Articles | Volume 13, issue 5
https://doi.org/10.5194/gmd-13-2433-2020
https://doi.org/10.5194/gmd-13-2433-2020
Model description paper
 | 
27 May 2020
Model description paper |  | 27 May 2020

HydroMix v1.0: a new Bayesian mixing framework for attributing uncertain hydrological sources

Harsh Beria, Joshua R. Larsen, Anthony Michelon, Natalie C. Ceperley, and Bettina Schaefli

Related authors

Technical Note: Streamflow Seasonality using Directional Statistics
Wouter R. Berghuijs, Kate Hale, and Harsh Beria
EGUsphere, https://doi.org/10.5194/egusphere-2024-4117,https://doi.org/10.5194/egusphere-2024-4117, 2025
Short summary
Stream water sourcing from high-elevation snowpack inferred from stable isotopes of water: a novel application of d-excess values
Matthias Sprenger, Rosemary W. H. Carroll, David Marchetti, Carleton Bern, Harsh Beria, Wendy Brown, Alexander Newman, Curtis Beutler, and Kenneth H. Williams
Hydrol. Earth Syst. Sci., 28, 1711–1723, https://doi.org/10.5194/hess-28-1711-2024,https://doi.org/10.5194/hess-28-1711-2024, 2024
Short summary
Hydrodynamics of a high Alpine catchment characterized by four natural tracers
Anthony Michelon, Natalie Ceperley, Harsh Beria, Joshua Larsen, Torsten Vennemann, and Bettina Schaefli
Hydrol. Earth Syst. Sci., 27, 1403–1430, https://doi.org/10.5194/hess-27-1403-2023,https://doi.org/10.5194/hess-27-1403-2023, 2023
Short summary
Benefits from high-density rain gauge observations for hydrological response analysis in a small alpine catchment
Anthony Michelon, Lionel Benoit, Harsh Beria, Natalie Ceperley, and Bettina Schaefli
Hydrol. Earth Syst. Sci., 25, 2301–2325, https://doi.org/10.5194/hess-25-2301-2021,https://doi.org/10.5194/hess-25-2301-2021, 2021
Short summary
On the value of high density rain gauge observations for small Alpine headwater catchments
Anthony Michelon, Lionel Benoit, Harsh Beria, Natalie Ceperley, and Bettina Schaefli
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-683,https://doi.org/10.5194/hess-2019-683, 2020
Manuscript not accepted for further review
Short summary

Related subject area

Hydrology
Selecting a conceptual hydrological model using Bayes' factors computed with replica-exchange Hamiltonian Monte Carlo and thermodynamic integration
Damian N. Mingo, Remko Nijzink, Christophe Ley, and Jack S. Hale
Geosci. Model Dev., 18, 1709–1736, https://doi.org/10.5194/gmd-18-1709-2025,https://doi.org/10.5194/gmd-18-1709-2025, 2025
Short summary
The Water Table Model (WTM) (v2.0.1): coupled groundwater and dynamic lake modelling
Kerry L. Callaghan, Andrew D. Wickert, Richard Barnes, and Jacqueline Austermann
Geosci. Model Dev., 18, 1463–1486, https://doi.org/10.5194/gmd-18-1463-2025,https://doi.org/10.5194/gmd-18-1463-2025, 2025
Short summary
Modelling rainfall with a Bartlett–Lewis process: pyBL (v1.0.0), a Python software package and an application with short records
Chi-Ling Wei, Pei-Chun Chen, Chien-Yu Tseng, Ting-Yu Dai, Yun-Ting Ho, Ching-Chun Chou, Christian Onof, and Li-Pen Wang
Geosci. Model Dev., 18, 1357–1373, https://doi.org/10.5194/gmd-18-1357-2025,https://doi.org/10.5194/gmd-18-1357-2025, 2025
Short summary
Virtual Joint Field Campaign: a framework of synthetic landscapes to assess multiscale measurement methods of water storage
Till Francke, Cosimo Brogi, Alby Duarte Rocha, Michael Förster, Maik Heistermann, Markus Köhli, Daniel Rasche, Marvin Reich, Paul Schattan, Lena Scheiffele, and Martin Schrön
Geosci. Model Dev., 18, 819–842, https://doi.org/10.5194/gmd-18-819-2025,https://doi.org/10.5194/gmd-18-819-2025, 2025
Short summary
SERGHEI v2.0: introducing a performance-portable, high-performance, three-dimensional variably saturated subsurface flow solver (SERGHEI-RE)
Zhi Li, Gregor Rickert, Na Zheng, Zhibo Zhang, Ilhan Özgen-Xian, and Daniel Caviedes-Voullième
Geosci. Model Dev., 18, 547–562, https://doi.org/10.5194/gmd-18-547-2025,https://doi.org/10.5194/gmd-18-547-2025, 2025
Short summary

Cited articles

Allen, S. T., Kirchner, J. W., and Goldsmith, G. R.: Predicting spatial patterns in precipitation isotope (δ2H and δ18O) seasonality using sinusoidal isoscapes, Geophys. Res. Lett., 45, 4859–4868, https://doi.org/10.1029/2018GL077458, 2018. 
Barbeta, A. and Peñuelas, J.: Relative contribution of groundwater to plant transpiration estimated with stable isotopes, Sci. Rep., 7, 10580, https://doi.org/10.1038/s41598-017-09643-x, 2017. 
Benettin, P., Bailey, S. W., Rinaldo, A., Likens, G. E., McGuire, K. J., and Botter, G.: Young runoff fractions control streamwater age and solute concentration dynamics, Hydrol. Process., 31, 2982–2986, https://doi.org/10.1002/hyp.11243, 2017. 
Beria, H., Larsen, J. R., Ceperley, N. C., Michelon, A., Vennemann, T., and Schaefli, B.: Understanding snow hydrological processes through the lens of stable water isotopes, Wiley Interdiscip. Rev. Water, 5, e1311, https://doi.org/10.1002/wat2.1311, 2018. 
Beria, H., Larsen, J. R., Michelon, A., Ceperley, N. C., and Schaefli, B.: Data for the manuscript “HydroMix v1.0: a new Bayesian mixing framework for attributing uncertain hydrological sources” (Version 1.0), Zenodo, https://doi.org/10.5281/zenodo.3475429, 2019. 
Download
Short summary
We develop a Bayesian mixing model to address the issue of small sample sizes to describe different sources in hydrological mixing applications. Using composite likelihood functions, the model accounts for an often overlooked bias arising due to unweighted mixing. We test the model efficacy using a series of statistical benchmarking tests and demonstrate its real-life applicability by applying it to a Swiss Alpine catchment to obtain the proportion of groundwater recharged from rain vs. snow.
Share