Articles | Volume 11, issue 12
https://doi.org/10.5194/gmd-11-4755-2018
https://doi.org/10.5194/gmd-11-4755-2018
Model description paper
 | 
30 Nov 2018
Model description paper |  | 30 Nov 2018

GSFLOW–GRASS v1.0.0: GIS-enabled hydrologic modeling of coupled groundwater–surface-water systems

G.-H. Crystal Ng, Andrew D. Wickert, Lauren D. Somers, Leila Saberi, Collin Cronkite-Ratcliff, Richard G. Niswonger, and Jeffrey M. McKenzie

Related authors

A double-Manning approach to compute robust rating curves and hydraulic geometries
Andrew D. Wickert, Jabari C. Jones, and Gene-Hua Crystal Ng
EGUsphere, https://doi.org/10.5194/egusphere-2023-3118,https://doi.org/10.5194/egusphere-2023-3118, 2024
Preprint archived
Short summary
BioRT-Flux-PIHM v1.0: a biogeochemical reactive transport model at the watershed scale
Wei Zhi, Yuning Shi, Hang Wen, Leila Saberi, Gene-Hua Crystal Ng, Kayalvizhi Sadayappan, Devon Kerins, Bryn Stewart, and Li Li
Geosci. Model Dev., 15, 315–333, https://doi.org/10.5194/gmd-15-315-2022,https://doi.org/10.5194/gmd-15-315-2022, 2022
Short summary
Open-source Arduino-compatible data loggers designed for field research
Andrew D. Wickert, Chad T. Sandell, Bobby Schulz, and Gene-Hua Crystal Ng
Hydrol. Earth Syst. Sci., 23, 2065–2076, https://doi.org/10.5194/hess-23-2065-2019,https://doi.org/10.5194/hess-23-2065-2019, 2019
Short summary
Multi-scale temporal variability in meltwater contributions in a tropical glacierized watershed
Leila Saberi, Rachel T. McLaughlin, G.-H. Crystal Ng, Jeff La Frenierre, Andrew D. Wickert, Michel Baraer, Wei Zhi, Li Li, and Bryan G. Mark
Hydrol. Earth Syst. Sci., 23, 405–425, https://doi.org/10.5194/hess-23-405-2019,https://doi.org/10.5194/hess-23-405-2019, 2019
Short summary

Related subject area

Hydrology
Development and performance of a high-resolution surface wave and storm surge forecast model: application to a large lake
Laura L. Swatridge, Ryan P. Mulligan, Leon Boegman, and Shiliang Shan
Geosci. Model Dev., 17, 7751–7766, https://doi.org/10.5194/gmd-17-7751-2024,https://doi.org/10.5194/gmd-17-7751-2024, 2024
Short summary
Deep dive into hydrologic simulations at global scale: harnessing the power of deep learning and physics-informed differentiable models (δHBV-globe1.0-hydroDL)
Dapeng Feng, Hylke Beck, Jens de Bruijn, Reetik Kumar Sahu, Yusuke Satoh, Yoshihide Wada, Jiangtao Liu, Ming Pan, Kathryn Lawson, and Chaopeng Shen
Geosci. Model Dev., 17, 7181–7198, https://doi.org/10.5194/gmd-17-7181-2024,https://doi.org/10.5194/gmd-17-7181-2024, 2024
Short summary
PyEt v1.3.1: a Python package for the estimation of potential evapotranspiration
Matevž Vremec, Raoul A. Collenteur, and Steffen Birk
Geosci. Model Dev., 17, 7083–7103, https://doi.org/10.5194/gmd-17-7083-2024,https://doi.org/10.5194/gmd-17-7083-2024, 2024
Short summary
Prediction of hysteretic matric potential dynamics using artificial intelligence: application of autoencoder neural networks
Nedal Aqel, Lea Reusser, Stephan Margreth, Andrea Carminati, and Peter Lehmann
Geosci. Model Dev., 17, 6949–6966, https://doi.org/10.5194/gmd-17-6949-2024,https://doi.org/10.5194/gmd-17-6949-2024, 2024
Short summary
Regionalization in global hydrological models and its impact on runoff simulations: a case study using WaterGAP3 (v 1.0.0)
Jenny Kupzig, Nina Kupzig, and Martina Flörke
Geosci. Model Dev., 17, 6819–6846, https://doi.org/10.5194/gmd-17-6819-2024,https://doi.org/10.5194/gmd-17-6819-2024, 2024
Short summary

Cited articles

Adresen, J., Hilberg, S., and Kunkel, K.: Historical climate and climate trends in the Midwestern United States, Climate Change in the Midwest: A Synthesis Report for the National Climate Assessment, 8–36, 2014. a
Ajami, N. K., Gupta, H., Wagener, T., and Sorooshian, S.: Calibration of a semi-distributed hydrologic model for streamflow estimation along a river system, J. Hydrol., 298, 112–135, https://doi.org/10.1016/j.jhydrol.2004.03.033, 2004. a
Arge, L., Chase, J. S., Halpin, P., Toma, L., Vitter, J. S., Urban, D., and Wickremesinghe, R.: Efficient flow computation on massive grid terrain datasets, GeoInformatica, 7, 283–313, https://doi.org/10.1023/A:1025526421410, 2003. a, b
Arnold, J. G. and Fohrer, N.: SWAT2000: Current capabilities and research opportunities in applied watershed modelling, Hydrol. Process., 19, 563–572, https://doi.org/10.1002/hyp.5611, 2005. a
Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., and White, M. W.: SWAT: Model use, calibration, and validation, ACS Sym. Ser., 55, 1491–1508, 2012. a
Download
Short summary
The profound importance of water has led to the development of increasingly complex hydrological models. However, implementing these models is usually time-consuming and requires specialized expertise, stymieing their widespread use to support science-driven decision-making. In response, we have developed GSFLOW–GRASS, a robust and comprehensive set of software tools that can be readily used to set up and execute GSFLOW, the U.S. Geological Survey's coupled groundwater–surface-water flow model.