Articles | Volume 12, issue 10
Geosci. Model Dev., 12, 4497–4549, 2019
https://doi.org/10.5194/gmd-12-4497-2019
Geosci. Model Dev., 12, 4497–4549, 2019
https://doi.org/10.5194/gmd-12-4497-2019

Model description paper 28 Oct 2019

Model description paper | 28 Oct 2019

Description and evaluation of the Diat-HadOCC model v1.0: the ocean biogeochemical component of HadGEM2-ES

Ian J. Totterdell

Related authors

Marine regime shifts in ocean biogeochemical models: a case study in the Gulf of Alaska
Claudie Beaulieu, Harriet Cole, Stephanie Henson, Andrew Yool, Thomas R. Anderson, Lee de Mora, Erik T. Buitenhuis, Momme Butenschön, Ian J. Totterdell, and J. Icarus Allen
Biogeosciences, 13, 4533–4553, https://doi.org/10.5194/bg-13-4533-2016,https://doi.org/10.5194/bg-13-4533-2016, 2016
Short summary

Related subject area

Climate and Earth System Modeling
FORTE 2.0: a fast, parallel and flexible coupled climate model
Adam T. Blaker, Manoj Joshi, Bablu Sinha, David P. Stevens, Robin S. Smith, and Joël J.-M. Hirschi
Geosci. Model Dev., 14, 275–293, https://doi.org/10.5194/gmd-14-275-2021,https://doi.org/10.5194/gmd-14-275-2021, 2021
Short summary
Optimization of the sulfate aerosol hygroscopicity parameter in WRF-Chem
Ah-Hyun Kim, Seong Soo Yum, Dong Yeong Chang, and Minsu Park
Geosci. Model Dev., 14, 259–273, https://doi.org/10.5194/gmd-14-259-2021,https://doi.org/10.5194/gmd-14-259-2021, 2021
Short summary
Updated European hydraulic pedotransfer functions with communicated uncertainties in the predicted variables (euptfv2)
Brigitta Szabó, Melanie Weynants, and Tobias K. D. Weber
Geosci. Model Dev., 14, 151–175, https://doi.org/10.5194/gmd-14-151-2021,https://doi.org/10.5194/gmd-14-151-2021, 2021
Short summary
Spin-up characteristics with three types of initial fields and the restart effects on forecast accuracy in the GRAPES global forecast system
Zhanshan Ma, Chuanfeng Zhao, Jiandong Gong, Jin Zhang, Zhe Li, Jian Sun, Yongzhu Liu, Jiong Chen, and Qingu Jiang
Geosci. Model Dev., 14, 205–221, https://doi.org/10.5194/gmd-14-205-2021,https://doi.org/10.5194/gmd-14-205-2021, 2021
Short summary
GTS v1.0: a macrophysics scheme for climate models based on a probability density function
Chein-Jung Shiu, Yi-Chi Wang, Huang-Hsiung Hsu, Wei-Ting Chen, Hua-Lu Pan, Ruiyu Sun, Yi-Hsuan Chen, and Cheng-An Chen
Geosci. Model Dev., 14, 177–204, https://doi.org/10.5194/gmd-14-177-2021,https://doi.org/10.5194/gmd-14-177-2021, 2021
Short summary

Cited articles

Acton, F. S.: Numerical Methods that Work, Harper and Row, New York, 52, 1970. a, b
Anderson, T. R.: A spectrally averaged model of light penetration and photosynthesis, Limnol. Oceanogr., 38, 1403–1419, 1993. a
Antonov, J. I., Seidov, D., Boyer, T. P., Locarnini, R. A., Mishonov, A. V., Garcia, H. E., Baranova, O. K., Zweng, M. M., and Johnson, D. R.: World Ocean Atlas 2009, Volume 2: Salinity, in: NOAA Atlas NESDIS 68, edited by: Levitus, S., U.S. Gov. Printing Office, Wash., DC, 2010. a
Aranami, K. and Tsunogai, S.: Seasonal and regional comparison of oceanic and atmospheric dimethylsulfide in the northern North Pacific: Dilution effects on its concentration during winter, J. Geophys. Res., 109, D12303, https://doi.org/10.1029/2003JD004288, 2004. a
Bacastow, R. B.: Numerical evaluation of the evasion factor, in: Scope 16: Carbon cycle Modelling, edited by: Bolin, B., John Wiley, New York, 95–101, 1981. a, b, c
Download
Short summary
The paper presents a complete description of version 1.0 of the Diat-HadOCC ocean biogeochemical model. A full set of equations is included, as are the parameterisations used and the rationale for choosing them. The model was developed to be a sub-model of the HadGEM2-ES Earth system model, which has been used to run a range of simulations for the 5th Climate Model Intercomparison Project (CMIP5). Results from those simulations are shown and compared to data (where available).