Articles | Volume 8, issue 10
Geosci. Model Dev., 8, 3131–3150, 2015
https://doi.org/10.5194/gmd-8-3131-2015

Special issue: Isaac Newton Institute programme on multiscale numerics for...

Geosci. Model Dev., 8, 3131–3150, 2015
https://doi.org/10.5194/gmd-8-3131-2015

Model description paper 07 Oct 2015

Model description paper | 07 Oct 2015

DYNAMICO-1.0, an icosahedral hydrostatic dynamical core designed for consistency and versatility

T. Dubos et al.

Related authors

WAVETRISK-1.0: an adaptive wavelet hydrostatic dynamical core
Nicholas K.-R. Kevlahan and Thomas Dubos
Geosci. Model Dev., 12, 4901–4921, https://doi.org/10.5194/gmd-12-4901-2019,https://doi.org/10.5194/gmd-12-4901-2019, 2019
Short summary
DCMIP2016: a review of non-hydrostatic dynamical core design and intercomparison of participating models
Paul A. Ullrich, Christiane Jablonowski, James Kent, Peter H. Lauritzen, Ramachandran Nair, Kevin A. Reed, Colin M. Zarzycki, David M. Hall, Don Dazlich, Ross Heikes, Celal Konor, David Randall, Thomas Dubos, Yann Meurdesoif, Xi Chen, Lucas Harris, Christian Kühnlein, Vivian Lee, Abdessamad Qaddouri, Claude Girard, Marco Giorgetta, Daniel Reinert, Joseph Klemp, Sang-Hun Park, William Skamarock, Hiroaki Miura, Tomoki Ohno, Ryuji Yoshida, Robert Walko, Alex Reinecke, and Kevin Viner
Geosci. Model Dev., 10, 4477–4509, https://doi.org/10.5194/gmd-10-4477-2017,https://doi.org/10.5194/gmd-10-4477-2017, 2017
Short summary
Adaptive wavelet simulation of global ocean dynamics using a new Brinkman volume penalization
N. K.-R. Kevlahan, T. Dubos, and M. Aechtner
Geosci. Model Dev., 8, 3891–3909, https://doi.org/10.5194/gmd-8-3891-2015,https://doi.org/10.5194/gmd-8-3891-2015, 2015
Short summary
A mimetic, semi-implicit, forward-in-time, finite volume shallow water model: comparison of hexagonal–icosahedral and cubed-sphere grids
J. Thuburn, C. J. Cotter, and T. Dubos
Geosci. Model Dev., 7, 909–929, https://doi.org/10.5194/gmd-7-909-2014,https://doi.org/10.5194/gmd-7-909-2014, 2014

Related subject area

Numerical Methods
A note on precision-preserving compression of scientific data
Rostislav Kouznetsov
Geosci. Model Dev., 14, 377–389, https://doi.org/10.5194/gmd-14-377-2021,https://doi.org/10.5194/gmd-14-377-2021, 2021
Short summary
An N-dimensional Fortran interpolation programme (NterGeo.v2020a) for geophysics sciences – application to a back-trajectory programme (Backplumes.v2020r1) using CHIMERE or WRF outputs
Bertrand Bessagnet, Laurent Menut, and Maxime Beauchamp
Geosci. Model Dev., 14, 91–106, https://doi.org/10.5194/gmd-14-91-2021,https://doi.org/10.5194/gmd-14-91-2021, 2021
Short summary
A framework to evaluate IMEX schemes for atmospheric models
Oksana Guba, Mark A. Taylor, Andrew M. Bradley, Peter A. Bosler, and Andrew Steyer
Geosci. Model Dev., 13, 6467–6480, https://doi.org/10.5194/gmd-13-6467-2020,https://doi.org/10.5194/gmd-13-6467-2020, 2020
Inequality-constrained free-surface evolution in a full Stokes ice flow model (evolve_glacier v1.1)
Anna Wirbel and Alexander Helmut Jarosch
Geosci. Model Dev., 13, 6425–6445, https://doi.org/10.5194/gmd-13-6425-2020,https://doi.org/10.5194/gmd-13-6425-2020, 2020
Short summary
A fast and efficient MATLAB-based MPM solver: fMPMM-solver v1.1
Emmanuel Wyser, Yury Alkhimenkov, Michel Jaboyedoff, and Yury Y. Podladchikov
Geosci. Model Dev., 13, 6265–6284, https://doi.org/10.5194/gmd-13-6265-2020,https://doi.org/10.5194/gmd-13-6265-2020, 2020
Short summary

Cited articles

Arakawa, A.: Computational design for long-term numerical integration of the equations of fluid motion: Two-dimensional incompressible flow. P}art {I, J. Comput. Phys, 1, 119–143, 1966.
Arakawa, A. and Lamb, V. R.: A Potential Enstrophy and Energy Conserving Scheme for the Shallow Water Equations, Mon. Weather Rev., 109, 18–36, 1981.
Arnold, V. I.: Conditions for non-linear stability of plane steady curvilinear flows of an ideal fluid, Dokl. Akad. Nauk Sssr, 162, 773–777, 1965.
Audusse, E., Bouchut, F., Bristeau, M.-O., Klein, R., and Perthame, B.: A Fast and Stable Well-Balanced Scheme with Hydrostatic Reconstruction for Shallow Water Flows, SIAM J. Sci. Comput., 25, 2050–2065, 2004.
Augenbaum, J. M. and Peskin, C. S.: On the construction of the Voronoi mesh on a sphere, J. Comput. Phys, 59, 177–192, 1985.
Download
Short summary
The design of the icosahedral atmospheric dynamical core DYNAMICO is presented. The key contribution is to combine a strict separatation of kinematics from dynamics to a Hamiltonian formulation of the equations of motion in a non-Eulerian vertical coordinate to achieve energetic consistency. This approach allows for a unified treatment of various equations of motion: multi-layer shallow-water equations and hydrostatic primitive equations.