Articles | Volume 18, issue 5 
            
                
                    
            
            
            https://doi.org/10.5194/gmd-18-1737-2025
                    © Author(s) 2025. This work is distributed under 
the Creative Commons Attribution 4.0 License.
                the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-18-1737-2025
                    © Author(s) 2025. This work is distributed under 
the Creative Commons Attribution 4.0 License.
                the Creative Commons Attribution 4.0 License.
Long-term hydro-economic analysis tool for evaluating global groundwater cost and supply: Superwell v1.1
                                            Joint Global Change Research Institute, Pacific Northwest National Laboratory (JGCRI–PNNL), College Park, MD, USA
                                        
                                    Stephen B. Ferencz
                                            Earth System Science Division, Pacific Northwest National Laboratory (PNNL), Richland, WA, USA
                                        
                                    Neal T. Graham
                                            Joint Global Change Research Institute, Pacific Northwest National Laboratory (JGCRI–PNNL), College Park, MD, USA
                                        
                                    
                                            Earth System Science Division, Pacific Northwest National Laboratory (PNNL), Richland, WA, USA
                                        
                                    Thomas B. Wild
                                            Joint Global Change Research Institute, Pacific Northwest National Laboratory (JGCRI–PNNL), College Park, MD, USA
                                        
                                    Mohamad Hejazi
                                            King Abdullah Petroleum Studies and Research Center (KAPSARC), Riyadh, Saudi Arabia
                                        
                                    David J. Watson
                                            Washington River Protection Solutions, Richland, WA, USA
                                        
                                    Chris R. Vernon
                                            Earth System Science Division, Pacific Northwest National Laboratory (PNNL), Richland, WA, USA
                                        
                                    Related authors
Mengqi Zhao, Thomas B. Wild, Neal T. Graham, Son H. Kim, Matthew Binsted, A. F. M. Kamal Chowdhury, Siwa Msangi, Pralit L. Patel, Chris R. Vernon, Hassan Niazi, Hong-Yi Li, and Guta W. Abeshu
                                    Geosci. Model Dev., 17, 5587–5617, https://doi.org/10.5194/gmd-17-5587-2024, https://doi.org/10.5194/gmd-17-5587-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                The Global Change Analysis Model (GCAM) simulates the world’s climate–land–energy–water system interactions , but its reservoir representation is limited. We developed the GLObal Reservoir Yield (GLORY) model to provide GCAM with information on the cost of supplying water based on reservoir construction costs, climate and demand conditions, and reservoir expansion potential. GLORY enhances our understanding of future reservoir capacity needs to meet human demands in a changing climate.
                                            
                                            
                                        Yuanqi Hong, Guta Abeshu, Hong-Yi Li, Dingbao Wang, Mengqi Zhao, Thomas Wild, Günter Blöschl, and Ruby Leung
                                        EGUsphere, https://doi.org/10.5194/egusphere-2025-5039, https://doi.org/10.5194/egusphere-2025-5039, 2025
                                    This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS). 
                                    Short summary
                                    Short summary
                                            
                                                Rain runs off in two main ways: saturation excess when soil is full, and infiltration excess when rain exceeds infiltration. They often occur simultaneously in a watershed, but most models treat them separately. We introduce a new theory that captures both processes within a single framework, tracking their shift over space and time. Tested over 181 U.S. watersheds, the theory well predicts streamflow in most watersheds and improves understanding of runoff under diverse climates.
                                            
                                            
                                        Mengqi Zhao, Thomas B. Wild, Neal T. Graham, Son H. Kim, Matthew Binsted, A. F. M. Kamal Chowdhury, Siwa Msangi, Pralit L. Patel, Chris R. Vernon, Hassan Niazi, Hong-Yi Li, and Guta W. Abeshu
                                    Geosci. Model Dev., 17, 5587–5617, https://doi.org/10.5194/gmd-17-5587-2024, https://doi.org/10.5194/gmd-17-5587-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                The Global Change Analysis Model (GCAM) simulates the world’s climate–land–energy–water system interactions , but its reservoir representation is limited. We developed the GLObal Reservoir Yield (GLORY) model to provide GCAM with information on the cost of supplying water based on reservoir construction costs, climate and demand conditions, and reservoir expansion potential. GLORY enhances our understanding of future reservoir capacity needs to meet human demands in a changing climate.
                                            
                                            
                                        Stephen B. Ferencz, Ning Sun, Sean W. D. Turner, Brian A. Smith, and Jennie S. Rice
                                    Nat. Hazards Earth Syst. Sci., 24, 1871–1896, https://doi.org/10.5194/nhess-24-1871-2024, https://doi.org/10.5194/nhess-24-1871-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                Drought has long posed an existential threat to society. Population growth, economic development, and the potential for more extreme and prolonged droughts due to climate change pose significant water security challenges. Better understanding the impacts and adaptive responses resulting from extreme drought can aid adaptive planning. The 2008–2015 record drought in the Colorado Basin, Texas, United States, is used as a case study to assess impacts and responses to severe drought.
                                            
                                            
                                        Jim Yoon, Nathalie Voisin, Christian Klassert, Travis Thurber, and Wenwei Xu
                                    Hydrol. Earth Syst. Sci., 28, 899–916, https://doi.org/10.5194/hess-28-899-2024, https://doi.org/10.5194/hess-28-899-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                Global and regional models used to evaluate water shortages typically neglect the possibility that irrigated crop areas may change in response to future hydrological conditions, such as the fallowing of crops in response to drought. Here, we enhance a model used for water shortage analysis with farmer agents that dynamically adapt their irrigated crop areas based on simulated hydrological conditions. Results indicate that such cropping adaptation can strongly alter simulated water shortages.
                                            
                                            
                                        Guta Wakbulcho Abeshu, Fuqiang Tian, Thomas Wild, Mengqi Zhao, Sean Turner, A. F. M. Kamal Chowdhury, Chris R. Vernon, Hongchang Hu, Yuan Zhuang, Mohamad Hejazi, and Hong-Yi Li
                                    Geosci. Model Dev., 16, 5449–5472, https://doi.org/10.5194/gmd-16-5449-2023, https://doi.org/10.5194/gmd-16-5449-2023, 2023
                                    Short summary
                                    Short summary
                                            
                                                Most existing global hydrologic models do not explicitly represent hydropower reservoirs. We are introducing a new water management module to Xanthos that distinguishes between the operational characteristics of irrigation, hydropower, and flood control reservoirs. We show that this explicit representation of hydropower reservoirs can lead to a significantly more realistic simulation of reservoir storage and releases in over 44 % of the hydropower reservoirs included in this study.
                                            
                                            
                                        Matthew Binsted, Gokul Iyer, Pralit Patel, Neal T. Graham, Yang Ou, Zarrar Khan, Nazar Kholod, Kanishka Narayan, Mohamad Hejazi, Son Kim, Katherine Calvin, and Marshall Wise
                                    Geosci. Model Dev., 15, 2533–2559, https://doi.org/10.5194/gmd-15-2533-2022, https://doi.org/10.5194/gmd-15-2533-2022, 2022
                                    Short summary
                                    Short summary
                                            
                                                GCAM-USA v5.3_water_dispatch is an open-source model that represents key interactions across economic, energy, water, and land systems in a global framework, with subnational detail in the United States. GCAM-USA can be used to explore future changes in demand for (and production of) energy, water, and crops at the state and regional level in the US. This paper describes GCAM-USA and provides four illustrative scenarios to demonstrate the model's capabilities and potential applications.
                                            
                                            
                                        Cited articles
                        
                        Abeshu, G. W., Tian, F., Wild, T., Zhao, M., Turner, S., Chowdhury, A. F. M. K., Vernon, C. R., Hu, H., Zhuang, Y., Hejazi, M., and Li, H.-Y.: Enhancing the representation of water management in global hydrological models, Geosci. Model Dev., 16, 5449–5472, https://doi.org/10.5194/gmd-16-5449-2023, 2023. a
                    
                
                        
                        Advisor, H.: Average Costs per Foot of Well Drilling & Digging, https://www.homeadvisor.com/cost/landscape/drill-a-well/#costs (last access: August 2018), 2018. a
                    
                
                        
                        Alam, M. F.: Evaluating the benefit-cost ratio of groundwater abstraction for additional irrigation water on global scale, Student thesis, http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-199089 (last access: 17 February 2025), 2016-12-28T13:41:19.323+01:00, 2016. a
                    
                
                        
                        Alam, M. F., McClain, M., Sikka, A., and Pande, S.: Understanding human–water feedbacks of interventions in agricultural systems with agent based models: a review, Environ. Res. Lett., 17, 103003, https://doi.org/10.1088/1748-9326/ac91e1, 2022. a, b
                    
                
                        
                        Balasubramanya, S., Garrick, D., Brozović, N., Ringler, C., Zaveri, E., Rodella, A.-S., Buisson, M.-C., Schmitter, P., Durga, N., Kishore, A., Minh, T. T., Kafle, K., Stifel, D., Balasubramanya, S., Chandra, A., and Hope, L.: Risks from solar-powered groundwater irrigation, Science, 383, 256–258, https://doi.org/10.1126/science.adi9497, 2024. a
                    
                
                        
                        Bierkens, M., De Graaf, I. E., Lips, S., Perrone, D., Reinhard, A. S., Jasechko, S., van der Himst, T., and van Beek, R.: Global Economic Limits of Groundwater When Used as a Last Resort for Irrigation, Research Square [preprint], https://doi.org/10.21203/rs.3.rs-1874539/v1, 2022. a, b
                    
                
                        
                        Bierkens, M. F. P. and Wada, Y.: Non-renewable groundwater use and groundwater depletion: a review, Environ. Res. Lett., 14, 063002, https://doi.org/10.1088/1748-9326/ab1a5f, 2019. a
                    
                
                        
                        Burek, P., Satoh, Y., Kahil, T., Tang, T., Greve, P., Smilovic, M., Guillaumot, L., Zhao, F., and Wada, Y.: Development of the Community Water Model (CWatM v1.04) – a high-resolution hydrological model for global and regional assessment of integrated water resources management, Geosci. Model Dev., 13, 3267–3298, https://doi.org/10.5194/gmd-13-3267-2020, 2020. a
                    
                
                        
                        Calvin, K., Patel, P., Clarke, L., Asrar, G., Bond-Lamberty, B., Cui, R. Y., Di Vittorio, A., Dorheim, K., Edmonds, J., Hartin, C., Hejazi, M., Horowitz, R., Iyer, G., Kyle, P., Kim, S., Link, R., McJeon, H., Smith, S. J., Snyder, A., Waldhoff, S., and Wise, M.: GCAM v5.1: representing the linkages between energy, water, land, climate, and economic systems, Geosci. Model Dev., 12, 677–698, https://doi.org/10.5194/gmd-12-677-2019, 2019. a, b, c
                    
                
                        
                        Canales, M., Castilla-Rho, J., Rojas, R., Vicuña, S., and Ball, J.: Agent-based models of groundwater systems: A review of an emerging approach to simulate the interactions between groundwater and society, Environ. Model. Softw., 175, 105980, https://doi.org/10.1016/j.envsoft.2024.105980, 2024. a
                    
                
                        
                        Castilla-Rho, J. C., Rojas, R., Andersen, M. S., Holley, C., and Mariethoz, G.: Social tipping points in global groundwater management, Nat. Hum. Behav., 1, 640–649, https://doi.org/10.1038/s41562-017-0181-7, 2017. a, b, c
                    
                
                        
                        Davidsen, C., Liu, S., Mo, X., Rosbjerg, D., and Bauer-Gottwein, P.: The cost of ending groundwater overdraft on the North China Plain, Hydrol. Earth Syst. Sci., 20, 771–785, https://doi.org/10.5194/hess-20-771-2016, 2016. a, b
                    
                
                        
                        de Graaf, I. E. M. and Stahl, K.: A model comparison assessing the importance of lateral groundwater flows at the global scale, Environ. Res. Lett., 17, 044020, https://doi.org/10.1088/1748-9326/ac50d2, 2022. a
                    
                
                        
                        de Graaf, I. E. M., Sutanudjaja, E. H., van Beek, L. P. H., and Bierkens, M. F. P.: A high-resolution global-scale groundwater model, Hydrol. Earth Syst. Sci., 19, 823–837, https://doi.org/10.5194/hess-19-823-2015, 2015. a, b, c
                    
                
                        
                        de Graaf, I. E. M., van Beek, R. L. P. H., Gleeson, T., Moosdorf, N., Schmitz, O., Sutanudjaja, E. H., and Bierkens, M. F. P.: A global-scale two-layer transient groundwater model: Development and application to groundwater depletion, Adv. Water Resour., 102, 53–67, https://doi.org/10.1016/j.advwatres.2017.01.011, 2017. a
                    
                
                        
                        Dolan, F., Lamontagne, J., Link, R., Hejazi, M., Reed, P., and Edmonds, J.: Evaluating the economic impact of water scarcity in a changing world, Nat. Commun., 12, 1915, https://doi.org/10.1038/s41467-021-22194-0, 2021. a
                    
                
                        
                        Döll, P. and Fiedler, K.: Global-scale modeling of groundwater recharge, Hydrol. Earth Syst. Sci., 12, 863–885, https://doi.org/10.5194/hess-12-863-2008, 2008. a, b, c
                    
                
                        
                        Fan, Y., Li, H., and Miguez-Macho, G.: Global Patterns of Groundwater Table Depth, Science, 339, 940–943, https://doi.org/10.1126/science.1229881, https://doi.org/10.1126/science.1229881, 2013. a, b
                    
                
                        
                        Fenichel, E. P., Abbott, J. K., Bayham, J., Boone, W., Haacker, E. M. K., and Pfeiffer, L.: Measuring the value of groundwater and other forms of natural capital, P. Natl. Acad. Sci. USA, 113, 2382–2387, https://doi.org/10.1073/pnas.1513779113, 2016. a
                    
                
                        
                        Fisher-Vanden, K. and Weyant, J.: The Evolution of Integrated Assessment: Developing the Next Generation of Use-Inspired Integrated Assessment Tools, Annu. Rev. Resour. Econ., 12, 471–487, https://doi.org/10.1146/annurev-resource-110119-030314, 2020. a
                    
                
                        
                        Foster, T., Brozović, N., and Butler, A. P.: Analysis of the impacts of well yield and groundwater depth on irrigated agriculture, J. Hydrol., 523, 86–96, https://doi.org/10.1016/j.jhydrol.2015.01.032, 2015. a
                    
                
                        
                        Foster, T., Brozović, N., and Speir, C.: The buffer value of groundwater when well yield is limited, J. Hydrol., 547, 638–649, https://doi.org/10.1016/j.jhydrol.2017.02.034, 2017. a
                    
                
                        
                        Gleeson, T., Wada, Y., Bierkens, M. F. P., and van Beek, L. P. H.: Water balance of global aquifers revealed by groundwater footprint, Nature, 488, 197–200, https://doi.org/10.1038/nature11295, 2012. a
                    
                
                        
                        Gleeson, T., Moosdorf, N., Hartmann, J., and van Beek, L. P. H.: A glimpse beneath earth's surface: GLobal HYdrogeology MaPS (GLHYMPS) of permeability and porosity, Geophys. Res. Lett., 41, 3891–3898, https://doi.org/10.1002/2014GL059856, 2014. a, b
                    
                
                        
                        Gleeson, T., Wagener, T., Döll, P., Zipper, S. C., West, C., Wada, Y., Taylor, R., Scanlon, B., Rosolem, R., Rahman, S., Oshinlaja, N., Maxwell, R., Lo, M.-H., Kim, H., Hill, M., Hartmann, A., Fogg, G., Famiglietti, J. S., Ducharne, A., de Graaf, I., Cuthbert, M., Condon, L., Bresciani, E., and Bierkens, M. F. P.: GMD perspective: The quest to improve the evaluation of groundwater representation in continental- to global-scale models, Geosci. Model Dev., 14, 7545–7571, https://doi.org/10.5194/gmd-14-7545-2021, 2021. a, b
                    
                
                        
                        Glotfelty, M. F. (Ed.): The art of water wells: technical and economic considerations for water well siting, design, and installation, NGWA Press, National Ground Water Association, ISBN 1-56034-048-7, 2019. a
                    
                
                        
                        Gorelick, S. M. and Zheng, C.: Global change and the groundwater management challenge, Water Resour. Res., 51, 3031–3051, https://doi.org/10.1002/2014WR016825, 2015. a
                    
                
                        
                        Grogan, D. S., Wisser, D., Prusevich, A., Lammers, R. B., and Frolking, S.: The use and re-use of unsustainable groundwater for irrigation: a global budget, Environ. Res. Lett., 12, 034017, https://doi.org/10.1088/1748-9326/aa5fb2, 2017. a
                    
                
                        
                        Hanasaki, N., Kanae, S., Oki, T., Masuda, K., Motoya, K., Shirakawa, N., Shen, Y., and Tanaka, K.: An integrated model for the assessment of global water resources – Part 1: Model description and input meteorological forcing, Hydrol. Earth Syst. Sci., 12, 1007–1025, https://doi.org/10.5194/hess-12-1007-2008, 2008. a
                    
                
                        
                        Harou, J. J., Pulido-Velazquez, M., Rosenberg, D. E., Medellín-Azuara, J., Lund, J. R., and Howitt, R. E.: Hydro-economic models: Concepts, design, applications, and future prospects, J. Hydrol., 375, 627–643, https://doi.org/10.1016/j.jhydrol.2009.06.037, 2009. a, b
                    
                
                        
                        Hejazi, M., Santos Da Silva, S. R., Miralles-Wilhelm, F., Kim, S., Kyle, P., Liu, Y., Vernon, C., Delgado, A., Edmonds, J., and Clarke, L.: Impacts of water scarcity on agricultural production and electricity generation in the Middle East and North Africa, Front. Environ. Sci., 11, 1082930, https://doi.org/10.3389/fenvs.2023.1082930, 2023. a, b, c
                    
                
                        
                        Howitt, R. E.: Positive mathematical programming, Am. J. Agric. Econ., 77, 329–342, https://doi.org/10.2307/1243543, 1995. a
                    
                
                        
                        IEA, I. E. A.: Energy Prices and Taxes, 2016, https://doi.org/10.1787/energy_tax-v2016-3-en, 2016. a, b
                    
                
                        
                        Jacob, C. E.: Drawdown Test to Determine Effective Radius of Artesian Well, T. Am. Soc. Civ. Eng., 112, 1047–1064, https://doi.org/10.1061/TACEAT.0006033, 1947. a
                    
                
                        
                        Jasechko, S. and Perrone, D.: Global groundwater wells at risk of running dry, Science, 372, 418–421, https://doi.org/10.1126/science.abc2755, 2021. a
                    
                
                        
                        Jasechko, S., Seybold, H., Perrone, D., Fan, Y., Shamsudduha, M., Taylor, R. G., Fallatah, O., and Kirchner, J. W.: Rapid groundwater decline and some cases of recovery in aquifers globally, Nature, 625, 715–721, https://doi.org/10.1038/s41586-023-06879-8, 2024. a
                    
                
                        
                        Kahil, T., Albiac, J., Fischer, G., Strokal, M., Tramberend, S., Greve, P., Tang, T., Burek, P., Burtscher, R., and Wada, Y.: A nexus modeling framework for assessing water scarcity solutions, Curr. Opin. Env. Sust., 40, 72–80, https://doi.org/10.1016/j.cosust.2019.09.009, 2019. a
                    
                
                        
                        Kanazawa, M. T.: Econometric estimation of groundwater pumping costs: A simultaneous equations approach, Water Resour. Res., 28, 1507–1516, https://doi.org/10.1029/92WR00198, 1992. a
                    
                
                        
                        Katsifarakis, K. L.: Groundwater Pumping Cost Minimization – an Analytical Approach, Water Resour. Manage., 22, 1089–1099, https://doi.org/10.1007/s11269-007-9212-x, 2008. a
                    
                
                        
                        Katsifarakis, K. L., Nikoletos, I. A., and Stavridis, C.: Minimization of Transient Groundwater Pumping Cost – Analytical and Practical Solutions, Water Resour. Manage., 32, 1053–1069, https://doi.org/10.1007/s11269-017-1854-8, 2018. a
                    
                
                        
                        Keppo, I., Butnar, I., Bauer, N., Caspani, M., Edelenbosch, O., Emmerling, J., Fragkos, P., Guivarch, C., Harmsen, M., Lefèvre, J., Le Gallic, T., Leimbach, M., McDowall, W., Mercure, J. F., Schaeffer, R., Trutnevyte, E., and Wagner, F.: Exploring the possibility space: taking stock of the diverse capabilities and gaps in integrated assessment models, Environ. Res. Lett., 16, 053006, https://doi.org/10.1088/1748-9326/abe5d8, 2021. a, b, c
                    
                
                        
                        Khan, Z., Thompson, I., Vernon, C. R., Graham, N. T., Wild, T. B., and Chen, M.: Global monthly sectoral water use for 2010–2100 at 0.5° resolution across alternative futures, Sci. Data, 10, 201, https://doi.org/10.1038/s41597-023-02086-2, 2023. a
                    
                
                        
                        Kim, S. H., Hejazi, M., Liu, L., Calvin, K., Clarke, L., Edmonds, J., Kyle, P., Patel, P., Wise, M., and Davies, E.: Balancing global water availability and use at basin scale in an integrated assessment model, Clim. Change, 136, 217–231, https://doi.org/10.1007/s10584-016-1604-6, 2016. a, b
                    
                
                        
                        Klassert, C., Yoon, J., Sigel, K., Klauer, B., Talozi, S., Lachaut, T., Selby, P., Knox, S., Avisse, N., Tilmant, A., Harou, J. J., Mustafa, D., Medellín-Azuara, J., Bataineh, B., Zhang, H., Gawel, E., and Gorelick, S. M.: Unexpected growth of an illegal water market, Nat. Sustain., 6, 1406–1417, https://doi.org/10.1038/s41893-023-01177-7, 2023. a, b
                    
                
                        
                        Konikow, L. F. and Kendy, E.: Groundwater depletion: A global problem, Hydrogeol. J., 13, 317–320, https://doi.org/10.1007/s10040-004-0411-8, 2005. a
                    
                
                        
                        Kyle, P., Ollenburger, M., Zhang, X., Niazi, H., Durga, S., and Ou, Y.: Assessing Multi-Dimensional Impacts of Achieving Sustainability Goals by Projecting the Sustainable Agriculture Matrix Into the Future, Earth's Future, 11, e2022EF003323, https://doi.org/10.1029/2022EF003323, 2023. a
                    
                
                        
                        Lall, U., Josset, L., and Russo, T.: A Snapshot of the World's Groundwater Challenges, Annu. Rev. Environ. Resour., 45, 171–194, https://doi.org/10.1146/annurev-environ-102017-025800, 2020. a
                    
                
                        
                        Liu, Y., Hejazi, M., Li, H., Zhang, X., and Leng, G.: A hydrological emulator for global applications – HE v1.0.0, Geosci. Model Dev., 11, 1077–1092, https://doi.org/10.5194/gmd-11-1077-2018, 2018. a
                    
                
                        
                        McGuire, V. L. and Strauch, K. R.: Water-level and recoverable water in storage changes, High Plains Aquifer, predevelopment to 2019 and 2017 to 2019, USGS, https://doi.org/10.3133/sir20235143, 2024. a
                    
                
                        
                        McGuire, V. L., Johnson, M., Schieffer, R., Stanton, J., Sebree, S., and Verstraeten, I. M.: Water in storage and approaches to ground-water management, High Plains aquifer, 2000, vol. 1243, US Geological Survey Reston, VA, USA, https://pubs.usgs.gov/circ/2003/circ1243/pdf/C1243_v1.pdf (last access: 17 February 2025), 2003. a
                    
                
                        
                        Medellin-Azuara, J., MacEwan, D., Howitt, R. E., Koruakos, G., Dogrul, E. C., Brush, C. F., Kadir, T. N., Harter, T., Melton, F., and Lund, J. R.: Hydro-economic analysis of groundwater pumping for irrigated agriculture in California's Central Valley, USA, Hydrogeol. J., 23, 1205, https://doi.org/10.1007/s10040-015-1283-9, 2015. a
                    
                
                        
                        Messager, M. L., Lehner, B., Grill, G., Nedeva, I., and Schmitt, O.: Estimating the volume and age of water stored in global lakes using a geo-statistical approach, Nat. Commun., 7, 13603, https://doi.org/10.1038/ncomms13603, 2016. a, b, c
                    
                
                        
                        Mora, M., Vera, J., Rocamora, C., and Abadia, R.: Energy efficiency and maintenance costs of pumping systems for groundwater extraction, Water Resour. Manage., 27, 4395–4408, https://doi.org/10.1080/07900627.2014.935302, 2013. a
                    
                
                        
                        Müller Schmied, H., Cáceres, D., Eisner, S., Flörke, M., Herbert, C., Niemann, C., Peiris, T. A., Popat, E., Portmann, F. T., Reinecke, R., Schumacher, M., Shadkam, S., Telteu, C.-E., Trautmann, T., and Döll, P.: The global water resources and use model WaterGAP v2.2d: model description and evaluation, Geosci. Model Dev., 14, 1037–1079, https://doi.org/10.5194/gmd-14-1037-2021, 2021. a, b
                    
                
                        
                        Narayanamoorthy, A.: Groundwater depletion and water extraction cost: some evidence from South India, Int. J. Water Resour. Dev., 31, 604–617, https://doi.org/10.1080/07900627.2014.935302, 2015. a
                    
                
                        
                        Niazi, H., Ferencz, S., Yoon, J., Graham, N., Wild, T., Hejazi, M., Watson, D., and Vernon, C.: Globally Gridded Groundwater Extraction Volumes and Costs under Six Depletion and Ponded Depth Targets, MSD Live [data set], https://doi.org/10.57931/2307832, 2024a. a, b, c, d
                    
                
                        
                        Niazi, H., Watson, D., Hejazi, M., Yonkofski, C., Ferencz, S., Vernon, C., Graham, N., Wild, T., and Yoon, J.: Global Geo-processed Data of Aquifer Properties by 0.5° Grid, Country and Water Basins, MSD Live [data set], https://doi.org/10.57931/2484226, 2024b. a, b, c, d
                    
                
                        
                        Reinecke, R., Gnann, S., Stein, L., Bierkens, M., de Graaf, I., Gleeson, T., OudeEssink, G., Sutanudjaja, E., Ruz-Vargas, C., Verkaik, J., and Wagener, T.: Considerable gaps in our global knowledge of potential groundwater accessibility, Earth ArXiv, https://doi.org/10.31223/X5SM0R, 2023. a, b, c
                    
                
                        
                        Richts, A., Struckmeier, W. F., and Zaepke, M.: WHYMAP and the Groundwater Resources Map of the World 1:25,000,000, pp. 159–173, Springer Netherlands, Dordrecht, ISBN 978-90-481-3426-7, https://doi.org/10.1007/978-90-481-3426-7_10, 2011. a, b, c
                    
                
                        
                        Rodríguez-Flores, J. M., Valero Fandiño, J. A., Cole, S. A., Malek, K., Karimi, T., Zeff, H. B., Reed, P. M., Escriva-Bou, A., and Medellín-Azuara, J.: Global Sensitivity Analysis of a Coupled Hydro-Economic Model and Groundwater Restriction Assessment, Water Resour. Manage., 36, 6115–6130, https://doi.org/10.1007/s11269-022-03344-5, 2022. a
                    
                
                        
                        Salem, G. S. A., Kazama, S., Shahid, S., and Dey, N. C.: Impacts of climate change on groundwater level and irrigation cost in a groundwater dependent irrigated region, Agric. Water Manage., 208, 33–42, https://doi.org/10.1016/j.agwat.2018.06.011, 2018. a
                    
                
                        
                        Scanlon, B. R., Fakhreddine, S., Rateb, A., de Graaf, I., Famiglietti, J., Gleeson, T., Grafton, R. Q., Jobbagy, E., Kebede, S., Kolusu, S. R., Konikow, L. F., Long, D., Mekonnen, M., Schmied, H. M., Mukherjee, A., MacDonald, A., Reedy, R. C., Shamsudduha, M., Simmons, C. T., Sun, A., Taylor, R. G., Villholth, K. G., Vörösmarty, C. J., and Zheng, C.: Global water resources and the role of groundwater in a resilient water future, Nat. Rev. Earth Environ., 4, 87–101, https://doi.org/10.1038/s43017-022-00378-6, 2023. a
                    
                
                        
                        Schewe, J., Heinke, J., Gerten, D., Haddeland, I., Arnell Nigel, W., Clark Douglas, B., Dankers, R., Eisner, S., Fekete Balázs, M., Colón-González Felipe, J., Gosling Simon, N., Kim, H., Liu, X., Masaki, Y., Portmann Felix, T., Satoh, Y., Stacke, T., Tang, Q., Wada, Y., Wisser, D., Albrecht, T., Frieler, K., Piontek, F., Warszawski, L., and Kabat, P.: Multimodel assessment of water scarcity under climate change, P. Natl. Acad. Sci. USA, 111, 3245–3250, https://doi.org/10.1073/pnas.1222460110, 2014. a
                    
                
                        
                        Siebert, S., Burke, J., Faures, J. M., Frenken, K., Hoogeveen, J., Döll, P., and Portmann, F. T.: Groundwater use for irrigation – a global inventory, Hydrol. Earth Syst. Sci., 14, 1863–1880, https://doi.org/10.5194/hess-14-1863-2010, 2010. a
                    
                
                        
                        Sophocleous, M.: The origin and evolution of safe-yield policies in the Kansas Groundwater Management Districts, Nat. Resour. Res., 9, 99–110, https://doi.org/10.1023/A:1010139325667, 2000. a
                    
                
                        
                        Srikrishnan, V., Lafferty, D. C., Wong, T. E., Lamontagne, J. R., Quinn, J. D., Sharma, S., Molla, N. J., Herman, J. D., Sriver, R. L., Morris, J. F., and Lee, B. S.: Uncertainty Analysis in Multi-Sector Systems: Considerations for Risk Analysis, Projection, and Planning for Complex Systems, Earth's Future, 10, e2021EF002644, https://doi.org/10.1029/2021EF002644, 2022. a
                    
                
                        
                        Steward, D. R., Bruss, P. J., Yang, X., Staggenborg, S. A., Welch, S. M., and Apley, M. D.: Tapping unsustainable groundwater stores for agricultural production in the High Plains Aquifer of Kansas, projections to 2110, P. Natl. Acad. Sci. USA, 110, E3477–E3486, https://doi.org/10.1073/pnas.1220351110, 2013. a
                    
                
                        
                        Strand, J.: The full economic cost of groundwater extraction (English). Policy Research working paper, no. WPS 5494 Washington, DC, World Bank, http://documents.worldbank.org/curated/en/592401468314702740 (last access: 17 February 2025), 2010. a
                    
                
                        
                        Sutanudjaja, E. H., van Beek, R., Wanders, N., Wada, Y., Bosmans, J. H. C., Drost, N., van der Ent, R. J., de Graaf, I. E. M., Hoch, J. M., de Jong, K., Karssenberg, D., López López, P., Peßenteiner, S., Schmitz, O., Straatsma, M. W., Vannametee, E., Wisser, D., and Bierkens, M. F. P.: PCR-GLOBWB 2: a 5 arcmin global hydrological and water resources model, Geosci. Model Dev., 11, 2429–2453, https://doi.org/10.5194/gmd-11-2429-2018, 2018. a
                    
                
                        
                        Suter, J. F., Rouhi Rad, M., Manning, D. T., Goemans, C., and Sanderson, M. R.: Depletion, climate, and the incremental value of groundwater, Resour. Energ. Econ., 63, 101143, https://doi.org/10.1016/j.reseneeco.2019.101143, 2021. a
                    
                
                        
                        Theis, C. V.: The relation between the lowering of the Piezometric surface and the rate and duration of discharge of a well using ground-water storage, Eos, Transactions American Geophysical Union, 16, 519–524, https://doi.org/10.1029/TR016i002p00519, 1935. a, b, c
                    
                
                        
                        Thurber, T., Vernon, C. R., Sun, N., Turner, S. W., Yoon, J., and Voisin, N.: mosartwmpy: A Python implementation of the MOSART-WM coupled hydrologic routing and water management model, J. Open Source Softw., 6, 3221, https://doi.org/10.21105/joss.03221, 2021. a
                    
                
                        
                        Turner, S. W. D., Hejazi, M., Calvin, K., Kyle, P., and Kim, S.: A pathway of global food supply adaptation in a world with increasingly constrained groundwater, Sci. Total Environ., 673, 165–176, https://doi.org/10.1016/j.scitotenv.2019.04.070, 2019a. a, b
                    
                
                        
                        Turner, S. W. D., Hejazi, M., Yonkofski, C., Kim, S. H., and Kyle, P.: Influence of Groundwater Extraction Costs and Resource Depletion Limits on Simulated Global Nonrenewable Water Withdrawals Over the Twenty-First Century, Earth's Future, 7, 123–135, https://doi.org/10.1029/2018EF001105, 2019b. a, b, c, d, e
                    
                
                        
                        Verkaik, J., Sutanudjaja, E. H., Oude Essink, G. H. P., Lin, H. X., and Bierkens, M. F. P.: GLOBGM v1.0: a parallel implementation of a 30 arcsec PCR-GLOBWB-MODFLOW global-scale groundwater model, Geosci. Model Dev., 17, 275–300, https://doi.org/10.5194/gmd-17-275-2024, 2024. a
                    
                
                        
                        Vinca, A., Parkinson, S., Byers, E., Burek, P., Khan, Z., Krey, V., Diuana, F. A., Wang, Y., Ilyas, A., Köberle, A. C., Staffell, I., Pfenninger, S., Muhammad, A., Rowe, A., Schaeffer, R., Rao, N. D., Wada, Y., Djilali, N., and Riahi, K.: The NExus Solutions Tool (NEST) v1.0: an open platform for optimizing multi-scale energy–water–land system transformations, Geosci. Model Dev., 13, 1095–1121, https://doi.org/10.5194/gmd-13-1095-2020, 2020. a, b
                    
                
                        
                        Weyant, J.: Some Contributions of Integrated Assessment Models of Global Climate Change, Rev. Env. Econ. Policy, 11, 115–137, https://doi.org/10.1093/reep/rew018, 2017. a
                    
                
                        
                        Wild, T. B., Niazi, H., Graham, N. T., Birnbaum, A. N., Zhao, M., Lamontagne, J., Kim, S. H., Chowdhury, A., Msangi, S., and Zhang, Y.: Water and Global Change: An Integrated Modeling Perspective, in: AGU Fall Meeting Abstracts, 2023, H24B–1, https://ui.adsabs.harvard.edu/abs/2023AGUFM.H24B...1W/abstract (last access: 17 February 2025), 2023. a
                    
                
                        
                        Yoon, J., Klassert, C., Selby, P., Lachaut, T., Knox, S., Avisse, N., Harou, J., Tilmant, A., Klauer, B., Mustafa, D., Sigel, K., Talozi, S., Gawel, E., Medellín-Azuara, J., Bataineh, B., Zhang, H., and Gorelick, S. M.: A coupled human–natural system analysis of freshwater security under climate and population change, P. Natl. Acad. Sci. USA, 118, e2020431118, https://doi.org/10.1073/pnas.2020431118, 2021.  a, b
                    
                
                        
                        Yoon, J., Romero-Lankao, P., Yang, Y. C. E., Klassert, C., Urban, N., Kaiser, K., Keller, K., Yarlagadda, B., Voisin, N., Reed, P. M., and Moss, R.: A Typology for Characterizing Human Action in MultiSector Dynamics Models, Earth's Future, 10, e2021EF002641, https://doi.org/10.1029/2021EF002641, 2022. a
                    
                
                        
                        Yoon, J., Voisin, N., Klassert, C., Thurber, T., and Xu, W.: Representing farmer irrigated crop area adaptation in a large-scale hydrological model, Hydrol. Earth Syst. Sci., 28, 899–916, https://doi.org/10.5194/hess-28-899-2024, 2024. a
                    
                
                        
                        Zhang, X., Sabo, R., Rosa, L., Niazi, H., Kyle, P., Byun, J. S., Wang, Y., Yan, X., Gu, B., and Davidson, E. A.: Nitrogen management during decarbonization, Nat. Rev. Earth Environ., 5, 717–731, https://doi.org/10.1038/s43017-024-00586-2, 2024. a
                    
                
                        
                        Zhao, M., Wild, T. B., Graham, N. T., Kim, S. H., Binsted, M., Chowdhury, A. F. M. K., Msangi, S., Patel, P. L., Vernon, C. R., Niazi, H., Li, H.-Y., and Abeshu, G. W.: GCAM–GLORY v1.0: representing global reservoir water storage in a multi-sector human–Earth system model, Geosci. Model Dev., 17, 5587–5617, https://doi.org/10.5194/gmd-17-5587-2024, 2024. a, b
                    
                Short summary
            Superwell is a physics-based hydro-economic model that estimates the production costs and availability of groundwater worldwide. It calculates how much groundwater can be extracted and at what cost, using detailed maps and data of the Earth's properties. Through these estimates, and by using them with other models, Superwell facilitates exploration of coupled human–environmental system challenges, such as future water supply sustainability or multi-sectoral energy–water–land feedbacks.
            Superwell is a physics-based hydro-economic model that estimates the production costs and...
            
         
 
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
             
             
            