Articles | Volume 8, issue 10
https://doi.org/10.5194/gmd-8-3131-2015
https://doi.org/10.5194/gmd-8-3131-2015
Model description paper
 | 
07 Oct 2015
Model description paper |  | 07 Oct 2015

DYNAMICO-1.0, an icosahedral hydrostatic dynamical core designed for consistency and versatility

T. Dubos, S. Dubey, M. Tort, R. Mittal, Y. Meurdesoif, and F. Hourdin

Related authors

Contribution of physical latent knowledge to the emulation of an atmospheric physics model: a study based on the LMDZ Atmospheric General Circulation Model
Ségolène Crossouard, Soulivanh Thao, Thomas Dubos, Masa Kageyama, Mathieu Vrac, and Yann Meurdesoif
EGUsphere, https://doi.org/10.5194/egusphere-2025-1418,https://doi.org/10.5194/egusphere-2025-1418, 2025
Short summary
DCMIP2016: the tropical cyclone test case
Justin L. Willson, Kevin A. Reed, Christiane Jablonowski, James Kent, Peter H. Lauritzen, Ramachandran Nair, Mark A. Taylor, Paul A. Ullrich, Colin M. Zarzycki, David M. Hall, Don Dazlich, Ross Heikes, Celal Konor, David Randall, Thomas Dubos, Yann Meurdesoif, Xi Chen, Lucas Harris, Christian Kühnlein, Vivian Lee, Abdessamad Qaddouri, Claude Girard, Marco Giorgetta, Daniel Reinert, Hiroaki Miura, Tomoki Ohno, and Ryuji Yoshida
Geosci. Model Dev., 17, 2493–2507, https://doi.org/10.5194/gmd-17-2493-2024,https://doi.org/10.5194/gmd-17-2493-2024, 2024
Short summary
WAVETRISK-1.0: an adaptive wavelet hydrostatic dynamical core
Nicholas K.-R. Kevlahan and Thomas Dubos
Geosci. Model Dev., 12, 4901–4921, https://doi.org/10.5194/gmd-12-4901-2019,https://doi.org/10.5194/gmd-12-4901-2019, 2019
Short summary
DCMIP2016: a review of non-hydrostatic dynamical core design and intercomparison of participating models
Paul A. Ullrich, Christiane Jablonowski, James Kent, Peter H. Lauritzen, Ramachandran Nair, Kevin A. Reed, Colin M. Zarzycki, David M. Hall, Don Dazlich, Ross Heikes, Celal Konor, David Randall, Thomas Dubos, Yann Meurdesoif, Xi Chen, Lucas Harris, Christian Kühnlein, Vivian Lee, Abdessamad Qaddouri, Claude Girard, Marco Giorgetta, Daniel Reinert, Joseph Klemp, Sang-Hun Park, William Skamarock, Hiroaki Miura, Tomoki Ohno, Ryuji Yoshida, Robert Walko, Alex Reinecke, and Kevin Viner
Geosci. Model Dev., 10, 4477–4509, https://doi.org/10.5194/gmd-10-4477-2017,https://doi.org/10.5194/gmd-10-4477-2017, 2017
Short summary
Adaptive wavelet simulation of global ocean dynamics using a new Brinkman volume penalization
N. K.-R. Kevlahan, T. Dubos, and M. Aechtner
Geosci. Model Dev., 8, 3891–3909, https://doi.org/10.5194/gmd-8-3891-2015,https://doi.org/10.5194/gmd-8-3891-2015, 2015
Short summary

Related subject area

Numerical methods
Stabilized two-phase material point method for hydromechanical coupling problems in solid–fluid porous media
Xiong Tang, Wei Liu, Siming He, Lei Zhu, Michel Jaboyedoff, Huanhuan Zhang, Yuqing Sun, and Zenan Huo
Geosci. Model Dev., 18, 4743–4758, https://doi.org/10.5194/gmd-18-4743-2025,https://doi.org/10.5194/gmd-18-4743-2025, 2025
Short summary
asQ: parallel-in-time finite element simulations using ParaDiag for geoscientific models and beyond
Joshua Hope-Collins, Abdalaziz Hamdan, Werner Bauer, Lawrence Mitchell, and Colin Cotter
Geosci. Model Dev., 18, 4535–4569, https://doi.org/10.5194/gmd-18-4535-2025,https://doi.org/10.5194/gmd-18-4535-2025, 2025
Short summary
Optimized step size control within the Rosenbrock solvers for stiff chemical ordinary differential equation systems in KPP version 2.2.3_rs4
Raphael Dreger, Timo Kirfel, Andrea Pozzer, Simon Rosanka, Rolf Sander, and Domenico Taraborrelli
Geosci. Model Dev., 18, 4273–4291, https://doi.org/10.5194/gmd-18-4273-2025,https://doi.org/10.5194/gmd-18-4273-2025, 2025
Short summary
Potential-based thermodynamics with consistent conservative cascade transport for implicit large eddy simulation: PTerodaC3TILES version 1.0
John Thuburn
Geosci. Model Dev., 18, 3331–3357, https://doi.org/10.5194/gmd-18-3331-2025,https://doi.org/10.5194/gmd-18-3331-2025, 2025
Short summary
Positive matrix factorization of large real-time atmospheric mass spectrometry datasets using error-weighted randomized hierarchical alternating least squares
Benjamin C. Sapper, Sean Youn, Daven K. Henze, Manjula Canagaratna, Harald Stark, and Jose L. Jimenez
Geosci. Model Dev., 18, 2891–2919, https://doi.org/10.5194/gmd-18-2891-2025,https://doi.org/10.5194/gmd-18-2891-2025, 2025
Short summary

Cited articles

Arakawa, A.: Computational design for long-term numerical integration of the equations of fluid motion: Two-dimensional incompressible flow. P}art {I, J. Comput. Phys, 1, 119–143, 1966.
Arakawa, A. and Lamb, V. R.: A Potential Enstrophy and Energy Conserving Scheme for the Shallow Water Equations, Mon. Weather Rev., 109, 18–36, 1981.
Arnold, V. I.: Conditions for non-linear stability of plane steady curvilinear flows of an ideal fluid, Dokl. Akad. Nauk Sssr, 162, 773–777, 1965.
Audusse, E., Bouchut, F., Bristeau, M.-O., Klein, R., and Perthame, B.: A Fast and Stable Well-Balanced Scheme with Hydrostatic Reconstruction for Shallow Water Flows, SIAM J. Sci. Comput., 25, 2050–2065, 2004.
Augenbaum, J. M. and Peskin, C. S.: On the construction of the Voronoi mesh on a sphere, J. Comput. Phys, 59, 177–192, 1985.
Download
Short summary
The design of the icosahedral atmospheric dynamical core DYNAMICO is presented. The key contribution is to combine a strict separatation of kinematics from dynamics to a Hamiltonian formulation of the equations of motion in a non-Eulerian vertical coordinate to achieve energetic consistency. This approach allows for a unified treatment of various equations of motion: multi-layer shallow-water equations and hydrostatic primitive equations.
Share