Articles | Volume 8, issue 9
https://doi.org/10.5194/gmd-8-2735-2015
https://doi.org/10.5194/gmd-8-2735-2015
Development and technical paper
 | 
03 Sep 2015
Development and technical paper |  | 03 Sep 2015

OESbathy version 1.0: a method for reconstructing ocean bathymetry with generalized continental shelf-slope-rise structures

A. Goswami, P. L. Olson, L. A. Hinnov, and A. Gnanadesikan

Related authors

Using neural network ensembles to separate ocean biogeochemical and physical drivers of phytoplankton biogeography in Earth system models
Christopher Holder, Anand Gnanadesikan, and Marie Aude-Pradal
Geosci. Model Dev., 15, 1595–1617, https://doi.org/10.5194/gmd-15-1595-2022,https://doi.org/10.5194/gmd-15-1595-2022, 2022
Short summary
Can machine learning extract the mechanisms controlling phytoplankton growth from large-scale observations? – A proof-of-concept study
Christopher Holder and Anand Gnanadesikan
Biogeosciences, 18, 1941–1970, https://doi.org/10.5194/bg-18-1941-2021,https://doi.org/10.5194/bg-18-1941-2021, 2021
Short summary
Report on ICDP Deep Dust workshops: probing continental climate of the late Paleozoic icehouse–greenhouse transition and beyond
Gerilyn S. Soreghan, Laurent Beccaletto, Kathleen C. Benison, Sylvie Bourquin, Georg Feulner, Natsuko Hamamura, Michael Hamilton, Nicholas G. Heavens, Linda Hinnov, Adam Huttenlocker, Cindy Looy, Lily S. Pfeifer, Stephane Pochat, Mehrdad Sardar Abadi, James Zambito, and the Deep Dust workshop participants
Sci. Dril., 28, 93–112, https://doi.org/10.5194/sd-28-93-2020,https://doi.org/10.5194/sd-28-93-2020, 2020
Short summary
Challenges in modeling spatiotemporally varying phytoplankton blooms in the Northwestern Arabian Sea and Gulf of Oman
S. Sedigh Marvasti, A. Gnanadesikan, A. A. Bidokhti, J. P. Dunne, and S. Ghader
Biogeosciences, 13, 1049–1069, https://doi.org/10.5194/bg-13-1049-2016,https://doi.org/10.5194/bg-13-1049-2016, 2016
Short summary
Quantifying the biological impact of surface ocean light attenuation by colored detrital matter in an ESM using a new optical parameterization
G. E. Kim, M.-A. Pradal, and A. Gnanadesikan
Biogeosciences, 12, 5119–5132, https://doi.org/10.5194/bg-12-5119-2015,https://doi.org/10.5194/bg-12-5119-2015, 2015
Short summary

Related subject area

Climate and Earth system modeling
CICERO Simple Climate Model (CICERO-SCM v1.1.1) – an improved simple climate model with a parameter calibration tool
Marit Sandstad, Borgar Aamaas, Ane Nordlie Johansen, Marianne Tronstad Lund, Glen Philip Peters, Bjørn Hallvard Samset, Benjamin Mark Sanderson, and Ragnhild Bieltvedt Skeie
Geosci. Model Dev., 17, 6589–6625, https://doi.org/10.5194/gmd-17-6589-2024,https://doi.org/10.5194/gmd-17-6589-2024, 2024
Short summary
Development of a plant carbon–nitrogen interface coupling framework in a coupled biophysical-ecosystem–biogeochemical model (SSiB5/TRIFFID/DayCent-SOM v1.0)
Zheng Xiang, Yongkang Xue, Weidong Guo, Melannie D. Hartman, Ye Liu, and William J. Parton
Geosci. Model Dev., 17, 6437–6464, https://doi.org/10.5194/gmd-17-6437-2024,https://doi.org/10.5194/gmd-17-6437-2024, 2024
Short summary
Dynamical Madden–Julian Oscillation forecasts using an ensemble subseasonal-to-seasonal forecast system of the IAP-CAS model
Yangke Liu, Qing Bao, Bian He, Xiaofei Wu, Jing Yang, Yimin Liu, Guoxiong Wu, Tao Zhu, Siyuan Zhou, Yao Tang, Ankang Qu, Yalan Fan, Anling Liu, Dandan Chen, Zhaoming Luo, Xing Hu, and Tongwen Wu
Geosci. Model Dev., 17, 6249–6275, https://doi.org/10.5194/gmd-17-6249-2024,https://doi.org/10.5194/gmd-17-6249-2024, 2024
Short summary
Implementation of a brittle sea ice rheology in an Eulerian, finite-difference, C-grid modeling framework: impact on the simulated deformation of sea ice in the Arctic
Laurent Brodeau, Pierre Rampal, Einar Ólason, and Véronique Dansereau
Geosci. Model Dev., 17, 6051–6082, https://doi.org/10.5194/gmd-17-6051-2024,https://doi.org/10.5194/gmd-17-6051-2024, 2024
Short summary
HSW-V v1.0: localized injections of interactive volcanic aerosols and their climate impacts in a simple general circulation model
Joseph P. Hollowed, Christiane Jablonowski, Hunter Y. Brown, Benjamin R. Hillman, Diana L. Bull, and Joseph L. Hart
Geosci. Model Dev., 17, 5913–5938, https://doi.org/10.5194/gmd-17-5913-2024,https://doi.org/10.5194/gmd-17-5913-2024, 2024
Short summary

Cited articles

Amante, C. and Eakins, B. W.: ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis, US Department of Commerce, NOAA, National Environmental Satellite, Data, and Information Service, NGDC, Marine Geology and Geophysics Division, 2009.
Arbic, B. K., Karsten, R. H., and Garrett, C.: On tidal resonance in the global ocean and the back-effect of coastal tides upon open-ocean tides, Atmos. Ocean, 47, 239–266 https://doi.org/10.3137/OC311.2009, 2009.
Célérier, B.: Paleobathymetry and geodynamics models for subsidence, Palaios, 3, 454–463, 1988.
Corti, G., Bonini, M., Conticelli, S., Innocenti, F., Manetti, P., and Sokoutis, D.: Analogue modelling of continental extension: a review focused on the relations between the patterns of deformation and the presence of magma, Earth-Sci. Rev., 63, 169–247, 2003.
Crosby, A., McKenzie, D., and Sclater, J.: The relationship between depth, age and gravity in the oceans, Geophys. J. Int., 166, 553–573, 2006.
Download
Short summary
A methodology is presented for reconstructing past global ocean bathymetry using a plate cooling model for the oceanic lithosphere, the age distribution of the oceanic crust, global oceanic sediment thicknesses, plus shelf-slope-rise structures calibrated at modern active and passive continental margins. The final product is a globally complete ocean bathymetry at arbitrary resolution with an isostatically adjusted, multicomponent sediment layer.