Articles | Volume 18, issue 16
https://doi.org/10.5194/gmd-18-5031-2025
https://doi.org/10.5194/gmd-18-5031-2025
Model description paper
 | 
19 Aug 2025
Model description paper |  | 19 Aug 2025

Isogeometric analysis of the lithosphere under topographic loading: Igalith v1.0.0

Rozan Rosandi, Yudi Rosandi, and Bernd Simeon

Related subject area

Numerical methods
Stabilized two-phase material point method for hydromechanical coupling problems in solid–fluid porous media
Xiong Tang, Wei Liu, Siming He, Lei Zhu, Michel Jaboyedoff, Huanhuan Zhang, Yuqing Sun, and Zenan Huo
Geosci. Model Dev., 18, 4743–4758, https://doi.org/10.5194/gmd-18-4743-2025,https://doi.org/10.5194/gmd-18-4743-2025, 2025
Short summary
asQ: parallel-in-time finite element simulations using ParaDiag for geoscientific models and beyond
Joshua Hope-Collins, Abdalaziz Hamdan, Werner Bauer, Lawrence Mitchell, and Colin Cotter
Geosci. Model Dev., 18, 4535–4569, https://doi.org/10.5194/gmd-18-4535-2025,https://doi.org/10.5194/gmd-18-4535-2025, 2025
Short summary
Optimized step size control within the Rosenbrock solvers for stiff chemical ordinary differential equation systems in KPP version 2.2.3_rs4
Raphael Dreger, Timo Kirfel, Andrea Pozzer, Simon Rosanka, Rolf Sander, and Domenico Taraborrelli
Geosci. Model Dev., 18, 4273–4291, https://doi.org/10.5194/gmd-18-4273-2025,https://doi.org/10.5194/gmd-18-4273-2025, 2025
Short summary
Potential-based thermodynamics with consistent conservative cascade transport for implicit large eddy simulation: PTerodaC3TILES version 1.0
John Thuburn
Geosci. Model Dev., 18, 3331–3357, https://doi.org/10.5194/gmd-18-3331-2025,https://doi.org/10.5194/gmd-18-3331-2025, 2025
Short summary
Positive matrix factorization of large real-time atmospheric mass spectrometry datasets using error-weighted randomized hierarchical alternating least squares
Benjamin C. Sapper, Sean Youn, Daven K. Henze, Manjula Canagaratna, Harald Stark, and Jose L. Jimenez
Geosci. Model Dev., 18, 2891–2919, https://doi.org/10.5194/gmd-18-2891-2025,https://doi.org/10.5194/gmd-18-2891-2025, 2025
Short summary

Cited articles

Abd-Elmotaal, H. A.: Theoretical background of the Vening-Meinesz isostatic model, in: Gravity and Geoid, Vol. 113 of International Association of Geodesy Symposia, Springer, 268–277, https://doi.org/10.1007/978-3-642-79721-7_28, 1995. a
Airy, G. B.: On the computation of the effect of the attraction of mountain-masses, as disturbing the apparent astronomical latitude of stations in geodetic surveys, Philos. T. R. Soc. Lond., 145, 101–104, 1855. a
Amukti, R., Yunartha, A., Anggraini, A., Suryanto, W., and Achid, N.: Modeling of the Earth's crust and upper mantle beneath central part of Java Island using receiver function data, in: AIP Conference Proceedings, Surakarta, Indonesia, 26–28 July 2019, Vol. 2194, 020004, AIP Publishing, https://doi.org/10.1063/1.5139736, 2019. a, b
Apostolatos, A., Schmidt, R., Wüchner, R., and Bletzinger, K.-U.: A Nitsche-type formulation and comparison of the most common domain decomposition methods in isogeometric analysis, Int. J. Numer. Meth. Eng., 97, 473–504, 2014. a
Batoz, J.-L., Bathe, K.-J., and Ho, L.-W.: A study of three-node triangular plate bending elements, Int. J. Numer. Meth. Eng., 15, 1771–1812, 1980. a
Download
Short summary
We model Earth's lithosphere as a thin elastic shell and present numerical methods of isogeometric finite-element analysis to simulate its deformation in isostatic equilibrium using technologies from computer-aided design. The simulations also serve as a basis for identifying parameters of the model that are most plausible to explain observed data. This research has been done to showcase the capabilities of isogeometric analysis in solving higher-order problems in geoscientific applications.
Share