Articles | Volume 6, issue 4
Geosci. Model Dev., 6, 1353–1365, 2013
https://doi.org/10.5194/gmd-6-1353-2013

Special issue: Isaac Newton Institute programme on multiscale numerics for...

Geosci. Model Dev., 6, 1353–1365, 2013
https://doi.org/10.5194/gmd-6-1353-2013
Model description paper
30 Aug 2013
Model description paper | 30 Aug 2013

Parallel algorithms for planar and spherical Delaunay construction with an application to centroidal Voronoi tessellations

D. W. Jacobsen et al.

Related authors

MPAS-Seaice (v1.0.0): sea-ice dynamics on unstructured Voronoi meshes
Adrian K. Turner, William H. Lipscomb, Elizabeth C. Hunke, Douglas W. Jacobsen​​​​​​​, Nicole Jeffery, Darren Engwirda, Todd D. Ringler, and Jonathan D. Wolfe
Geosci. Model Dev., 15, 3721–3751, https://doi.org/10.5194/gmd-15-3721-2022,https://doi.org/10.5194/gmd-15-3721-2022, 2022
Short summary
MPAS-Albany Land Ice (MALI): a variable-resolution ice sheet model for Earth system modeling using Voronoi grids
Matthew J. Hoffman, Mauro Perego, Stephen F. Price, William H. Lipscomb, Tong Zhang, Douglas Jacobsen, Irina Tezaur, Andrew G. Salinger, Raymond Tuminaro, and Luca Bertagna
Geosci. Model Dev., 11, 3747–3780, https://doi.org/10.5194/gmd-11-3747-2018,https://doi.org/10.5194/gmd-11-3747-2018, 2018
Short summary

Related subject area

Climate and Earth system modeling
GREB-ISM v1.0: A coupled ice sheet model for the Globally Resolved Energy Balance model for global simulations on timescales of 100 kyr
Zhiang Xie, Dietmar Dommenget, Felicity S. McCormack, and Andrew N. Mackintosh
Geosci. Model Dev., 15, 3691–3719, https://doi.org/10.5194/gmd-15-3691-2022,https://doi.org/10.5194/gmd-15-3691-2022, 2022
Short summary
A derivative-free optimisation method for global ocean biogeochemical models
Sophy Oliver, Coralia Cartis, Iris Kriest, Simon F. B Tett, and Samar Khatiwala
Geosci. Model Dev., 15, 3537–3554, https://doi.org/10.5194/gmd-15-3537-2022,https://doi.org/10.5194/gmd-15-3537-2022, 2022
Short summary
Empirical values and assumptions in the convection schemes of numerical models
Anahí Villalba-Pradas and Francisco J. Tapiador
Geosci. Model Dev., 15, 3447–3518, https://doi.org/10.5194/gmd-15-3447-2022,https://doi.org/10.5194/gmd-15-3447-2022, 2022
Short summary
Precipitation over southern Africa: is there consensus among global climate models (GCMs), regional climate models (RCMs) and observational data?
Maria Chara Karypidou, Eleni Katragkou, and Stefan Pieter Sobolowski
Geosci. Model Dev., 15, 3387–3404, https://doi.org/10.5194/gmd-15-3387-2022,https://doi.org/10.5194/gmd-15-3387-2022, 2022
Short summary
On the impact of dropsondes on the ECMWF Integrated Forecasting System model (CY47R1) analysis of convection during the OTREC (Organization of Tropical East Pacific Convection) field campaign
Stipo Sentić, Peter Bechtold, Željka Fuchs-Stone, Mark Rodwell, and David J. Raymond
Geosci. Model Dev., 15, 3371–3385, https://doi.org/10.5194/gmd-15-3371-2022,https://doi.org/10.5194/gmd-15-3371-2022, 2022
Short summary

Cited articles

Amato, N. and Preparata, F.: An NC parallel 3D convex hull algorithm, in: Proceedings of the ninth annual symposium on Computational geometry – SCG '93, 289–297, May 1993.
Batista, V., Millman, D., Pion, S., and Singler, J.: Parallel geometric algorithms for multi-core computers, Comp. Geom.-Theor. Appl., 43, 663–677, 2010.
Bowers, P., Diets, W., and Keeling, S.: Fast algorithms for generating Delaunay interpolation elements for domain decomposition, available at: http://www.math.fsu.edu/ aluffi/archive/paper77.ps.gz, (last access: May 2011), 1998.
Chernikov, A. and Chrisochoides, N.: Algorithm 872: parallel 2D constrained Delaunay mesh generation, ACM T. Math. Software, 34, 6:1–6:20, 2008.
Cignoni, P., Montani, C., and Scopigno, R.: DeWall: a fast divide and conquer Delaunay triangulation algorithm in E-d, Comput. Aided Design, 30, 333–341, 1998.