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Abstract. This paper presents methods from isogeometric
finite-element analysis for numerically solving problems in
geoscience involving partial differential equations. In par-
ticular, we consider the numerical simulation of shells and
plates in the context of isostasy. Earth’s lithosphere is mod-
eled as a thin elastic shell or plate floating on the astheno-
sphere and subject to topographic loads. We demonstrate the
computational methods on the isostatic boundary value prob-
lem posed on selected geographic locations. For Europe, the
computed lithospheric depression is compared with available
Mohorovičić depth data. We also perform parameter identi-
fication for the effective elastic thickness of the lithosphere,
the rock density, and the topographic load that are most plau-
sible to explain the measured depths. An example of simu-
lating the entire lithosphere of the Earth as a spherical shell
using multi-patch isogeometric analysis is presented, provid-
ing an alternative to spherical harmonics for solving partial
differential equations on a spherical domain. The numerical
results serve to showcase the features and capabilities of iso-
geometric methods rather than to provide insightful predic-
tions since a fairly simple model is used for the loading of
the lithosphere.

1 Introduction

Finite-element methods have been widely used to compute
numerical approximations of solutions to partial differential
equations. In standard finite-element methods, the computa-
tional domain is subdivided into parts that are images of el-
ementary geometric shapes, called finite elements, on which
a number of shape functions are defined. Usually, the shape

functions are polynomial functions determined by interpola-
tion conditions on some reference element. Joining together
all the elements along with the shape functions yields a finite-
element space in which a numerical solution to the problem
is sought. It is constructed by finding a linear combination of
the shape functions of each element that best approximates
the exact solution (Brenner and Scott, 1994; Braess, 2007;
Zienkiewicz et al., 2013).

Global C1 (continuously differentiable) finite-element
spaces are required for a conforming discretization of higher-
order problems, such as the shell and plate problems consid-
ered in this work. The construction of such spaces is gen-
erally computationally expensive and requires a lot of de-
grees of freedom per element. This difficulty has led to var-
ious methods for solving the shell and plate equations more
efficiently. An example is the non-conforming mixed for-
mulation given by the classical discrete Kirchhoff triangular
(DKT) elements (Batoz et al., 1980), where the C1 condition
is imposed only at the nodes of the mesh. Other examples
include the use of rotation-free (RF) elements (Oñate and
Zárate, 2000), assumed natural deviatoric strain (ANDES)
elements (Mostafa et al., 2013), discontinuous Galerkin (DG)
methods (Engel et al., 2002), and the Hellan–Herrmann–
Johnson (HHJ) method (Neunteufel and Schöberl, 2019).
Another way to address the problem is to apply isogeomet-
ric finite-element methods (Kiendl et al., 2009), which is the
main topic of this work.

Isogeometric analysis (IGA) is a computational paradigm
for solving partial differential equations (PDEs) that employs
the same shape functions used to describe the domain of the
problem to construct finite-element approximations of solu-
tions to the problem. It allows for the integration of finite-
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element analysis (FEA) with technologies from computer-
aided design (CAD). The concept of isogeometric analy-
sis is first presented in the seminal work by Hughes et al.
(2005). Standard references on the subject include Cottrell
et al. (2009), Buffa and Sangalli (2016), Lyche et al. (2018),
Jüttler and Simeon (2015), and van Brummelen et al. (2021).

B-splines and non-uniform rational B-splines (NURBSs)
are conventionally used for the shape functions in isogeo-
metric analysis. One advantage of using them for shell and
plate problems is the simple construction of C1 isogeomet-
ric spline spaces on a single patch to discretize the equa-
tions with fewer degrees of freedom than standard C1 finite-
element methods. However, it is important to also consider
multi-patch geometries for problems of practical relevance.
Preserving the C1 continuity along patch interfaces is not a
trivial task and has been an active topic of research (Kiendl
et al., 2010; Kapl et al., 2015; Collin et al., 2016; Schuß et al.,
2019; Farahat et al., 2023a, b). Another feature of isogeo-
metric analysis presented in this paper is the adaptive local
refinement using hierarchical B-splines (Vuong et al., 2011;
Garau and Vázquez, 2018; Buffa et al., 2022).

We conduct numerical experiments for various geographic
locations using the global topography data from Earth2014
(Hirt and Rexer, 2015). A Mohorovičić depth map is avail-
able for the European Plate (Grad et al., 2009), which is used
to verify the results. Information about the ground truth ad-
ditionally allows us to estimate unknown parameters of the
model via least-square methods constrained by the govern-
ing equations. This is applied to identify the spatial distribu-
tion of the effective elastic thickness, the density of overlying
rock, and the topographic load that are most plausible to ex-
plain the measured data for the Mohorovičić depth.

We begin with the description of the mathematical models
that are used in this work to derive the equilibrium equations
for shells and plates in the context of isostasy. Section 3 in-
troduces isogeometric analysis and the methods used to dis-
cretize and numerically solve boundary value problems using
B-splines and NURBSs. In Sect. 4, we provide a method to
estimate parameters of the model using available real-world
data. Application of the methods to selected geographic lo-
cations is discussed in Sect. 5, followed by a summary and
conclusions in the last section of the paper.

2 Mathematical model of the lithosphere

In this work, the term lithosphere refers to the solid part of
the Earth’s interior that responds elastically to applied me-
chanical loads on timescales of geologic duration. It encom-
passes the Earth’s outermost layer, the crust, and a portion of
the Earth’s upper mantle (see Fig. 1). This particular notion
is called the elastic lithosphere in Melosh (2011) (Box 3.4)
and should be distinguished from the other definitions. Since
the mechanical behavior of a planet’s interior depends on the
rheology of the material of which it is composed and the

Figure 1. Top layers of the Earth (Lowrie, 1997; Rogers, 2008).

duration of the loads under consideration, the location and
size of the lithosphere are rather ill-defined. Nevertheless, the
concept of an elastic lithosphere has proven to be useful for
modeling purposes.

We treat the lithosphere as an elastic shell floating on the
asthenosphere and subject to gravitational body forces. The
asthenosphere comprises the mechanically weak and duc-
tile region of the Earth’s upper mantle, which behaves like
a viscous fluid on geologic timescales and exerts an out-
ward buoyancy force on the lithosphere. The magnitude of
the force is proportional to the pressure difference between
the fluid and the submerged body. According to Archimedes’
principle, it is equal to the weight of the displaced fluid,
which, in our case, depends on the depression of the litho-
sphere. The weight of topography is treated as a gravitational
load; i.e., an inward force proportional to topographic eleva-
tion and rock density acts on the lithosphere, which causes
its depression. Isostasy or isostatic equilibrium refers to the
state of mechanical equilibrium between the lithosphere and
the asthenosphere due to gravity and buoyancy (Gutenberg,
1949; Watts, 2001).

In the following, we introduce some basic concepts from
the theory of elastic shells and plates to formulate a math-
ematical model for the lithosphere as described above. For
a more elaborate introduction to mathematical elasticity and
thin-shell structures, we refer to Marsden and Hughes (1994)
and Bischoff et al. (2004), respectively.

2.1 Shell and plate models

A shell is a three-dimensional solid whose thickness in one
dimension is considerably small relative to the other two di-
mensions. The mathematical model of a shell can be reduced
to a two-dimensional one by considering only the mechanics
on some reference surface (see Fig. 2 for an illustration).

One typically distinguishes between thick- and thin-shell
models. Thick-shell models capture transverse shear strains
in addition to membrane and bending strains as opposed to
thin-shell models, where the shell thickness is assumed to be
small enough so that the effects of transverse shear deforma-
tions can be neglected. The configuration of a thin shell is
fully determined by the position of its reference surface in
physical space, whereas the configuration of a thick shell is
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Figure 2. A shell segment and its reference surface (red).

Figure 3. Shell configuration, corresponding mid-surface configu-
ration (red line), and a fiber of the shell (dashed line).

supplemented by a deformable vector field on the reference
surface called a director field.

To showcase the capabilities of isogeometric analysis in
solving higher-order problems numerically, we focus on the
displacement formulation of the Koiter model for thin shells
and the Kirchhoff model for thin plates, which require C1 fi-
nite elements for a conforming discretization. Depending on
the ratio of the shell thickness to the scale of the simulation,
a thick-shell model might be more adequate for capturing the
correct behavior of the lithosphere.

2.1.1 Equilibrium equations for thin elastic shells

Let B denote the shell body, modeled as a three-dimensional
manifold consisting of fibers that are transverse to the ref-
erence surface A⊂ B. A configuration of B in the physical
space R3 is the mapping ξ : B→ R3, which assigns a spatial
point ξ(X) ∈ R3 to each particle X ∈ B (see Fig. 3). Under
the Kirchhoff–Love assumptions for a thin shell (Love, 1888;
Bischoff et al., 2004; Reddy, 2007), any admissible config-
uration can be locally represented using curvilinear coordi-
nates ϑ = (ϑ1,ϑ2,ϑ3) by means of a mapping of the form

ξ(ϑ1,ϑ2,ϑ3)= γ (ϑ1,ϑ2)+ϑ3n(ϑ1,ϑ2), (1)

where γ = ξ |A is the mid-surface configuration; n is the unit
normal vector field of the reference surface, chosen to be the
middle surface of the shell; and ϑ3 is the thickness parameter.

The governing equations for an elastic shell in static equi-
librium follow from the principle of virtual work. The total
work done on the system is given by the potential energy:

V (γ )=

∫
A

W(E(γ ))dA−
∫
A

F ext ·γ dA−
∫
∂A

Gext ·γ dS, (2)

where F ext is an external force acting on the mid-surface A;
Gext is an external force acting on the boundary ∂A; and W
is the stored-energy density function, which depends on the
strain tensor E(γ ) corresponding to the mid-surface config-
uration. A shell of Koiter’s type has a stored-energy density
function that consists of a membrane and a bending part:

W =
1
2
(Sm :Em+Sb :Eb) . (3)

This can be derived from three-dimensional elasticity by ex-
pressing the strain tensor in terms of kinematic variables of
the mid-surface and integrating through the thickness t of
the shell, assuming a sufficiently thin shell and a small mid-
surface strain (Koiter, 1966; Bischoff et al., 2004; Ciarlet,
2005; Steigmann, 2013). The membrane and bending strains
are obtained by considering the expansion

E =Em+ϑ
3Eb+O((ϑ3)2) (4)

and taking the in-plane components, while the effective stress
resultants are given by

Sm = tK :Em, Sb =
t3

12
K :Eb, (5)

called the membrane force and the bending moment, respec-
tively. We assume a Saint Venant–Kirchhoff model for linear
elastic isotropic materials so that the elasticity tensor reads
as

K =
E

(1− ν2)

1 ν 0
ν 1 0
0 0 (1− ν)/2

 (6)

in Voigt notation, assuming the vanishing transverse normal
stress condition with Young’s modulus E and Poisson’s ratio
ν.

In a state of equilibrium, the virtual work vanishes, and, for
any virtual displacement δγ consistent with the constraints
imposed on the shell, we have that δV = 0 or, equivalently,∫
A

(Sm : δEm+Sb : δEb) dA

=

∫
A

F ext · δγ dA+
∫
∂A

Gext · δγ dS. (7)

The resulting equation is referred to as the weak variational
formulation for a Koiter shell in static equilibrium. It is the
starting point for the numerical solution of variational prob-
lems using finite-element methods.
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We consider the displacement field u= γ −γ 0 of the mid-
surface corresponding to an initial undeformed configuration
γ 0 withEm(γ 0)=Eb(γ 0)= 0 and replace the strain tensors
and corresponding effective stress resultants with

em(u)= δEm(γ 0,u), eb(u)= δEb(γ 0,u),

sm(u)= tK : em(u), sb(u)=
t3

12
K : eb(u), (8)

to obtain the linear Koiter shell equations (Ciarlet, 2005,
Sect. 4.2). The linearized strain tensors in local curvilinear
coordinates read as

[em(u)]αβ =
1
2
(∂αu · ∂βγ 0+ ∂αγ 0 · ∂βu),

[eb(u)]αβ =−∂α∂βu ·n0− ∂α∂βγ 0 · δn, (9)

where α,β ∈ {1,2} and δn=m− (n0 ·m)n0, with

n0 =
∂1γ 0× ∂2γ 0

‖∂1γ 0× ∂2γ 0‖
, m=

∂1u× ∂2γ 0+ ∂1γ 0× ∂2u

‖∂1γ 0× ∂2γ 0‖
. (10)

To simplify and fit the problem into an abstract variational
framework, we introduce the following notation:

a(u,v)=

∫
A

(sm(u) : em(v)+ sb(u) : eb(v)) dA,

`(v)=

∫
A

F ext · v dA+
∫
∂A

Gext · v dS. (11)

The elastostatic boundary value problem then reads as fol-
lows: find an admissible displacement u such that the equa-
tion a(u,v)= `(v) holds for all admissible variations v =
δu.

2.1.2 Reduction to a plate and beam model

In the case where the initial undeformed configuration of the
reference surface is planar and where there are no membrane
strains, one speaks of a plate instead of a shell. The displace-
ment of the mid-surface from the initial configuration is then
reduced to its vertical deflection w perpendicular to the ref-
erence plane, e.g., the xy plane, so that

γ 0(x,y)= (x,y,0),

γ (x,y)= (x,y,w(x,y)),

u(x,y)= (0,0,w(x,y)). (12)

In this case, the membrane part of the strain tensor vanishes,
and the bending term can be written as

sb(w) : eb(v)=D
(
ν1w1v+ (1− ν)∇2w : ∇2v

)
, (13)

where v = δw is now the variation in the vertical direction,
and the coefficient

D =
Et3

12(1− ν2)
(14)

denotes the flexural rigidity of the plate. The weak formula-
tion for a Kirchhoff plate then reads as

a(w,v)=

∫
A

D
(
ν1w1v+ (1− ν)∇2w : ∇2v

)
dA,

`(v)=

∫
A

fext v dA+
∫
∂A

gext v dS, (15)

where fext and gext denote the vertical components of F ext
and Gext, respectively.

In the one-dimensional case with w = w(x), the bending
term is reduced further, which leads to a fourth-order differ-
ential equation for a Euler–Bernoulli beam when considering
the strong formulation of the problem without boundary con-
ditions:

d2

dx2

(
D̃

d2w

dx2

)
= fext. (16)

Here, D̃ is another flexural rigidity that depends on the cross-
sectional geometry of the beam. Note that additional rota-
tional effects, i.e., torsion in addition to bending, do not occur
in the model as a result of assuming a flat initial undeformed
configuration with only vertical deflections.

2.2 Topographic loading and buoyancy

We model the lithosphere as a thin elastic plate of effective
elastic thickness t floating on the asthenosphere and subject
to gravitational forces (see Fig. 4a for an illustration). The
initial depth of the mid-surface in the undeformed config-
uration corresponds to the theoretical depth relative to the
mean sea level when there is no overlying mass. The actual
mid-surface of the lithosphere does not have to coincide with
the Mohorovičić surface, which is the boundary between the
crust and the upper mantle of the Earth. However, we assume
that they are close to each other and differ only by a constant
vertical displacement, which is a simplification of the model
that disregards subsurface variations, usually obtained via in-
version of gravity anomalies.

Starting from the equilibrium equations for a Kirchhoff
plate in Sect. 2.1.2 with the external load fext, we split up
the contributions from gravity and buoyancy: fext = fgrav+

fbuoy.
Gravitational load is obtained by integrating all of the

weight above the mid-surface. The density of overlying air
is considered to be negligible so that the weight of topogra-
phy ranges from Earth’s surface down to the mid-surface. It
is given by

fgrav =−

h∫
d

%g dz, (17)

where d is the depth of the mid-surface relative to the mean
sea level; h is the topographic elevation; % is the density of
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Figure 4. Floating elastic lithosphere under topographic loading (a) and relevant quantities for the mathematical model (b).

overlying mass; and g is the gravitational acceleration, which
is assumed to be constant for the sake of simplicity.

The vertical displacement of the mid-surface from the ini-
tial depth is given by w = d − d0 (see Fig. 4b). The buoyant
force is equal to the weight of the displaced asthenosphere;
thus

fbuoy =

d0∫
d

%mg dz=−%mgw, (18)

assuming a constant upper-mantle density %m.
Instead of working with the actual topographic elevation,

we use a mass representation r obtained by taking the mass
above the mid-surface of the lithosphere and normalizing it
by some depth-independent reference density %r. We choose
the reference density as the mean rock density from the cur-
rent depth of the mid-surface to its initial depth and assume
that it is homogeneous in space so that

%r =
1
|w|

d0∫
d

%dz, r =
1
%r

h∫
d0

%dz. (19)

Using the mass representation, which corresponds to rock-
equivalent topography, we can write the external load as

fext =−(%m− %r)gw− %rgr. (20)

Plugging this into the weak formulation for the plate model
without external boundary forces yields a(w,v)+b(w,v)=
c(v) with the bilinear form in Eq. (15) and

b(w,v)=

∫
A

(%m− %r)gwv dA, c(v)=−
∫
A

%rgrv dA. (21)

This is the Vening-Meinesz model of flexural isostasy used to
explain regional compensation (Vening-Meinesz, 1931; Abd-
Elmotaal, 1995; Pelletier, 2008, Chap. 5).

In the case where there is no flexural rigidity, the Vening-
Meinesz model is reduced to the Airy–Heiskanen model of

local isostasy (Airy, 1855), for which the well-known rela-
tion(
%m− %r

%r

)
(d0− d)= r (22)

holds. It states that the lithospheric depression relative to the
initial depth is proportional to the mass representation of the
topography with a scaling factor of (%m− %r)/%r. Using the
above relation, we can determine the initial depth from some
standard crustal thickness t0 corresponding to a lithospheric
plate in local isostasy when the topographic elevation is zero.

2.3 Isostatic boundary value problem

If we consider only a portion of Earth’s lithosphere for the
simulation, conditions on the boundary of the domain have
to be prescribed to compensate for the missing information
outside of it. A natural choice is given by the full Neumann
boundary condition, which corresponds to setting gext = 0 on
the whole boundary. The resulting isostatic boundary value
problem for the plate model then reads as follows: find an
admissible deflection w such that a(w,v)+ b(w,v)= c(v)
for all admissible variations v = δw.

The Sobolev space H2(A) is chosen as the space of ad-
missible deflections for the boundary value problem. It con-
sists of square-integrable functions on the reference surface
with square-integrable weak derivatives up to the second or-
der. For the full Neumann problem, the variational prob-
lem is well-posed by the Lax–Milgram theorem (Braess,
2007, Chap. II), provided that A⊂ R2 is a bounded Lips-
chitz domain and the coefficients D(1− ν) and (%m− %r)g

are bounded from below by a positive number. The H2 coer-
civity of the bilinear form follows from the fact that the H2

norm is equivalent to a similar one without the terms contain-
ing first-order derivatives (Nečas, 2012, Theorem 1.8).

The above displacement formulation requires H2 regular-
ity, which implies global C1 continuity for the trial and test
functions. The difficulty of C1 finite elements can be circum-
vented by considering isogeometric shape functions.

https://doi.org/10.5194/gmd-18-5031-2025 Geosci. Model Dev., 18, 5031–5049, 2025



5036 R. Rosandi et al.: Isogeometric analysis of the lithosphere: Igalith v1.0.0

2.4 Spherical model of the lithosphere

Using the more general shell equations, it is possible to per-
form simulations of the lithosphere on the whole surface of
the Earth. From a modeling point of view, the results may not
reflect the physical reality since the Earth consists of differ-
ent regimes and tectonic plates that interact with each other
in a complex manner. Furthermore, due to the large scale of
the simulation, the effects of flexural rigidity will not be vis-
ible. Nevertheless, we assume that the entire lithosphere can
be modeled as a single spherical shell to showcase the capa-
bilities of isogeometric analysis in numerical simulations on
curved domains, especially a spherical domain. Note that it
is also possible to model the surface of the Earth as an oblate
spheroid or an irregular geoid instead of a sphere using isoge-
ometric analysis. For the sake of simplicity, we restrict our-
selves to the spherical model in this paper.

Some considerations in Sect. 2.2 for lithospheric plates in
isostatic equilibrium have to be adapted to the shell model.
The buoyant force in three dimensions reads as

b(u,v)=

∫
A

(%m− %r)g(n ·u)(n · v)dA, (23)

where (n ·u) and (n · v) are the radial parts of the trial and
test functions, respectively, given by the orthogonal projec-
tion onto the unit normal n of the sphere. Similarly, the ex-
ternal load is given by a radial gravitational force

c(v)=−

∫
A

%rgr(n · v)dA. (24)

With the above adjustments, the isostatic problem for a Koi-
ter shell then reads as follows: find an admissible displace-
ment u such that a(u,v)+ b(u,v)= c(v) holds for all ad-
missible variations v = δu. We consider the vector-valued
Sobolev space H2(A)3 for the displacements of the spheri-
cal shell.

3 Isogeometric finite-element analysis

Isogeometric analysis (IGA) is a computational approach for
solving partial differential equations (PDEs) numerically that
employs non-uniform rational basis splines (NURBSs) to
both parameterize the domain and construct finite-element
approximations of solutions to the corresponding partial dif-
ferential equations. This section introduces the notions re-
quired for the numerical discretization of elliptic boundary
value problems using isogeometric analysis, particularly the
isostatic boundary value problem. We begin with the def-
inition of B-splines and NURBSs. A more elaborate treat-
ment of NURBSs with numerical algorithms can be found in
Rogers (2001), Cohen et al. (2001), de Boor (1978), Schnei-
der (1996), and the NURBS book (Piegl and Tiller, 1995).

3.1 B-splines and NURBSs

Let ϑ0 ≤ ·· · ≤ ϑm be a finite sequence of non-decreasing
real numbers. A spline of degree p is a piecewise polyno-
mial function f : [ϑ0,ϑm] → R, with the property that the
restriction to each subinterval [ϑi−1,ϑi) for i = 1, . . .,m is
a polynomial function of maximum degree p. The tuple
2= (ϑ0, . . .,ϑm) is called a knot sequence for the spline
with knot values ϑi , and the term breakpoint is used to re-
fer to a distinct knot value. The half-open interval [ϑi−1,ϑi)

is called the ith knot span, which can be empty.
The maximum order of continuity that a spline of degree

p can attain at the breakpoints is p− 1. We refer to such
splines as smooth splines. A lower order of continuity can be
obtained by placing multiple knots at the same location. Each
additional knot reduces the order of continuity by 1 until the
resulting spline is discontinuous at the breakpoint.

The type of a spline is completely characterized by its de-
gree and the knot sequence. Let S(2,p) denote the space of
splines of degree p with knot sequence2. It is a vector space
of dimensionm−p. By introducing the numbers m̃=m+1,
p̃ = p+1, and ñ= n+1, where m̃ is the number of knots, p̃
is the order of the spline, and ñ is the dimension of S(2,p),
we can write ñ= m̃− p̃ or, equivalently, m= n+p+ 1.

In the following, we consider splines on the unit interval
[0,1] with an open knot sequence – i.e., the first and last
knot values have multiplicity p+ 1 – to enable interpolatory
control points at the boundary. Thus, the knot sequence has
the form

2= ( 0 , . . . , 0︸ ︷︷ ︸
(p+1)-times

, ϑp+1 , . . . , ϑn , 1 , . . . , 1︸ ︷︷ ︸
(p+1)-times

), (25)

where we have ϑ0 = ·· · = ϑp = 0, ϑn+1 = ·· · = ϑn+p+1 =

1, and ϑi ∈ (0,1) for i = p+ 1, . . .,n.

3.1.1 B-spline basis functions

A particular basis for the spline space S(2,p) is given by
the B-splines (basis splines). They have minimal support and
allow for quick evaluation of the splines using de Boor’s al-
gorithm, which is convenient for isogeometric analysis. The
B-splines of degree p are recursively defined via the Cox–de
Boor formula,

Bk,p(ϑ)=
ϑ −ϑk

ϑk+p −ϑk
Bk,p−1(ϑ)

+
ϑk+1+p −ϑ

ϑk+1+p −ϑk+1
Bk+1,p−1(ϑ), (26)

with ϑ ∈ [0,1], k = 0, . . .,n, and

Bk,0(ϑ)=

{
1 for ϑ ∈ [ϑk,ϑk+1),

0 otherwise,
(27)

for k = 0, . . .,n+p, where the convention 0/0= 0 is used if
the knot values in the denominator coincide. We refer to Bk,p
as the kth B-spline basis function of degree p.
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Given a finite sequence of control points c0, . . .,cn ∈ Rr
in the physical space of dimension r , we can construct a B-
spline curve of degree p through a linear combination of the
form

γ : [0,1] → Rr , γ (ϑ)=

n∑
k=0

ckBk,p(ϑ). (28)

B-spline curves are commonly used to represent shapes in
computer-aided geometric design (CAGD). The description
using control points allows for intuitive local manipulation of
free-form shapes. In isogeometric analysis, the control points
additionally serve as degrees of freedom for the unknowns in
a discretized system of equations.

If the domain of the problem is two- or three-dimensional,
B-spline surfaces or volumes are used to describe its geome-
try. Multivariate spline spaces are constructed via the tensor
product of univariate spline spaces. Instead of a single knot
sequence and a single spline degree, we have a family of knot
sequences2= (2(1), . . .,2(d)), along with a tuple of spline
degrees p = (p1, . . .,pd) corresponding to each parametric
dimension. The B-spline basis functions of the spline space
Sd(2,p)= S(2(1),p1)⊗ ·· ·⊗S(2(d),pd) are given by

Bk,p(ϑ)= B
(1)
k1,p1

(ϑ1)· · ·B
(d)
kd ,pd

(ϑd) (29)

for ϑ = (ϑ1, . . .,ϑd) ∈ [0,1]d in the multivariate setting. The
B-splines B(j)0,pj , . . .,B

(j)
nj ,pj form a basis for S(2(j),pj ), and

k = (k1, . . .,kd) is a multi-index with kj = 0, . . .,nj for j =
1, . . .,d . We order the basis functions lexicographically so
that Bk,p corresponds to the kth basis function when using
an integer index k = 0, . . .,n instead of a multi-index.

A d-variate B-spline patch corresponding to the control
points c0, . . .,cn ∈ Rr is a parameterization of the form

γ : [0,1]d→ Rr , γ (ϑ)=

n∑
k=0

ckBk,p(ϑ). (30)

We also refer to the image of γ as a B-spline patch and write
Sd,r(2,p) for the space of d-variate B-spline patches in Rr .
See Fig. 6 for an example of a B-spline function on a bi-
quadratic B-spline patch.

3.1.2 NURBS basis functions

B-splines can be generalized to include rational functions in
addition to polynomial ones by assigning a weight to each
control point. This greatly increases the design capabilities
of free-form shapes; e.g., conic sections can be exactly rep-
resented by rational B-splines with weighted control points
as opposed to non-rational ones. The term non-uniform in
the acronym NURBS stresses the fact that the distribution of
knot values in the knot sequence is not necessarily uniform.

Given a B-spline basis B0,p, . . .,Bn,p for the spline space
S(2,p) and a tuple of positive weights ω = (ω0, . . .,ωn), the
NURBS space Sω(2,p) is generated by rational functions
of the form

Figure 5. Isogeometric shape functions on a biquadratic B-spline
patch.

Figure 6. Linear combination of the isogeometric shape functions
in Fig. 5 and corresponding mesh of control points (red).

Nω
k,p(ϑ)=

ωkBk,p(ϑ)

ω(ϑ)
, k = 0, . . .,n, (31)

with ϑ ∈ [0,1]. The weight function in the denominator is a
weighted sum of the B-spline basis functions:

ω(ϑ)=

n∑
k=0

ωkBk,p(ϑ). (32)

Note that the original spline space is a special case of the
NURBS space with constant weights. For the multivariate
case, we proceed similarly to the non-rational B-splines and
define the NURBS basis functions as

Nω
k,p(ϑ)=

∏d
j=1ω

(j)
kj
B
(j)
kj ,pj

(ϑj )

ω(ϑ)
, k = 0, . . .,n (33)
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for ϑ = (ϑ1, . . .,ϑd) ∈ [0,1]d . The multivariate weight func-
tion reads as

ω(ϑ)=

n1∑
k1=0
· · ·

nd∑
kd=0

ω
(1)
k1
B
(1)
k1,p1

(ϑ1)· · ·ω
(d)
kd
B
(d)
kd ,pd

(ϑd), (34)

where ω = (ω(1), . . .,ω(d)) is a family of weight tuples cor-
responding to each parametric dimension. Contrarily to non-
rational B-splines, the resulting multivariate NURBS space
Sωd (2,p) is no longer a tensor-product space because of the
weight function ω. Nevertheless, it is called tensor-product-
like, following the terminology in isogeometric analysis.

A d-variate NURBS patch corresponding to the control
points c0, . . .,cn ∈ Rr is a parameterization of the form

γ : [0,1]d→ Rr , γ (ϑ)=

n∑
k=0

ckN
ω
k,p(ϑ). (35)

We also refer to the image of γ as a NURBS patch and write
Sωd,r(2,p) for the space of d-variate NURBS patches in Rr .

To shorten the notation, we omit the superscript ω and the
subscript p from the NURBS basis functions and introduce
the double index α = (k, l), ranging from (0,1) to (n,r), so
that a NURBS patch can be written as

γ =

n∑
k=0

r∑
l=1

ck,lNkel =

n∑
k=0

r∑
l=1

ck,lNk,l =

∑
α∈A

cαNα, (36)

where A=
{
(k, l) ∈ N2

0 | 0≤ k ≤ n,1≤ l ≤ r
}

is the index
set with (n+ 1) · r elements, cα = ck,l is the lth component
of the kth control point, and Nα =Nk,l =Nkel is the αth
vector-valued NURBS basis function.

3.1.3 Refinement methods

In order to get better approximation results for the numerical
solutions, the NURBS space used for the discretization of the
problem has to be refined. There are two refinement methods
that increase the number of shape functions and maintain the
global smoothness of the NURBS space. The first method
is called knot insertion, also known as h refinement, where
a finer NURBS space is constructed by adding new break-
points to the knot sequence. The second one is order eleva-
tion, or p refinement, which raises the order of the NURBS
space without changing the knot spans. Performing order el-
evation followed by knot insertion results in a so-called k
refinement. See Fig. 7 for an illustration of the methods.

For the multivariate case, inserting a breakpoint into a knot
sequence will affect all elements along the transverse direc-
tion due to the tensor-product-like structure. To enable local
refinement, several methods can be considered. In our work,
we employ hierarchical B-splines as described in Vuong et al.
(2011). Adaptive local refinement can then be performed if
an error estimator for the numerical solution to the problem
is available (Garau and Vázquez, 2018; Buffa et al., 2022).

Figure 7. Initial isogeometric shape functions (quadratic B-splines,
a) and the shape functions that result from h refinement (b), p re-
finement (c), and k refinement (d).

3.2 Isogeometric discretization

Given a weak formulation of the variational problem, a nu-
merical solution can be obtained by considering a projection
onto some finite-dimensional subspace of the solution space.
This is generally referred to as a Galerkin projection. Finite-
element methods are based on subdividing the domain of the
problem into a finite number of elements, on which a num-
ber of shape functions are defined. The finite-element space
is then constructed from linear combinations of the shape
functions of each element that satisfy certain interpolation
conditions.

Isoparametric finite elements enable the solution of prob-
lems on domains with curved boundaries by using the same
shape functions for the numerical approximation of solutions
to describe the geometry of the domain. They serve as a basis
for the isogeometric paradigm, where we consider domains
that can be represented by some NURBS geometry and use
refinements of the corresponding NURBS space to construct
approximations of solutions to the problem.

An isogeometric mesh consists of NURBS patches, each
of which can be refined to increase the accuracy of the
numerical approximation. As opposed to a standard finite-
element mesh, the smoothness of shape functions within each
patch can be preserved without much effort when the mesh
is subdivided into smaller elements. This greatly reduces the
number of degrees of freedom compared to classical C1 finite
elements, which is useful when working with shell and plate
equations that require global C1 continuity.

We first consider domains that can be exactly represented
by a single NURBS patch. The main idea is to transform
the problem posed on the patch to a fixed parameter do-
main to approximate the solution with a linear combina-
tion of NURBS functions that result from refinements of the
NURBS space associated with the geometry function and
transform the numerical solution back to the physical do-
main.
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3.2.1 Domain transformation

Let �⊂ Rr denote the physical domain described by the ge-
ometry function

γ 0 : �̂→�, γ 0(ϑ)=

n∑
k=0

r∑
l=1

Gk,lNk,l(ϑ), (37)

with control points G0, . . .,Gn ∈ Rr and the parameter do-
main �̂= [0,1]d . To ensure that the domain is suitable for
isogeometric analysis, we require that the geometry function
is at least a bi-Lipschitz transformation. Thus, it is important
to impose conditions on the control points of the geometry
such that this requirement is fulfilled.

The weak formulation of a variational problem posed on
the physical domain can be transformed to the parameter do-
main by pulling back functions in the solution space V(�) to
the parameter domain using the geometry function. By doing
so, we obtain an equivalent weak formulation of the prob-
lem posed on the parameter domain: find û ∈ V̂(�̂) such that
â(û, v̂)= ˆ̀(v̂) for all v̂ ∈ V̂(�̂), with V̂(�̂)= {v ◦ γ 0 | v ∈

V(�)} and

â(û, v̂)= a(û ◦ γ−1
0 , v̂ ◦ γ−1

0 ), ˆ̀(v̂)= `(v̂ ◦ γ−1
0 ). (38)

3.2.2 Ritz–Galerkin method

To discretize the transformed weak formulation, we consider
isogeometric shape functions that result from refinements
of the NURBS space associated with the geometry func-
tion. We choose V̂h,p = Sωd,s(2h,p)∩ V̂(�̂) for the finite-
dimensional subspace, where h is a discretization parame-
ter corresponding to the diameter of elements, and s is the
number of components of functions in the solution space.
Galerkin projection then yields a family of finite-dimensional
problems of the following form: find ûh,p ∈ V̂h,p such that
â(ûh,p, v̂h,p)= ˆ̀(v̂h,p) for all v̂h,p ∈ V̂h,p.

The trial and test functions are now given by linear com-
binations of the NURBS basis functions; i.e.,

ûh,p =

n∑
k=0

s∑
l=1

Uk,lNk,l, v̂h,p =

n∑
k=0

s∑
l=1

Vk,lNk,l, (39)

with control points U0, . . .,Un ∈ Rs and V 0, . . .,V n ∈ Rs ,
respectively. The coordinates of the control points are orga-
nized in a single column vector so that the Galerkin equation
can be written in matrix–vector form. The problem is then
reduced to solving a system of linear equations of the form
ATU = L with the coefficient matrix Aαβ = â(Nα,Nβ) and
the right-hand-side Lβ = ˆ̀(Nβ), where α and β are double
indices in some specified order, ranging from (0,1) to (n,s).

The solution vector U ∈ R(n+1)s contains the coordinates
of the control points associated with the trial function ûh,p
and is referred to as the vector of degrees of freedom in the
fully unconstrained solution space. When boundary or inter-
face conditions are present, it is restricted to a subspace ful-
filling those conditions.

3.2.3 Multi-patch C1 coupling

In the case where the domain consists of multiple NURBS
patches, the subproblems on each patch have to be coupled
in a way that maintains the global C1 continuity of solu-
tions. There are various methods that can be employed to
achieve this in the context of isogeometric analysis of plates
and shells. Penalty methods (Kiendl et al., 2010; Coradello
et al., 2021a, b), Nitsche methods (Apostolatos et al., 2014;
Nguyen et al., 2014; Guo and Ruess, 2015), and mortar meth-
ods (Dornisch et al., 2015; Bouclier et al., 2017; Horger
et al., 2019) fall into the category of weak-coupling meth-
ods that use a modified variational formulation to establish
the C1 continuity weakly across multiple patches. Strong-
coupling methods, on the other hand, are based on the con-
struction of global C1 shape functions, which are then used
for a C1-conforming discretization of the variational for-
mulation. Multi-patch C1 isogeometric spline spaces can be
constructed by replacing shape functions that influence the
derivative of solutions at patch interfaces with C1 shape func-
tions that cover multiple patches (Kapl et al., 2017a, b). This
has been extended from the case of planar multi-patch do-
mains to multi-patch surfaces in Farahat et al. (2023a, b). An-
other approach to stitch shape functions at patch interfaces
together is to impose the C1 condition at some collocation
points (Chan et al., 2018) or weakly via the constraint matrix

Cαβ =

∫
0

[[n · ∇Nα]][[n · ∇Nβ ]]dS, (40)

where n is a unit normal at the patch interface 0, and [[·]]
denotes the jump of a function between the patches (Collin
et al., 2016). The latter yields an approximately C1 isogeo-
metric spline space on a multi-patch geometry (Weinmüller
and Takacs, 2022) and has been used for the numerical exper-
iments in this work. The method is straightforward to imple-
ment but has the drawback that the resulting system of linear
equations will lose its sparse structure if the basis functions
for the null space of the constraint matrix are not carefully
chosen to be locally supported. Note that contiguous patches
are assumed to share the same interpolatory control points at
the interfaces to enforce the C0 continuity in our implemen-
tation.

The construction of multi-patch C1 isogeometric spline
spaces with optimal approximation properties is a challeng-
ing problem for complex geometries. A so-called C1 locking
might occur for G1 multi-patch parameterizations that are
not analysis-suitable (Collin et al., 2016). For the isostatic
boundary value problem in Sect. 2.3, we will mainly con-
sider planar domains that result from joining convex quadri-
laterals along the sides. It has been shown that the class of
bilinear G1 parameterizations is analysis-suitable so that op-
timal convergence can be achieved in this setting.
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4 Parameter identification from measured data

In this section, we describe a method to identify parameters
of the plate model that are most plausible to explain the mea-
sured data for the Mohorovičić depth. The quantities we are
interested in are the effective elastic thickness, the reference
density, and the topographic load that acts on the lithosphere.
To determine the spatial distribution of those quantities, we
perform PDE-constrained optimization with a tracking-type
objective function, e.g., a quadratic loss function. This cor-
responds to an indirect inversion method, where the forward
problem is solved iteratively until an adequate choice of pa-
rameter is found. Another common method to identify pa-
rameters involves the direct inversion of spectral measures
(Kirby, 2022).

4.1 Tracking-type optimization problem

A general PDE-constrained optimization problem reads as

minJ (q,w),

s.t.R(q,w)= 0, (41)

where J is the objective function, and R is the state equation
operator that determines the governing equations. The input
consists of the design variable q, which represents the sought
parameters that are to be optimized, and the state variable w,
which is a candidate solution to the state equation associated
with the design variable.

A tracking-type objective function that is commonly used
is given by the integrated squared error

J (q,w)=
1
2

∫
A

(w−wd)
2 dA, (42)

which corresponds to the method of least squares and gauges
the deviation ofw from the observed datawd. The state equa-
tion of the isostatic problem in weak formulation reads as

〈R(q,w),z〉 = a(q,w,z)+ b(p,w,z)− c(r,z)= 0 (43)

for all variations z, where 〈·, ·〉 is the duality pairing, and

a(q,w,z)=

∫
A

q(ν1w1z+ (1− ν)∇2w : ∇2z)dA,

b(p,w,z)=

∫
A

pwzdA, c(r,z)=−

∫
A

rzdA,
(44)

with the flexural parameter, the crustal depth-to-height ratio,
and the rock-equivalent topography being given by

q =
D

%rg
=

Et3

12(1− ν2)%rg
, p =

%m− %r

%r
,

r =
1
%r

h∫
d0

%dz, (45)

respectively.

4.2 Adjoint-state method

Starting from an initial guess for the design variable, the idea
is to move in a direction along which the objective function
decreases. Such a direction can be found via the gradient of
the reduced cost functional,

I (q)= J (q,w(q)), (46)

which accounts for the dependence of the state variable w on
the design variable q. An efficient way to evaluate the gradi-
ent of I without computing sensitivities of w with respect to
q is given by the adjoint-state method (Hinze et al., 2009).

The adjoint-state equation for the isostatic boundary value
problem with an integrated squared error as the objective
function and a flexural parameter as the design variable reads
as

a(q,δw,z)+ b(p,δw,z)=

∫
A

(w(q)−wd)δw dA (47)

for all variations δw. Given a solution z(q,w(q)) to the
adjoint-state equation, which is referred to as an adjoint state
of the problem, the first variation of the reduced cost func-
tional in the direction of δq can be computed via

δI (q,δq)=−a(δq,w(q),z(q,w(q))). (48)

The L2 gradient of I is then characterized by the scalar field
∇I (q) in the Lebesgue space L2(A) that satisfies∫
A

∇I (q)δq dA= δI (q,δq) (49)

for all variations δq. Similar considerations can be made for
the reference density and the rock-equivalent topography as
design variables.

4.3 Isogeometric optimization

To compute the L2 gradient numerically, we discretize the
variables using isogeometric shape functions and solve for
the coefficients of the linear combinations that approximate
the sought quantities (see Sect. 3.2.2).

We perform a steepest-descent method to find the optimal
parameters iteratively. Let qk , wk , and zk be the discretized
variables in the kth step of the optimization procedure. An
optimization loop consists of the following steps:

1. Solve the state equation (Eq. 43) for wk(qk).

2. Solve the adjoint equation (Eq. 47) for zk(qk,w(qk)).

3. Compute the L2 gradient ∇I (qk) via Eqs. (48) and (49).

4. Update the design variable qk+1 using ∇I (qk).
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Table 1. Geographic coordinates of locations of interest.

Location Longitude Latitude

Central Java 109.5 to 111.75° −8.5 to −6.25°
Java Island 105 to 115° −10 to −5°
Indonesia 90 to 150° −15 to 15°
Hawaii −165 to −150° 13 to 28°
Himalayas 60 to 120° 20 to 50°
Europe −25 to 25° 28 to 78°

For the design updates, we apply a backtracking line search
based on the Armijo–Goldstein condition along the negative
of the gradient:

qk+1 = qk − sk∇I (qk), (50)

where sk is the Armijo step size (Hinze et al., 2009).

5 Numerical results and discussion

The isostatic boundary value problem for a plate (see
Sect. 2.3) is solved numerically using methods of isogeomet-
ric analysis (see Sect. 3). Spectral methods (Nunn and Aires,
1988), finite-difference methods (Wickert, 2016), and stan-
dard finite-element methods (Manríquez et al., 2014) have
been commonly used to simulate the lithospheric flexure.
The advantage of using isogeometric finite elements lies in
the simple construction of smooth shape functions.

We demonstrate our approach at the following locations:
Central Java, Java Island, the Indonesian Archipelago, the
Hawaiian Islands, the Himalayan Mountain Range, and the
European Plate. The corresponding geographic coordinates
in decimal degrees are listed in Table 1.

The Earth2014 data (Hirt and Rexer, 2015) contain rock-
equivalent topography that can be converted into topographic
load by using the reference density and the gravitational ac-
celeration in Table 2. For Central Java, we consider both a
single-patch and multi-patch parameterization of the domain
to show the capabilities of multi-patch isogeometric analysis
when the data required for the simulation are only available
for certain parts of Earth’s surface. The results can be com-
pared with the Mohorovičić depth data obtained using the in-
version of receiver functions from the work of Amukti et al.
(2019). A Mohorovičić depth map is available for the Euro-
pean Plate (Grad et al., 2009), which is also used to estimate
model parameters in Sect. 5.2.

5.1 Simulation of the lithospheric depression

In this subsection, we compare the results obtained from the
simple Airy–Heiskanen model of local isostasy with the re-
gional model of flexural isostasy by Vening-Meinesz to sim-
ulate the lithospheric depression due to topographic loading
and buoyancy. Isogeometric analysis is used to solve the iso-

Table 2. Physical parameters for the numerical simulations.

Parameter Value

Young’s modulus E 65GPa
Poisson’s ratio ν 0.25
Reference rock density %r 2.67gcm−3

Upper-mantle density %m 3.33gcm−3

Gravitational acceleration g 9.81ms−2

Effective elastic thickness t 16km
Standard crustal thickness t0 30km
Earth radius RE 6371km

static boundary value problem for the flexural model numer-
ically. We choose the physical parameters in Table 2, which
are assumed to be constant over the simulation domain. The
mesh is subdivided into 16×16 elements, and a spline degree
of (4,4) is chosen for the isogeometric spline space.

Figure 8a (left) shows a contour plot of the bedrock topog-
raphy of Central Java. The corresponding topographic load,
expressed through rock-equivalent topography, is shown in
Fig. 8a (right), which also contains a multi-patch geometry
of the domain of interest.

The computed lithospheric depression for a single-patch
domain is shown in Fig. 8b (right). Compared to the Airy–
Heiskanen model in Fig. 8b (left) and the available depth
data (Amukti et al., 2019, Fig. 6), the topographic loading
in the Vening-Meinesz model is additionally compensated
for by flexural rigidity. This leads to fewer local variations.
High-frequency details are strongly attenuated, and the mid-
surface only reaches a depth of less than 32km as opposed to
the Airy–Heiskanen model that predicts Mohorovičić depths
of up to 42km below mean sea level when using the same
physical parameters.

The result of the multi-patch simulation is depicted in
Fig. 8c (left). It differs from the single-patch result due to
the missing data outside of the simulation domain that are
replaced by Neumann boundary conditions. Augmenting the
multi-patch domain with additional patches that cover the
whole rectangular single-patch domain yields a result that is
close to the single-patch solution (see Fig. 8c, right). Both
solutions also appear to be continuously differentiable at the
interfaces and require less computational effort and degrees
of freedom than a classical approach using conforming C1

finite elements or non-conforming discrete Kirchhoff ele-
ments, provided that multiple patches are used sparingly.

Numerical experiments for the other geographic locations
have been done to observe the effect of different scales and
varying load distributions. Large-scale simulations require
more degrees of freedom to resolve tiny details of the so-
lution. Uniform refinement of the mesh leads to a rapid in-
crease in computational effort, which may not be necessary
for regions that are already resolved to a sufficient accuracy.
In order to reduce the computational effort by only adding
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Figure 8. Numerical simulations of the lithosphere in Central Java. (a) Topographic map (left), corresponding load (right), and an example
of a multi-patch geometry of Central Java (grid lines). (b) Lithospheric depression in Central Java according to the Airy–Heiskanen (left)
and Vening-Meinesz (right) model. (c) Comparison between the partial (left) and the full (right) multi-patch parameterization of the domain.
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degrees of freedom to regions that require more accuracy,
we consider adaptive local refinement using hierarchical B-
splines and a multi-level estimator with the maximum strat-
egy (Garau and Vázquez, 2018). For the European Plate, we
compare the results of using a uniform mesh with 16× 16
elements and a hierarchical mesh arising from adaptive local
refinement in Fig. 9b (right) and Fig. 9c, respectively.

5.2 Parameter estimation from available data

The following parameters of the model have been estimated
using the method in Sect. 4 and the available Mohorovičić
depth map of Europe: effective elastic thickness of the litho-
sphere, rock density in the crust, and existing topographic
load. The depth data stem from the work of Grad et al. (2009)
and can be seen in Fig. 9a (right). A homogeneous effective
elastic thickness of 16km and a homogeneous reference den-
sity of 2.67gcm−3 are assumed when they are not subject to
estimation. These default values are furthermore used as ini-
tial values for the estimation process.

We use the Earth2014 data by Hirt and Rexer (2015) for
the topographic load in Europe (see Fig. 9a, left). When to-
pographic load is the sought parameter, the initial value for
the corresponding rock-equivalent topography is set to 1km
everywhere. The lithospheric depression that results from
the default values and the topographic data are depicted in
Fig. 9b (right). These differ from the available Mohorovičić
depth data due to simplified assumptions and missing infor-
mation on position-dependent parameters of the model.

The estimated effective elastic thickness is mostly around
16km (see Fig. 10a, left). There are particular spots scattered
around the Mediterranean Sea and west of the British Isles
that exhibit a slightly higher and lower thickness. A change
in the effective elastic thickness of this magnitude does not
significantly alter the resulting lithospheric depression; com-
pare Fig. 10a (right) and Fig. 9b (right). Overall, the result
is incompatible with the spatial distributions found in Pérez-
Gussinyé and Watts (2005). According to Forsyth (1985), the
flexural rigidity inferred from topographic loading is likely to
be underestimated when there is significant internal loading
due to subsurface variations, which has been disregarded in
our simplified model.

The parameter estimation predicts a higher reference den-
sity in the Baltic Shield and a lower reference density around
oceans, especially in the Norwegian Sea (see Fig. 10b, left).
The resulting lithospheric depression (Fig. 10b, right) is sim-
ilar to the Mohorovičić depth map in Fig. 9a (right). A den-
sity distribution like the estimated one can explain the ob-
served Mohorovičić depth data well.

The lithospheric depression that results from topographic
load estimation is similar to the one that results from den-
sity estimation; compare Fig. 10b (right) and Fig. 10c (right).
Since the effective elastic thickness and the rock density of
the lithosphere are constant, the estimated topographic load

seems to mimic the contours of the Mohorovičić depth map
(see Fig. 10c, left).

5.3 Spherical model of the lithosphere

For the discretization of the variational problem in Sect. 2.4,
we use a C1 multi-patch parameterization arising from a quad
sphere projection (see Fig. 11b). The parameterization is not
analysis-suitable G1 continuous. However, a similar one that
is analysis-suitable can be constructed from it according to
Kapl et al. (2018). The new parameterization will not neces-
sarily represent the same geometry as before. Nevertheless,
it can be used to obtain an analysis-suitable G1 multi-patch
parameterization of a surface that is close to a sphere.

An effective elastic thickness of 16 and 1000 km is cho-
sen for the lithosphere. The latter serves to demonstrate the
effects of flexural rigidity on a spherical shell under inter-
nal pressure since the effects are negligible if the thick-
ness is extremely small relative to the scale of the Earth.
The Earth2014 data by Hirt and Rexer (2015) are mapped
onto the sphere using a reverse geographic projection (see
Fig. 11a). The resulting deformation of the lithosphere in
isostatic equilibrium is shown in Fig. 11c and d, where eleva-
tion refers to the radial displacement relative to the reference
sphere when a spherical Earth of constant radius is assumed.
Note that the scale of the coordinate system is normalized to
the radius of the Earth, which is specified in Table 2.

6 Conclusions

In this paper, we modeled Earth’s lithosphere as a thin elas-
tic shell and presented numerical methods of isogeometric
analysis to simulate its deformation in isostatic equilibrium.
Partial differential equations that involve higher-order deriva-
tives and require a certain smoothness of the solutions can be
discretized and solved without much effort and with fewer
degrees of freedoms than standard finite-element methods
using isogeometric analysis on a single patch. For more com-
plex geometries that admit an analysis-suitable G1 multi-
patch parameterization, it is possible to construct multi-patch
isogeometric spline spaces that preserve the global C1 con-
dition. Another feature of isogeometric analysis is its ability
to represent curved domains exactly, which has been demon-
strated by the simulation of a spherical shell, used to model
the entire lithosphere of the Earth. Isogeometric analysis pro-
vides a versatile tool for numerically solving problems in
geoscientific applications.

Aside from simulations of the lithospheric depression at
selected geographic locations, we presented a method based
on least-square estimation constrained by partial differential
equations to identify parameters that are most plausible for
the plate model when a ground truth is available. This has
been applied to estimate the spatial distribution of the effec-
tive elastic thickness, the rock density, and the topographic
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Figure 9. Numerical simulations of the lithosphere in Europe. (a) Topographic load (left) and Mohorovičić depth map (right) of Europe. (b)
Lithospheric depression in Europe according to the Airy–Heiskanen (left) and Vening-Meinesz (right) model. (c) Adaptive local refinement
of the isogeometric mesh in Europe (left) and corresponding lithospheric depression (right).
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Figure 10. Parameter estimation of the effective elastic thickness, reference rock density, and topographic load in Europe. (a) Parameter
estimation of the effective elastic thickness in Europe (left) and corresponding lithospheric depression (right). (b) Parameter estimation of
the reference rock density in Europe (left) and corresponding lithospheric depression (right). (c) Parameter estimation of the topographic
load in Europe (left) and corresponding lithospheric depression (right).
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Figure 11. Numerical simulations of Earth’s lithosphere modeled as a thin elastic spherical shell. (a) Global topographic map of the Earth.
(b) Isogeometric mesh of the spherical domain. (c) Deformation of the lithosphere corresponding to an effective elastic thickness of 16km.
(d) Deformation of the lithosphere corresponding to an effective elastic thickness of 1000 km.

load of the European Plate. Further improvements to the
modeling approach have to be considered to obtain more re-
liable results since the computations were based on a fairly
simple model of the lithosphere that does not take internal
loading due to subsurface variations into account.

Appendix A: List of symbols

Symbol Description
Rk Euclidean space of dimension k
e0, . . .,ek standard basis vectors in Rk
B three-dimensional shell body
A reference surface (mid-surface)
X particle in the body
ξ ,ξ0 (initial) shell configuration
γ ,γ 0 (initial) mid-surface configuration
n,n0 (initial) unit normal vector field
ϑ1,ϑ2,ϑ3 local curvilinear coordinates ϑ
t effective elastic shell thickness
V shell potential energy
W stored-energy density function
F ext,fext (vertical) external body force
Gext,gext (vertical) external surface force

Symbol Description
fgrav,fbuoy gravitational and buoyancy force
E Saint Venant–Green material strain tensor
Em,em (linearized) membrane strain
Eb,eb (linearized) bending strain
Sm,sm (linearized) membrane force
Sb,sb (linearized) bending moment
K elasticity tensor
E Young’s modulus
ν Poisson’s ratio
D,D̃ flexural rigidity (for a beam)
u displacement field
v variation of the displacement
w vertical deflection field
v variation of the vertical deflection
a bilinear form for the stiffness matrix
b bilinear form for the mass matrix
c linear functional for gravitational load
` linear functional for external load
d,d0 (initial) mid-surface depth
t0 standard crustal thickness
h topographic elevation
r rock-equivalent topography
% density of overlying mass
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Symbol Description
%m upper-mantle density
%r reference rock density
g gravitational acceleration
Bk,p kth B-spline basis function of degree p
Nω
k,p NURBS basis function with weight ω

Nα,Nk,l αth vector-valued NURBS basis function
Sωd,r(2,p) space of d-variate NURBS patches in Rr
ϑ0, . . .,ϑm spline knots in a knot sequence 2
p1, . . .,pd spline degrees in a tuple of degrees p
c0, . . .,cn control points of a NURBS patch in Rr
ω0, . . .,ωn NURBS weights in a tuple of weights ω
ω weight function
[a,b] closed interval from a to b
(a,b) open interval from a to b
[a,b) left-closed and right-open interval from a to b
(a,b] left-open and right-closed interval from a to b
�,�̂ physical and parameter domain
V, V̂ solution space on � and �̂
V̂h,p discrete solution space for ûh,p and v̂h,p
G degrees of freedom for the geometry function
U ,V degrees of freedom for trial and test functions
A,L coefficient matrix and right-hand side
C constraint matrix for the C1 condition
0 patch interface
J objective function
I reduced cost functional
R state equation operator
q design variable (flexural parameter)
w state variable (vertical deflection)
wd observed data
p crustal depth-to-height ratio
RE Earth radius
C1 space of continuously differentiable functions
G1 space of geometric C1 functions
L2 Lebesgue space of square-integrable functions
H2 Hilbert–Sobolev space of order 2
| · | absolute value
‖ · ‖ Euclidean norm
〈·, ·〉 duality pairing
· standard dot product
: double tensor contraction
× cross product
⊗ tensor product
[[·]] interface jump
dA area element
dS length element
dx,dy,dz differential of coordinate functions x,y,z
d

dx , d2

dx2 first and second derivative operator
∂ boundary operator
∂1, ∂2 partial differential operators
δ first variation operator
∇ gradient operator
∇

2 Hessian operator
1 Laplace operator
O big O symbol

Symbol Description
∈ element symbol
⊂ subset symbol
→ mapping symbol
◦ function composition
T matrix transpose
| restriction symbol

Code availability. The software used to compute the numerical so-
lutions has been written in MATLAB (MathWorks Inc., 2023) and
is available at https://doi.org/10.5281/zenodo.10950313 (Rosandi,
2024). It utilizes the GeoPDEs package (Vázquez, 2016) for isoge-
ometric analysis.

Data availability. The Earth2014 data (Hirt and Rexer, 2015) and
the Mohorovičić depth map of the European Plate (Grad et al.,
2009) are third-party data, which are publicly available at https://
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