Articles | Volume 14, issue 4
https://doi.org/10.5194/gmd-14-1865-2021
https://doi.org/10.5194/gmd-14-1865-2021
Model description paper
 | 
07 Apr 2021
Model description paper |  | 07 Apr 2021

PERICLIMv1.0: a model deriving palaeo-air temperatures from thaw depth in past permafrost regions

Tomáš Uxa, Marek Křížek, and Filip Hrbáček

Related authors

Simple analytical–statistical models (ASMs) for mean annual permafrost table temperature and active-layer thickness estimates
Tomáš Uxa, Filip Hrbáček, and Michaela Kňažková
EGUsphere, https://doi.org/10.5194/egusphere-2024-2989,https://doi.org/10.5194/egusphere-2024-2989, 2024
Short summary

Related subject area

Cryosphere
Coupling framework (1.0) for the Úa (2023b) ice sheet model and the FESOM-1.4 z-coordinate ocean model in an Antarctic domain
Ole Richter, Ralph Timmermann, G. Hilmar Gudmundsson, and Jan De Rydt
Geosci. Model Dev., 18, 2945–2960, https://doi.org/10.5194/gmd-18-2945-2025,https://doi.org/10.5194/gmd-18-2945-2025, 2025
Short summary
A gradient-boosted tree framework to model the ice thickness of the world's glaciers (IceBoost v1.1)
Niccolò Maffezzoli, Eric Rignot, Carlo Barbante, Troels Petersen, and Sebastiano Vascon
Geosci. Model Dev., 18, 2545–2568, https://doi.org/10.5194/gmd-18-2545-2025,https://doi.org/10.5194/gmd-18-2545-2025, 2025
Short summary
Towards deep-learning solutions for classification of automated snow height measurements (CleanSnow v1.0.2)
Jan Svoboda, Marc Ruesch, David Liechti, Corinne Jones, Michele Volpi, Michael Zehnder, and Jürg Schweizer
Geosci. Model Dev., 18, 1829–1849, https://doi.org/10.5194/gmd-18-1829-2025,https://doi.org/10.5194/gmd-18-1829-2025, 2025
Short summary
Quantitative sub-ice and marine tracing of Antarctic sediment provenance (TASP v1.0)
James W. Marschalek, Edward Gasson, Tina van de Flierdt, Claus-Dieter Hillenbrand, Martin J. Siegert, and Liam Holder
Geosci. Model Dev., 18, 1673–1708, https://doi.org/10.5194/gmd-18-1673-2025,https://doi.org/10.5194/gmd-18-1673-2025, 2025
Short summary
Tuning parameters of a sea ice model using machine learning
Anton Korosov, Yue Ying, and Einar Ólason
Geosci. Model Dev., 18, 885–904, https://doi.org/10.5194/gmd-18-885-2025,https://doi.org/10.5194/gmd-18-885-2025, 2025
Short summary

Cited articles

Åkerman, H. J. and Johansson, M.: Thawing permafrost and thicker active layers in sub-arctic Sweden, Permafrost Periglac., 19, 279–292, https://doi.org/10.1002/ppp.626, 2008. a, b
Andersland, O. B. and Ladanyi, B.: Frozen Ground Engineering, 2nd Edition, John Wiley & Sons, Hoboken, USA, 2004. a
Andrieux, E., Bateman, M. D., and Bertran, P.: The chronology of Late Pleistocene thermal contraction cracking derived from sand wedge OSL dating in central and southern France, Global Planet. Change, 162, 84–100, https://doi.org/10.1016/j.gloplacha.2018.01.012, 2018. a
Balatka, B., Kalvoda, J., Steklá, T., and Štěpančíková, P.: Morphostratigraphy of river terraces in the Eger valley (Czechia) focused on the Smrčiny Mountains, the Chebská pánev Basin and the Sokolovská pánev Basin, AUC Geogr., 54, 240–259. https://doi.org/10.14712/23361980.2019.21, 2019. a, b
Ballantyne, C. K.: Age and Significance of Mountain-Top Detritus, Permafrost Periglac., 9, 327–345, https://doi.org/10.1002/(SICI)1099-1530(199810/12)9:4<327::AID-PPP298>3.0.CO;2-9, 1998. a
Download
Short summary
We present a simple model that derives palaeo-air temperature characteristics related to the palaeo-active-layer thickness, which can be recognized using many relict periglacial features found in past permafrost regions. Its evaluation against modern temperature records and an experimental palaeo-air temperature reconstruction showed relatively high model accuracy, which suggests that it could become a useful tool for reconstructing Quaternary palaeo-environments.
Share