport model and showed comparable performance with PFLOTRAN. The developed model was also applied to the Little Washita experimental watershed. The spatial pattern of simulated groundwater table depth agreed well with the global groundwater table benchmark dataset.
Hannes Müller Schmied, Tim Trautmann, Sebastian Ackermann, Denise Cáceres, Martina Flörke, Helena Gerdener, Ellen Kynast, Thedini Asali Peiris, Leonie Schiebener, Maike Schumacher, and Petra Döll
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-213, https://doi.org/10.5194/gmd-2023-213, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
Assessing water availability and water use at the global scale is challenging but essential for a range of purposes. We describe the newest version of the global hydrological model WaterGAP which has been used for numerous water resources assessments since 1996. We show the effects of new model features and model evaluations against observed streamflow and water storage anomalies as well as water abstractions statistics. The publically available model output for several variants is described.
Daniel Boateng and Sebastian G. Mutz
Geosci. Model Dev., 16, 6479–6514, https://doi.org/10.5194/gmd-16-6479-2023, https://doi.org/10.5194/gmd-16-6479-2023, 2023
Short summary
Short summary
We present an open-source Python framework for performing empirical-statistical downscaling of climate information, such as precipitation. The user-friendly package comprises all the downscaling cycles including data preparation, model selection, training, and evaluation, designed in an efficient and flexible manner, allowing for quick and reproducible downscaling products. The framework would contribute to climate change impact assessments by generating accurate high-resolution climate data.
Masaya Yoshikai, Takashi Nakamura, Eugene C. Herrera, Rempei Suwa, Rene Rollon, Raghab Ray, Keita Furukawa, and Kazuo Nadaoka
Geosci. Model Dev., 16, 5847–5863, https://doi.org/10.5194/gmd-16-5847-2023, https://doi.org/10.5194/gmd-16-5847-2023, 2023
Short summary
Short summary
Due to complex root system structures, representing the impacts of Rhizophora mangroves on flow in hydrodynamic models has been challenging. This study presents a new drag and turbulence model that leverages an empirical model for root systems. The model can be applied without rigorous measurements of root structures and showed high performance in flow simulations; this may provide a better understanding of hydrodynamics and related transport processes in Rhizophora mangrove forests.
Hao Chen, Tiejun Wang, Yonggen Zhang, Yun Bai, and Xi Chen
Geosci. Model Dev., 16, 5685–5701, https://doi.org/10.5194/gmd-16-5685-2023, https://doi.org/10.5194/gmd-16-5685-2023, 2023
Short summary
Short summary
Effectively assembling multiple models for approaching a benchmark solution remains a long-standing issue for various geoscience domains. We here propose an automated machine learning-assisted ensemble framework (AutoML-Ens) that attempts to resolve this challenge. Results demonstrate the great potential of AutoML-Ens for improving estimations due to its two unique features, i.e., assigning dynamic weights for candidate models and taking full advantage of AutoML-assisted workflow.
Guta Wakbulcho Abeshu, Fuqiang Tian, Thomas Wild, Mengqi Zhao, Sean Turner, A. F. M. Kamal Chowdhury, Chris R. Vernon, Hongchang Hu, Yuan Zhuang, Mohamad Hejazi, and Hong-Yi Li
Geosci. Model Dev., 16, 5449–5472, https://doi.org/10.5194/gmd-16-5449-2023, https://doi.org/10.5194/gmd-16-5449-2023, 2023
Short summary
Short summary
Most existing global hydrologic models do not explicitly represent hydropower reservoirs. We are introducing a new water management module to Xanthos that distinguishes between the operational characteristics of irrigation, hydropower, and flood control reservoirs. We show that this explicit representation of hydropower reservoirs can lead to a significantly more realistic simulation of reservoir storage and releases in over 44 % of the hydropower reservoirs included in this study.
Javier Diez-Sierra, Salvador Navas, and Manuel del Jesus
Geosci. Model Dev., 16, 5035–5048, https://doi.org/10.5194/gmd-16-5035-2023, https://doi.org/10.5194/gmd-16-5035-2023, 2023
Short summary
Short summary
NEOPRENE is an open-source, freely available library allowing scientists and practitioners to generate synthetic time series and maps of rainfall. These outputs will help to explore plausible events that were never observed in the past but may occur in the near future and to generate possible future events under climate change conditions. The paper shows how to use the library to downscale daily precipitation and how to use synthetic generation to improve our characterization of extreme events.
Adam Pasik, Alexander Gruber, Wolfgang Preimesberger, Domenico De Santis, and Wouter Dorigo
Geosci. Model Dev., 16, 4957–4976, https://doi.org/10.5194/gmd-16-4957-2023, https://doi.org/10.5194/gmd-16-4957-2023, 2023
Short summary
Short summary
We apply the exponential filter (EF) method to satellite soil moisture retrievals to estimate the water content in the unobserved root zone globally from 2002–2020. Quality assessment against an independent dataset shows satisfactory results. Error characterization is carried out using the standard uncertainty propagation law and empirically estimated values of EF model structural uncertainty and parameter uncertainty. This is followed by analysis of temporal uncertainty variations.
Po-Wei Huang, Bernd Flemisch, Chao-Zhong Qin, Martin O. Saar, and Anozie Ebigbo
Geosci. Model Dev., 16, 4767–4791, https://doi.org/10.5194/gmd-16-4767-2023, https://doi.org/10.5194/gmd-16-4767-2023, 2023
Short summary
Short summary
Water in natural environments consists of many ions. Ions are electrically charged and exert electric forces on each other. We discuss whether the electric forces are relevant in describing mixing and reaction processes in natural environments. By comparing our computer simulations to lab experiments in literature, we show that the electric interactions between ions can play an essential role in mixing and reaction processes, in which case they should not be neglected in numerical modeling.
Edward R. Jones, Marc F. P. Bierkens, Niko Wanders, Edwin H. Sutanudjaja, Ludovicus P. H. van Beek, and Michelle T. H. van Vliet
Geosci. Model Dev., 16, 4481–4500, https://doi.org/10.5194/gmd-16-4481-2023, https://doi.org/10.5194/gmd-16-4481-2023, 2023
Short summary
Short summary
DynQual is a new high-resolution global water quality model for simulating total dissolved solids, biological oxygen demand and fecal coliform as indicators of salinity, organic pollution and pathogen pollution, respectively. Output data from DynQual can supplement the observational record of water quality data, which is highly fragmented across space and time, and has the potential to inform assessments in a broad range of fields including ecological, human health and water scarcity studies.
Hugo Delottier, John Doherty, and Philip Brunner
Geosci. Model Dev., 16, 4213–4231, https://doi.org/10.5194/gmd-16-4213-2023, https://doi.org/10.5194/gmd-16-4213-2023, 2023
Short summary
Short summary
Long run times are usually a barrier to the quantification and reduction of predictive uncertainty with complex hydrological models. Data space inversion (DSI) provides an alternative and highly model-run-efficient method for uncertainty quantification. This paper demonstrates DSI's ability to robustly quantify predictive uncertainty and extend the methodology to provide practical metrics that can guide data acquisition and analysis to achieve goals of decision-support modelling.
Zhipin Ai and Naota Hanasaki
Geosci. Model Dev., 16, 3275–3290, https://doi.org/10.5194/gmd-16-3275-2023, https://doi.org/10.5194/gmd-16-3275-2023, 2023
Short summary
Short summary
Simultaneously simulating food production and the requirements and availability of water resources in a spatially explicit manner within a single framework remains challenging on a global scale. Here, we successfully enhanced the global hydrological model H08 that considers human water use and management to simulate the yields of four major staple crops: maize, wheat, rice, and soybean. Our improved model will be beneficial for advancing global food–water nexus studies in the future.
Emilie Rouzies, Claire Lauvernet, Bruno Sudret, and Arthur Vidard
Geosci. Model Dev., 16, 3137–3163, https://doi.org/10.5194/gmd-16-3137-2023, https://doi.org/10.5194/gmd-16-3137-2023, 2023
Short summary
Short summary
Water and pesticide transfer models are complex and should be simplified to be used in decision support. Indeed, these models simulate many spatial processes in interaction, involving a large number of parameters. Sensitivity analysis allows us to select the most influential input parameters, but it has to be adapted to spatial modelling. This study will identify relevant methods that can be transposed to any hydrological and water quality model and improve the fate of pesticide knowledge.
Guoding Chen, Ke Zhang, Sheng Wang, Yi Xia, and Lijun Chao
Geosci. Model Dev., 16, 2915–2937, https://doi.org/10.5194/gmd-16-2915-2023, https://doi.org/10.5194/gmd-16-2915-2023, 2023
Short summary
Short summary
In this study, we developed a novel modeling system called iHydroSlide3D v1.0 by coupling a modified a 3D landslide model with a distributed hydrology model. The model is able to apply flexibly different simulating resolutions for hydrological and slope stability submodules and gain a high computational efficiency through parallel computation. The test results in the Yuehe River basin, China, show a good predicative capability for cascading flood–landslide events.
Jens A. de Bruijn, Mikhail Smilovic, Peter Burek, Luca Guillaumot, Yoshihide Wada, and Jeroen C. J. H. Aerts
Geosci. Model Dev., 16, 2437–2454, https://doi.org/10.5194/gmd-16-2437-2023, https://doi.org/10.5194/gmd-16-2437-2023, 2023
Short summary
Short summary
We present a computer simulation model of the hydrological system and human system, which can simulate the behaviour of individual farmers and their interactions with the water system at basin scale to assess how the systems have evolved and are projected to evolve in the future. For example, we can simulate the effect of subsidies provided on investment in adaptation measures and subsequent effects in the hydrological system, such as a lowering of the groundwater table or reservoir level.
Matthew D. Wilson and Thomas J. Coulthard
Geosci. Model Dev., 16, 2415–2436, https://doi.org/10.5194/gmd-16-2415-2023, https://doi.org/10.5194/gmd-16-2415-2023, 2023
Short summary
Short summary
During flooding, the sources of water that inundate a location can influence impacts such as pollution. However, methods to trace water sources in flood events are currently only available in complex, computationally expensive hydraulic models. We propose a simplified method which can be added to efficient, reduced-complexity model codes, enabling an improved understanding of flood dynamics and its impacts. We demonstrate its application for three sites at a range of spatial and temporal scales.
Bibi S. Naz, Wendy Sharples, Yueling Ma, Klaus Goergen, and Stefan Kollet
Geosci. Model Dev., 16, 1617–1639, https://doi.org/10.5194/gmd-16-1617-2023, https://doi.org/10.5194/gmd-16-1617-2023, 2023
Short summary
Short summary
It is challenging to apply a high-resolution integrated land surface and groundwater model over large spatial scales. In this paper, we demonstrate the application of such a model over a pan-European domain at 3 km resolution and perform an extensive evaluation of simulated water states and fluxes by comparing with in situ and satellite data. This study can serve as a benchmark and baseline for future studies of climate change impact projections and for hydrological forecasting.
Jiangtao Liu, David Hughes, Farshid Rahmani, Kathryn Lawson, and Chaopeng Shen
Geosci. Model Dev., 16, 1553–1567, https://doi.org/10.5194/gmd-16-1553-2023, https://doi.org/10.5194/gmd-16-1553-2023, 2023
Short summary
Short summary
Under-monitored regions like Africa need high-quality soil moisture predictions to help with food production, but it is not clear if soil moisture processes are similar enough around the world for data-driven models to maintain accuracy. We present a deep-learning-based soil moisture model that learns from both in situ data and satellite data and performs better than satellite products at the global scale. These results help us apply our model globally while better understanding its limitations.
Daniel Caviedes-Voullième, Mario Morales-Hernández, Matthew R. Norman, and Ilhan Özgen-Xian
Geosci. Model Dev., 16, 977–1008, https://doi.org/10.5194/gmd-16-977-2023, https://doi.org/10.5194/gmd-16-977-2023, 2023
Short summary
Short summary
This paper introduces the SERGHEI framework and a solver for shallow-water problems. Such models, often used for surface flow and flood modelling, are computationally intense. In recent years the trends to increase computational power have changed, requiring models to adapt to new hardware and new software paradigms. SERGHEI addresses these challenges, allowing surface flow simulation to be enabled on the newest and upcoming consumer hardware and supercomputers very efficiently.
Andrew M. Ireson, Raymond J. Spiteri, Martyn P. Clark, and Simon A. Mathias
Geosci. Model Dev., 16, 659–677, https://doi.org/10.5194/gmd-16-659-2023, https://doi.org/10.5194/gmd-16-659-2023, 2023
Short summary
Short summary
Richards' equation (RE) is used to describe the movement and storage of water in a soil profile and is a component of many hydrological and earth-system models. Solving RE numerically is challenging due to the non-linearities in the properties. Here, we present a simple but effective and mass-conservative solution to solving RE, which is ideal for teaching/learning purposes but also useful in prototype models that are used to explore alternative process representations.
Fang Wang, Di Tian, and Mark Carroll
Geosci. Model Dev., 16, 535–556, https://doi.org/10.5194/gmd-16-535-2023, https://doi.org/10.5194/gmd-16-535-2023, 2023
Short summary
Short summary
Gridded precipitation datasets suffer from biases and coarse resolutions. We developed a customized deep learning (DL) model to bias-correct and downscale gridded precipitation data using radar observations. The results showed that the customized DL model can generate improved precipitation at fine resolutions where regular DL and statistical methods experience challenges. The new model can be used to improve precipitation estimates, especially for capturing extremes at smaller scales.
Malak Sadki, Simon Munier, Aaron Boone, and Sophie Ricci
Geosci. Model Dev., 16, 427–448, https://doi.org/10.5194/gmd-16-427-2023, https://doi.org/10.5194/gmd-16-427-2023, 2023
Short summary
Short summary
Predicting water resource evolution is a key challenge for the coming century.
Anthropogenic impacts on water resources, and particularly the effects of dams and reservoirs on river flows, are still poorly known and generally neglected in global hydrological studies. A parameterized reservoir model is reproduced to compute monthly releases in Spanish anthropized river basins. For global application, an exhaustive sensitivity analysis of the model parameters is performed on flows and volumes.
Nicolas Flipo, Nicolas Gallois, and Jonathan Schuite
Geosci. Model Dev., 16, 353–381, https://doi.org/10.5194/gmd-16-353-2023, https://doi.org/10.5194/gmd-16-353-2023, 2023
Short summary
Short summary
A new approach is proposed to fit hydrological or land surface models, which suffer from large uncertainties in terms of water partitioning between fast runoff and slow infiltration from small watersheds to regional or continental river basins. It is based on the analysis of hydrosystem behavior in the frequency domain, which serves as a basis for estimating water flows in the time domain with a physically based model. It opens the way to significant breakthroughs in hydrological modeling.
Joachim Meyer, John Horel, Patrick Kormos, Andrew Hedrick, Ernesto Trujillo, and S. McKenzie Skiles
Geosci. Model Dev., 16, 233–250, https://doi.org/10.5194/gmd-16-233-2023, https://doi.org/10.5194/gmd-16-233-2023, 2023
Short summary
Short summary
Freshwater resupply from seasonal snow in the mountains is changing. Current water prediction methods from snow rely on historical data excluding the change and can lead to errors. This work presented and evaluated an alternative snow-physics-based approach. The results in a test watershed were promising, and future improvements were identified. Adaptation to current forecast environments would improve resilience to the seasonal snow changes and helps ensure the accuracy of resupply forecasts.
Shuqi Lin, Donald C. Pierson, and Jorrit P. Mesman
Geosci. Model Dev., 16, 35–46, https://doi.org/10.5194/gmd-16-35-2023, https://doi.org/10.5194/gmd-16-35-2023, 2023
Short summary
Short summary
The risks brought by the proliferation of algal blooms motivate the improvement of bloom forecasting tools, but algal blooms are complexly controlled and difficult to predict. Given rapid growth of monitoring data and advances in computation, machine learning offers an alternative prediction methodology. This study tested various machine learning workflows in a dimictic mesotrophic lake and gave promising predictions of the seasonal variations and the timing of algal blooms.
Thibault Hallouin, Richard J. Ellis, Douglas B. Clark, Simon J. Dadson, Andrew G. Hughes, Bryan N. Lawrence, Grenville M. S. Lister, and Jan Polcher
Geosci. Model Dev., 15, 9177–9196, https://doi.org/10.5194/gmd-15-9177-2022, https://doi.org/10.5194/gmd-15-9177-2022, 2022
Short summary
Short summary
A new framework for modelling the water cycle in the land system has been implemented. It considers the hydrological cycle as three interconnected components, bringing flexibility in the choice of the physical processes and their spatio-temporal resolutions. It is designed to foster collaborations between land surface, hydrological, and groundwater modelling communities to develop the next-generation of land system models for integration in Earth system models.
Seyed Mahmood Hamze-Ziabari, Ulrich Lemmin, Frédéric Soulignac, Mehrshad Foroughan, and David Andrew Barry
Geosci. Model Dev., 15, 8785–8807, https://doi.org/10.5194/gmd-15-8785-2022, https://doi.org/10.5194/gmd-15-8785-2022, 2022
Short summary
Short summary
A procedure combining numerical simulations, remote sensing, and statistical analyses is developed to detect large-scale current systems in large lakes. By applying this novel procedure in Lake Geneva, strategies for detailed transect field studies of the gyres and eddies were developed. Unambiguous field evidence of 3D gyre/eddy structures in full agreement with predictions confirmed the robustness of the proposed procedure.
Cited articles
Arakawa, A. and Lamb, V. R.: Computational design of the basic dynamical
processes of the UCLA general circulation model, Methods in Computational
Physics: Advances in Research and Applications, 17, 173–265,
https://doi.org/10.1016/B978-0-12-460817-7.50009-4, 1977. a
Bates, P. D.: Integrating remote sensing data with flood inundation models: how
far have we got?, Hydrol. Process., 26, 2515–2521, https://doi.org/10.1002/hyp.9374,
2012. a
Bates, P. D., Horritt, M. S., and Fewtrell, T. J.: A simple inertial
formulation of the shallow water equations for efficient two-dimensional
flood inundation modelling, J. Hydrol., 387, 33–45,
https://doi.org/10.1016/j.jhydrol.2010.03.027, 2010. a, b
Bates, P. D., Pappenberger, F., and Romanowicz, R. J.: Uncertainty in flood
inundation modelling, in: Applied uncertainty analysis for flood risk
management, 232–269, https://doi.org/10.1142/9781848162716_0010, 2014. a
Brodtkorb, A. R., Hagen, T. R., and Sætra, M. L.: Graphics processing unit
(GPU) programming strategies and trends in GPU computing, J. Parallel
Distr. Com., 73, 4–13, https://doi.org/10.1016/j.jpdc.2012.04.003, 2013. a
Cockburn, B. and Shu, C.-W.: Runge–Kutta discontinuous Galerkin methods
for convection-dominated problems, J. Sci. Comput., 16, 173–261,
https://doi.org/10.1023/A:1012873910884, 2001. a, b
Collins, S. N., James, R. S., Ray, P., Chen, K., Lassman, A., and Brownlee, J.:
Grids in numerical weather and climate models, in: Climate change and
regional/local responses, IntechOpen, 256, https://doi.org/10.5772/55922, 2013. a
Cozzolino, L., Cimorelli, L., Della Morte, R., Pugliano, G., Piscopo, V., and
Pianese, D.: Flood propagation modeling with the Local Inertia Approximation:
Theoretical and numerical analysis of its physical limitations, Adv. Water
Resour., 133, 103422, https://doi.org/10.1016/j.advwatres.2019.103422, 2019. a
de Almeida, G. A. and Bates, P.: Applicability of the local inertial
approximation of the shallow water equations to flood modeling, Water Resour.
Res., 49, 4833–4844, https://doi.org/10.1002/wrcr.20366, 2013. a, b, c
Falter, D., Vorogushyn, S., Lhomme, J., Apel, H., Gouldby, B., and Merz, B.:
Hydraulic model evaluation for large-scale flood risk assessments, Hydrol.
Process., 27, 1331–1340, https://doi.org/10.1002/hyp.9553, 2013. a
García-Feal, O., González-Cao, J., Gómez-Gesteira, M., Cea, L.,
Domínguez, J. M., and Formella, A.: An accelerated tool for flood
modelling based on Iber, Water, 10, 1459, https://doi.org/10.3390/w10101459, 2018. a
Guidolin, M., Chen, A. S., Ghimire, B., Keedwell, E. C., Djordjević, S.,
and Savić, D. A.: A weighted cellular automata 2D inundation model for
rapid flood analysis, Environ. Modell. Softw., 84, 378–394,
https://doi.org/10.1016/j.envsoft.2016.07.008, 2016. a
Harris, M.: CUDA pro tip: write flexible kernels with grid-stride loops,
available at: https://developer.nvidia.com/blog/cuda-pro-tip-write-flexible-kernels-grid-stride-loops/ (last access: 2~June~2021),
2013. a
Hoch, J. M., Eilander, D., Ikeuchi, H., Baart, F., and Winsemius, H. C.: Evaluating the impact of model complexity on flood wave propagation and inundation extent with a hydrologic–hydrodynamic model coupling framework, Nat. Hazards Earth Syst. Sci., 19, 1723–1735, https://doi.org/10.5194/nhess-19-1723-2019, 2019. a
Hunter, N., Bates, P., Horritt, M., and Wilson, M.: Improved simulation of
flood flows using storage cell models, P. I. Civil Eng. Wat. M., 159, 9–18,
https://doi.org/10.1680/wama.2006.159.1.9, 2006. a
Huxley, C., Syme, B., and Symons, E.: UK Environment Agency 2D Hydraulic
Model Benchmark Tests, 2017-09 TUFLOW release update, Tech. rep., BMT WBM
Pty Ltd., Level 8, 200 Creek Street, Brisbane Qld 4000, Australia, PO Box
203, Spring Hill 400,
available at: https://downloads.tuflow.com/_archive/Publications/UK%20EA%202D%20Benchmarking%20Results.TUFLOW%20Products%202017-09.pdf (last access: 2 June 2021), 2017. a, b, c, d, e, f
Jamieson, S. R., Lhomme, J., Wright, G., and Gouldby, B.: A highly efficient
2D flood model with sub-element topography, P. I. Civil Eng. Wat. M., 165,
581–595, https://doi.org/10.1680/wama.12.00021, 2012. a
Kesserwani, G. and Liang, Q.: Locally limited and fully conserved RKDG2
shallow water solutions with wetting and drying, J. Sci. Comput., 50,
120–144, https://doi.org/10.1007/s10915-011-9476-4, 2012. a
Kesserwani, G. and Wang, Y.: Discontinuous Galerkin flood model formulation:
Luxury or necessity?, Water Resour. Res., 50, 6522–6541,
https://doi.org/10.1002/2013WR014906, 2014. a, b, c
Kesserwani, G., Liang, Q., Vazquez, J., and Mosé, R.: Well-balancing issues
related to the RKDG2 scheme for the shallow water equations, Int. J. Numer.
Meth. Fl., 62, 428–448, https://doi.org/10.1002/fld.2027, 2010. a
Kolega, A. and Syme, B.: Evolution in flood modelling based on the example of
the Eudlo Creek crossing over the Bruce Highway, Institute of Public Works
Engineering Australasia Queensland,
available at: http://ipweaq.intersearch.com.au/ipweaqjspui/handle/1/5386 (last access: 2 June 2021),
2019. a
Krivodonova, L., Xin, J., Remacle, J.-F., Chevaugeon, N., and Flaherty, J. E.:
Shock detection and limiting with discontinuous Galerkin methods for
hyperbolic conservation laws, Appl. Numer. Math., 48, 323–338,
https://doi.org/10.1016/j.apnum.2003.11.002, 2004. a
Kvočka, D., Ahmadian, R., and Falconer, R. A.: Flood inundation modelling
of flash floods in steep river basins and catchments, Water, 9, 705,
https://doi.org/10.3390/w9090705, 2017. a
Li, D., Andreadis, K. M., Margulis, S. A., and Lettenmaier, D. P.: A data
assimilation framework for generating space-time continuous daily SWOT
river discharge data products, Water Resour. Res., 56, e2019WR026999,
https://doi.org/10.1029/2019WR026999, 2020. a
Liang, Q. and Marche, F.: Numerical resolution of well-balanced shallow water
equations with complex source terms, Adv. Water Resour., 32, 873–884,
https://doi.org/10.1016/j.advwatres.2009.02.010, 2009. a, b, c, d
LISFLOOD-FP developers: LISFLOOD-FP 8.0 hydrodynamic model, Zenodo,
https://doi.org/10.5281/zenodo.4073011, 2020. a, b, c, d
Liu, Z., Merwade, V., and Jafarzadegan, K.: Investigating the role of model
structure and surface roughness in generating flood inundation extents using
one-and two-dimensional hydraulic models, J. Flood Risk Manag., 12, e12347,
https://doi.org/10.1111/jfr3.12347, 2019. a
Martins, R., Leandro, J., and Djordjević, S.: A well balanced Roe scheme
for the local inertial equations with an unstructured mesh, Adv. Water
Resour., 83, 351–363, https://doi.org/10.1016/j.advwatres.2015.07.007, 2015. a
Martins, R., Leandro, J., and Djordjević, S.: Analytical solution of the
classical dam-break problem for the gravity wave–model equations, ASCE J.
Hydraul. Eng., 142, 06016003, https://doi.org/10.1061/(ASCE)HY.1943-7900.0001121,
2016. a
McCall, I.: Carlisle Flood Investigation Report, Flood Event 5–6th
December 2015, Tech. rep., Environment Agency,
available at: https://www.cumbria.gov.uk/eLibrary/Content/Internet/536/6181/42494151257.pdf (last access: 2 June 2021),
2016. a
Merrill, D.: CUB software package,
available at: https://nvlabs.github.io/cub/ (last access: 2 June 2021), 2015. a
Met Office: Met Office Rain Radar Data from the NIMROD System,
available at: https://catalogue.ceda.ac.uk/uuid/82adec1f896af6169112d09cc1174499 (last access: 2 June 2021),
2013. a
Ming, X., Liang, Q., Xia, X., Li, D., and Fowler, H. J.: Real-time flood
forecasting based on a high-performance 2-D hydrodynamic model and
numerical weather predictions, Water Resour. Res., 56, e2019WR025583,
https://doi.org/10.1029/2019WR025583, 2020. a, b
Morales-Hernández, M., Sharif, M. B., Gangrade, S., Dullo, T. T., Kao,
S.-C., Kalyanapu, A., Ghafoor, S., Evans, K., Madadi-Kandjani, E., and
Hodges, B. R.: High-performance computing in water resources hydrodynamics,
J. Hydroinform., 22, 1217–1235, https://doi.org/10.2166/hydro.2020.163, 2020. a
Morales-Hernández, M., Sharif, M. B., Kalyanapu, A., Ghafoor, S. K., Dullo,
T. T., Gangrade, S., Kao, S.-C., Norman, M. R., and Evans, K. J.: TRITON: A Multi-GPU open source 2D hydrodynamic flood model, Environ. Modell.
Softw., 141, 105034, https://doi.org/10.1016/j.envsoft.2021.105034, 2021. a
Neal, J., Fewtrell, T., and Trigg, M.: Parallelisation of storage cell flood
models using OpenMP, Environ. Modell. Softw., 24, 872–877,
https://doi.org/10.1016/j.envsoft.2008.12.004, 2009. a, b
Neal, J., Schumann, G., Fewtrell, T., Budimir, M., Bates, P., and Mason, D.:
Evaluating a new LISFLOOD-FP formulation with data from the summer 2007
floods in Tewkesbury, UK, J. Flood Risk Manag., 4, 88–95,
https://doi.org/10.1111/j.1753-318X.2011.01093.x, 2011. a
Néelz, S. and Pender, G.: Benchmarking the latest generation of 2D
hydraulic modelling packages, Tech. Rep. SC120002, Environment Agency,
Horizon House, Deanery Road, Bristol, BS1 9AH,
available at: https://www.gov.uk/government/publications/benchmarking-the-latest-generation-of-2d-hydraulic-flood-modelling-packages (last access: 2 June 2021),
2013. a, b, c, d, e, f, g, h, i, j, k, l, m
O'Loughlin, F., Neal, J., Schumann, G., Beighley, E., and Bates, P.: A
LISFLOOD-FP hydraulic model of the middle reach of the Congo, J. Hydrol.,
580, 124203, https://doi.org/10.1016/j.jhydrol.2019.124203, 2020. a
Özgen-Xian, I., Kesserwani, G., Caviedes-Voullième, D., Molins, S., Xu,
Z., Dwivedi, D., Moulton, J. D., and Steefel, C. I.: Wavelet-based local mesh
refinement for rainfall–runoff simulations, J. Hydroinform., 22, 1059–1077,
https://doi.org/10.2166/hydro.2020.198, 2020. a
Qin, X., LeVeque, R. J., and Motley, M. R.: Accelerating an Adaptive Mesh
Refinement Code for Depth-Averaged Flows Using GPUs, J. Adv. Model. Earth
Sy., 11, 2606–2628, https://doi.org/10.1029/2019MS001635, 2019. a
Rajib, A., Liu, Z., Merwade, V., Tavakoly, A. A., and Follum, M. L.: Towards a
large-scale locally relevant flood inundation modeling framework using SWAT
and LISFLOOD-FP, J. Hydrol., 581, 124406,
https://doi.org/10.1016/j.jhydrol.2019.124406, 2020. a
Sampson, C. C., Fewtrell, T. J., Duncan, A., Shaad, K., Horritt, M. S., and
Bates, P. D.: Use of terrestrial laser scanning data to drive decimetric
resolution urban inundation models, Adv. Water Resour., 41, 1–17,
https://doi.org/10.1016/j.advwatres.2012.02.010, 2012. a
Sampson, C. C., Bates, P. D., Neal, J. C., and Horritt, M. S.: An automated
routing methodology to enable direct rainfall in high resolution shallow
water models, Hydrol. Process., 27, 467–476, https://doi.org/10.1002/hyp.9515, 2013. a
Sampson, C. C., Smith, A. M., Bates, P. D., Neal, J. C., Alfieri, L., and
Freer, J. E.: A high-resolution global flood hazard model, Water Resour.
Res., 51, 7358–7381, https://doi.org/10.1002/2015WR016954, 2015. a
Savage, J. T. S., Pianosi, F., Bates, P., Freer, J., and Wagener, T.:
Quantifying the importance of spatial resolution and other factors through
global sensitivity analysis of a flood inundation model, Water Resour. Res.,
52, 9146–9163, https://doi.org/10.1002/2015WR018198, 2016. a
Shaw, J., Kesserwani, G., Neal, J., Bates, P., and Sharifian, M. K.:
LISFLOOD-FP 8.0 results of Environment Agency and Storm Desmond simulations, Zenodo,
https://doi.org/10.5281/zenodo.4066823, 2021. a, b
Shustikova, I., Domeneghetti, A., Neal, J. C., Bates, P., and Castellarin, A.:
Comparing 2D capabilities of HEC-RAS and LISFLOOD-FP on complex
topography, Hydrolog. Sci. J., 64, 1769–1782,
https://doi.org/10.1080/02626667.2019.1671982, 2019. a
Shustikova, I., Neal, J. C., Domeneghetti, A., Bates, P. D., Vorogushyn, S.,
and Castellarin, A.: Levee Breaching: A New Extension to the LISFLOOD-FP
Model, Water, 12, 942, https://doi.org/10.3390/w12040942, 2020. a, b
Sosa, J., Sampson, C., Smith, A., Neal, J., and Bates, P.: A toolbox to quickly
prepare flood inundation models for LISFLOOD-FP simulations, Environ.
Modell. Softw., 123, 104561, https://doi.org/10.1016/j.envsoft.2019.104561, 2020. a
Szönyi, M., May, P., and Lamb, R.: Flooding after Storm Desmond, Tech.
rep., Zurich Insurance Group Ltd,
available at: http://repo.floodalliance.net/jspui/handle/44111/2252 (last access: 2 June 2021), 2016. a
Villanueva, I. and Wright, N.: Linking Riemann and storage cell models for
flood prediction, P. I. Civil Eng. Wat. M., 159, 27–33,
https://doi.org/10.1680/wama.2006.159.1.27, 2006. a
Wang, Y., Liang, Q., Kesserwani, G., and Hall, J. W.: A 2D shallow flow model
for practical dam-break simulations, J. Hydraul. Res., 49, 307–316,
https://doi.org/10.1080/00221686.2011.566248, 2011. a
Wing, O. E., Bates, P. D., Sampson, C. C., Smith, A. M., Johnson, K. A., and
Erickson, T. A.: Validation of a 30 m resolution flood hazard model of the
conterminous United States, Water Resour. Res., 53, 7968–7986,
https://doi.org/10.1002/2017WR020917, 2017. a
Wing, O. E., Bates, P. D., Neal, J. C., Sampson, C. C., Smith, A. M., Quinn,
N., Shustikova, I., Domeneghetti, A., Gilles, D. W., Goska, R., and Krajewski, W. F.: A new
automated method for improved flood defense representation in large-scale
hydraulic models, Water Resour. Res., 55, 11007–11034,
https://doi.org/10.1029/2019WR025957, 2019. a, b
Wing, O. E., Quinn, N., Bates, P. D., Neal, J. C., Smith, A. M., Sampson,
C. C., Coxon, G., Yamazaki, D., Sutanudjaja, E. H., and Alfieri, L.: Toward
Global Stochastic River Flood Modeling, Water Resour. Res., 56,
e2020WR027 692, https://doi.org/10.1029/2020WR027692, 2020. a
Xia, X. and Liang, Q.: A new efficient implicit scheme for discretising the
stiff friction terms in the shallow water equations, Adv. Water Resour., 117,
87–97, https://doi.org/10.1016/j.advwatres.2018.05.004, 2018. a, b
Xia, X., Liang, Q., Ming, X., and Hou, J.: An efficient and stable hydrodynamic
model with novel source term discretization schemes for overland flow and
flood simulations, Water Resour. Res., 53, 3730–3759,
https://doi.org/10.1002/2016WR020055, 2017. a
Yamazaki, D., Ikeshima, D., Sosa, J., Bates, P. D., Allen, G. H., and Pavelsky,
T. M.: MERIT Hydro: a high-resolution global hydrography map based on
latest topography dataset, Water Resour. Res., 55, 5053–5073,
https://doi.org/10.1029/2019WR024873, 2019. a
Short summary
LISFLOOD-FP has been extended with new shallow-water solvers – DG2 and FV1 – for modelling all types of slow- or fast-moving waves over any smooth or rough surface. Using GPU parallelisation, FV1 is faster than the simpler ACC solver on grids with millions of elements. The DG2 solver is notably effective on coarse grids where river channels are hard to capture, improving predicted river levels and flood water depths. This marks a new step towards real-world DG2 flood inundation modelling.
LISFLOOD-FP has been extended with new shallow-water solvers – DG2 and FV1 – for modelling all...