Articles | Volume 17, issue 22
https://doi.org/10.5194/gmd-17-8321-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-17-8321-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
MESSAGEix-Materials v1.1.0: representation of material flows and stocks in an integrated assessment model
International Institute for Applied Systems Analysis, Energy Climate and Environment Programme, Laxenburg, 2361, Austria
Institute of Social Ecology, University of Natural Resources and Life Sciences, Vienna (BOKU), Schottenfeldgasse 29, Vienna, 1070, Austria
Florian Maczek
International Institute for Applied Systems Analysis, Energy Climate and Environment Programme, Laxenburg, 2361, Austria
Jihoon Min
International Institute for Applied Systems Analysis, Energy Climate and Environment Programme, Laxenburg, 2361, Austria
Stefan Frank
International Institute for Applied Systems Analysis, Energy Climate and Environment Programme, Laxenburg, 2361, Austria
Institute for Sustainable Economic Development, University of Natural Resources and Life Sciences, Vienna (BOKU), Feistmantelstraße 4, Vienna, 1180, Austria
Fridolin Glatter
International Institute for Applied Systems Analysis, Energy Climate and Environment Programme, Laxenburg, 2361, Austria
Paul Natsuo Kishimoto
International Institute for Applied Systems Analysis, Energy Climate and Environment Programme, Laxenburg, 2361, Austria
Jan Streeck
Institute of Social Ecology, University of Natural Resources and Life Sciences, Vienna (BOKU), Schottenfeldgasse 29, Vienna, 1070, Austria
Nina Eisenmenger
Institute of Social Ecology, University of Natural Resources and Life Sciences, Vienna (BOKU), Schottenfeldgasse 29, Vienna, 1070, Austria
Dominik Wiedenhofer
Institute of Social Ecology, University of Natural Resources and Life Sciences, Vienna (BOKU), Schottenfeldgasse 29, Vienna, 1070, Austria
Volker Krey
International Institute for Applied Systems Analysis, Energy Climate and Environment Programme, Laxenburg, 2361, Austria
Industrial Ecology Programme and Energy Transitions Initiative, Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway
Related authors
No articles found.
Eric D. Galbraith, Abdullah Al Faisal, Tanya Matitia, William Fajzel, Ian Hatton, Helmut Haberl, Fridolin Krausmann, and Dominik Wiedenhofer
Earth Syst. Dynam., 16, 979–999, https://doi.org/10.5194/esd-16-979-2025, https://doi.org/10.5194/esd-16-979-2025, 2025
Short summary
Short summary
The technosphere – including buildings, infrastructure, and all other non-living human creations – is a major part of our planet, but it is not often considered as an integrated part of Earth system processes. Here we propose a refined definition of the technosphere, intended to help with integration. We also characterize the functional end uses, map the global distribution, and discuss the catalytic properties that underlie the exponential growth of the trillion tonne technosphere.
Fabio Sferra, Bas van Ruijven, Keywan Riahi, Philip Hackstock, Florian Maczek, Jarmo Kikstra, and Reinhard Haas
EGUsphere, https://doi.org/10.5194/egusphere-2025-121, https://doi.org/10.5194/egusphere-2025-121, 2025
Short summary
Short summary
Assessments of future emissions and the effectiveness of climate policies are usually performed with Integrated Assessment Models (IAMs). Bringing together insights from IAMs with information at the country level has remained difficult, as these models provide results for a limited number of regions. This paper presents DSCALE, a novel algorithm designed to downscale regional IAMs outcomes to the country level and shows results for a current policy and a 1.5C scenario from the NGFS 2023 project.
Felix Jäger, Jonas Schwaab, Yann Quilcaille, Michael Windisch, Jonathan Doelman, Stefan Frank, Mykola Gusti, Petr Havlik, Florian Humpenöder, Andrey Lessa Derci Augustynczik, Christoph Müller, Kanishka Balu Narayan, Ryan Sebastian Padrón, Alexander Popp, Detlef van Vuuren, Michael Wögerer, and Sonia Isabelle Seneviratne
Earth Syst. Dynam., 15, 1055–1071, https://doi.org/10.5194/esd-15-1055-2024, https://doi.org/10.5194/esd-15-1055-2024, 2024
Short summary
Short summary
Climate change mitigation strategies developed with socioeconomic models rely on the widespread (re)planting of trees to limit global warming below 2°. However, most of these models neglect climate-driven shifts in forest damage like fires. By assessing existing mitigation scenarios, we show the exposure of projected forestation areas to fire-promoting weather conditions. Our study highlights the problem of ignoring climate-driven shifts in forest damage and ways to address it.
Muhammad Awais, Adriano Vinca, Edward Byers, Stefan Frank, Oliver Fricko, Esther Boere, Peter Burek, Miguel Poblete Cazenave, Paul Natsuo Kishimoto, Alessio Mastrucci, Yusuke Satoh, Amanda Palazzo, Madeleine McPherson, Keywan Riahi, and Volker Krey
Geosci. Model Dev., 17, 2447–2469, https://doi.org/10.5194/gmd-17-2447-2024, https://doi.org/10.5194/gmd-17-2447-2024, 2024
Short summary
Short summary
Climate change, population growth, and depletion of natural resources all pose complex and interconnected challenges. Our research offers a novel model that can help in understanding the interplay of these aspects, providing policymakers with a more robust tool for making informed future decisions. The study highlights the significance of incorporating climate impacts within large-scale global integrated assessments, which can help us in generating more climate-resilient scenarios.
Cited articles
Abella, J. P., Motazedi, K., Guo, J., Cousart, K., Jing, L., and Bergerson, J. A.: Petroleum Refinery Life Cycle Inventory Model PRELIM v1.4: User Guide and Technical Documentation, Department of Chemical and Petroleum Engineering, University of Calgary, https://www.ucalgary.ca/sites/default/files/teams/477/prelim-v1.4-documentation.pdf (last access: 12 November 2024), 2020.
Akram, I.: An overview of global trading patterns in the cement industry, World Cement, https://www.worldcement.com/africa-middle-east/29042013/cement_global_trading_patterns_961/ (last access: 8 September 2023), 2013.
Arvesen, A., Luderer, G., Pehl, M., Bodirsky, B. L., and Hertwich, E. G.: Deriving life cycle assessment coefficients for application in Integrated Assessment Modeling, Environ. Modell. Softw., 99, 111–125, https://doi.org/10.1016/j.envsoft.2017.09.010, 2018.
Awais, M., Vinca, A., Byers, E., Frank, S., Fricko, O., Boere, E., Burek, P., Poblete Cazenave, M., Kishimoto, P. N., Mastrucci, A., Satoh, Y., Palazzo, A., McPherson, M., Riahi, K., and Krey, V.: MESSAGEix-GLOBIOM nexus module: integrating water sector and climate impacts, Geosci. Model Dev., 17, 2447–2469, https://doi.org/10.5194/gmd-17-2447-2024, 2024.
Bataille, C., Nilsson, L., and Jotzo, F.: Industry in a net-zero emissions world: New mitigation pathways, new supply chains, modeling needs and policy implications, Energy and Climate Change, 2, 100059, https://doi.org/10.1016/j.egycc.2021.100059, 2021.
Beller, M.: Reference energy system methodology, United States, https://www.osti.gov/servlets/purl/7191575 (last access: 29 July 2024), 1976.
Bhaskar, A., Assadi, M., and Nikpey Somehsaraei, H.: Decarbonization of the Iron and Steel Industry with Direct Reduction of Iron Ore with Green Hydrogen, Energies, 13, 758, https://doi.org/10.3390/en13030758, 2020.
Cao, Z., Shen, L., Løvik, A. N., Müller, D. B., and Liu, G.: Elaborating the History of Our Cementing Societies: An in-Use Stock Perspective, Environ. Sci. Technol., 51, 11468–11475, https://doi.org/10.1021/acs.est.7b03077, 2017.
Creutzig, F., Niamir, L., Bai, X., Callaghan, M., Cullen, J., Díaz-José, J., Figueroa, M., Grubler, A., Lamb, W. F., Leip, A., Masanet, E., Mata, É., Mattauch, L., Minx, J. C., Mirasgedis, S., Mulugetta, Y., Nugroho, S. B., Pathak, M., Perkins, P., Roy, J., De La Rue Du Can, S., Saheb, Y., Some, S., Steg, L., Steinberger, J., and Ürge-Vorsatz, D.: Demand-side solutions to climate change mitigation consistent with high levels of well-being, Nat. Clim. Change, 12, 36–46, https://doi.org/10.1038/s41558-021-01219-y, 2022.
Deetman, S., Pauliuk, S., Van Vuuren, D. P., Van Der Voet, E., and Tukker, A.: Scenarios for Demand Growth of Metals in Electricity Generation Technologies, Cars, and Electronic Appliances, Environ. Sci. Technol., 52, 4950–4959, https://doi.org/10.1021/acs.est.7b05549, 2018.
Deetman, S., Marinova, S., Van Der Voet, E., Van Vuuren, D. P., Edelenbosch, O., and Heijungs, R.: Modeling global material stocks and flows for residential and service sector buildings towards 2050, J. Clean. Prod., 245, 118658, https://doi.org/10.1016/j.jclepro.2019.118658, 2020.
Deetman, S., Boer, H. S. de, van Engelenburg, M., van der Voet, E., and van Vuuren, D. P.: Projected material requirements for the global electricity infrastructure – generation, transmission, and storage, Resour. Conserv. Recy., 164, 105200, https://doi.org/10.1016/j.resconrec.2020.105200, 2021.
Dellink, R., Chateau, J., Lanzi, E., and Magné, B.: Long-term economic growth projections in the Shared Socioeconomic Pathways, Global Environ. Chang., 42, 200–214, 2017.
Després, J., Keramidas, K., Schmitz, A., Kitous, A., Schade, B., Diaz Vazquez, A., Mima, S., Russ, H., and Wiesenthal, T.: POLES-JRC model documentation. EUR 29454 EN, Publications Office of the European Union, Luxembourg, ISBN 978-92-79-97300-0, https://doi.org/10.2760/814959, 2018.
Dodds, P. E., Keppo, I., and Strachan, N.: Characterising the Evolution of Energy System Models Using Model Archaeology, Environ. Model. Asses., 20, 83–102, https://doi.org/10.1007/s10666-014-9417-3, 2015.
Eisenmenger, N., Pichler, M., Krenmayr, N., Noll, D., Plank, B., Schalmann, E., Wandl, M.-T., and Gingrich, S.: The Sustainable Development Goals prioritize economic growth over sustainable resource use: a critical reflection on the SDGs from a socio-ecological perspective, Sustain. Sci., 15, 1101–1110, https://doi.org/10.1007/s11625-020-00813-x, 2020.
European Commission: Reference Document on Best Available Techniques in the Cement and Lime Manufacturing Industries, https://eippcb.jrc.ec.europa.eu/sites/default/files/2020-03/superseded_clm_bref_1201.pdf (last access: 29 July 2024), 2001.
Eurostat (Statistical Office of the European Union): Economy-wide material flow accounts handbook: 2018 edition, Publications Office, LU, https://doi.org/10.2785/158567, 2018.
Fischer-Kowalski, M. and Hüttler, W.: Society's Metabolism: The Intellectual History of Materials Flow Analysis, Part II, 1970–1998, J. Ind. Ecol., 2, 107–136, https://doi.org/10.1162/jiec.1998.2.4.107, 1998.
Fragkos, P., Kouvaritakis, N., and Capros, P.: Incorporating Uncertainty into World Energy Modeling: the PROMETHEUS Model, Environ. Model. Assess., 20, 549–569, 2015.
Frank, S., Gusti, M., Havlík, P., Lauri, P., DiFulvio, F., Forsell, N., Hasegawa, T., Krisztin, T., Palazzo, A., and Valin, H.: Land-based climate change mitigation potentials within the agenda for sustainable development, Environ. Res. Lett., 16, 24006, https://doi.org/10.1088/1748-9326/abc58a, 2021.
Fricko, O., Havlik, P., Rogelj, J., Klimont, Z., Gusti, M., Johnson, N., Kolp, P., Strubegger, M., Valin, H., Amann, M., Ermolieva, T., Forsell, N., Herrero, M., Heyes, C., Kindermann, G., Krey, V., McCollum, D. L., Obersteiner, M., Pachauri, S., Rao, S., and Riahi, K.: The marker quantification of the Shared Socioeconomic Pathway 2: A middle-of-the-road scenario for the 21st century, Global Environ. Chang., 42, 251–267, https://doi.org/10.1016/j.gloenvcha.2016.06.004, 2017.
Fujihara, M. A., Goulart, L. C., and Moura, G.: Cultivated biomass for the pig iron industry in Brazil, in: Bioenergy – Realizing the Potential, edited by: Silveira, S., Ch. 14, Elsevier, Oxford, 189–200, https://doi.org/10.1016/B978-008044661-5/50015-5, 2005.
Gautam, M., Pandey, B., and Agrawal, M.: Chapter 8 – Carbon Footprint of Aluminum Production: Emissions and Mitigation, in: Environmental Carbon Footprints, edited by: Muthu, S. S., Butterworth-Heinemann, 197–228, https://doi.org/10.1016/B978-0-12-812849-7.00008-8, 2018.
Gerber, J.-F. and Scheidel, A.: In Search of Substantive Economics: Comparing Today's Two Major Socio-metabolic Approaches to the Economy – MEFA and MuSIASEM, Ecol. Econ., 144, 186–194, https://doi.org/10.1016/j.ecolecon.2017.08.012, 2018.
Geyer, R., Jambeck, J. R., and Law, K. L.: Production, use, and fate of all plastics ever made, Science Advances, 3, e1700782, https://doi.org/10.1126/sciadv.1700782, 2017.
Gidden, M. J., Brutschin, E., Ganti, G., Unlu, G., Zakeri, B., Fricko, O., Mitterrutzner, B., Lovat, F., and Riahi, K.: Fairness and feasibility in deep mitigation pathways with novel carbon dioxide removal considering institutional capacity to mitigate, Environ. Res. Lett., 18, 074006, https://doi.org/10.1088/1748-9326/acd8d5, 2023.
Graedel, T. E.: Material Flow Analysis from Origin to Evolution, Environ. Sci. Technol., 53, 12188–12196, https://doi.org/10.1021/acs.est.9b03413, 2019.
Guo, F., Van Ruijven, B. J., Zakeri, B., Zhang, S., Chen, X., Liu, C., Yang, F., Krey, V., Riahi, K., Huang, H., and Zhou, Y.: Implications of intercontinental renewable electricity trade for energy systems and emissions, Nat. Energy, 7, 1144–1156, https://doi.org/10.1038/s41560-022-01136-0, 2022.
Haberl, H., Wiedenhofer, D., Erb, K-H., Görg, C., and Krausmann, F.: The Material Stock–Flow–Service Nexus: A New Approach for Tackling the Decoupling Conundrum, Sustainability, 9, 1049, https://doi.org/10.3390/su9071049, 2017.
Havlík, P., Valin, H., Herrero, M., Obersteiner, M., Schmid, E., Rufino, M. C., Mosnier, A., Thornton, P. K., Böttcher, H., Conant, R. T., Frank, S., Fritz, S., Fuss, S., Kraxner, F., and Notenbaert, A.: Climate change mitigation through livestock system transitions, P. Natl. Acad. Sci. USA, 111, 3709–3714, https://doi.org/10.1073/pnas.1308044111, 2014.
Herbst, A., Toro, F., Reitze, F., and Jochem, E.: Introduction to Energy Systems Modeling, Swiss Journal of Economics and Statistics, 148, 111–135, https://doi.org/10.1007/BF03399363, 2012.
Hertwich, E. G., Ali, S., Ciacci, L., Fishman, T., Heeren, N., Masanet, E., Asghari, F. N., Olivetti, E., Pauliuk, S., Tu, Q., and Wolfram, P.: Material efficiency strategies to reducing greenhouse gas emissions associated with buildings, vehicles, and electronics – a review, Environ. Res. Lett., 14, 043004, https://doi.org/10.1088/1748-9326/ab0fe3, 2019.
Hertwich, E. G.: Increased carbon footprint of materials production driven by rise in investments, Nat. Geosci., 14, 151–155, https://doi.org/10.1038/s41561-021-00690-8, 2021.
Huppmann, D., Gidden, M., Fricko, O., Kolp, P., Orthofer, C., Pimmer, M., Kushin, N., Vinca, A., Mastrucci, A., Riahi, K., and Krey, V.: The MESSAGEix integrated assessment model and the ix modeling platform (ixmp): an open framework for integrated and cross-cutting analysis of energy, climate, the environment, and sustainable development, Environ. Modell. Softw., 112, 143–156, https://doi.org/10.1016/j.envsoft.2018.11.012, 2019.
IAI (International Aluminum Institute): Global Aluminum Cycle 2020, https://alucycle.international-aluminium.org/public-access/public-global-cycle/ (last access: 12 July 2023), 2020.
IEA: Energy Technology Transitions for Industry, https://www.iea.org/reports/energy-technology-transitions-for-industry (last access: 29 July 2024), 2009.
IEA: The Future of Petrochemicals, https://www.iea.org/reports/the-future-of-petrochemicals (last access: 29 July 2024), 2018.
IEA: Final energy demand of selected heavy industry sectors by fuel, https://www.iea.org/data-and-statistics/charts/final-energy-demand-of-selected-heavy-industry-sectors-by-fuel-2019 (last access: 12 July 2023), 2020a.
IEA: Industry direct CO2 emissions in the Sustainable Development Scenario, 2000–2030, https://www.iea.org/data-and-statistics/charts/industry-direct-co2-emissions-in-the-sustainable-development-scenario-2000-2030 (last access: September 2023), 2020b.
IEA: Iron and Steel Technology Roadmap, https://www.iea.org/reports/iron-and-steel-technology-roadmap (last access: 29 July 2024), 2020c.
IEA: Ammonia Technology Roadmap, IEA, Paris, https://www.iea.org/reports/ammonia-technology-roadmap (last access: 29 July 2024), 2021a.
IEA: World Energy Statistics and Balances, IEA [data set], https://doi.org/10.1787/data-00512-en, 2021b.
IEA: Tracking Aluminium, https://www.iea.org/energy-system/industry/aluminium (last access: 29 July 2024), 2023a.
IEA: Tracking Industry, https://www.iea.org/energy-system/industry (last access: 12 July 2023), 2023b.
IEA: Global thermal energy intensity of clinker production by fuel in the Net Zero Scenario, 2010–2030, https://www.iea.org/data-and-statistics/charts/global-thermal-energy-intensity-of-clinker-production-by-fuel-in-the-net-zero-scenario-2010-2030 (last access: 12 July 2023), 2023c.
IEA: ETP Clean Energy Technology Guide, https://www.iea.org/data-and-statistics/data-tools/etp-clean-energy-technology-guide (last access: 15 July 2024), 2023d.
IIASA-IBF: Global Biosphere Management Model (GLOBIOM) Documentation 2023, Version 1.0, https://pure.iiasa.ac.at/18996 (last access: 24 July 2024), 2023.
IPCC (Intergovernmental Panel On Climate Change): Emissions Trends and Drivers, in: Climate Change 2022 – Mitigation of Climate Change, Cambridge University Press, 215–294, https://doi.org/10.1017/9781009157926.004, 2023.
Kalt, G., Thunshirn, P., Wiedenhofer, D., Krausmann, F., Haas, W., and Haberl, H.: Material stocks in global electricity infrastructures – An empirical analysis of the power sector's stock-flow-service nexus, Resources, Conserv. Recycling, 173, 105723, https://doi.org/10.1016/j.resconrec.2021.105723, 2021.
Keramidas, K., Mima, S., and Bidaud, A.: Opportunities and roadblocks in the decarbonisation of the global steel sector: A demand and production modeling approach, Energy and Climate Change, 5, 100121, https://doi.org/10.1016/j.egycc.2023.100121, 2024.
Kermeli, K.: ADVANCE-WP2 Enhancing the representation of energy demand developments in IAM models – A modeling guide for the cement industry, http://www.fp7-advance.eu/?q=content/industrial-sector-cement-guideline (last access: 24 July 2024), 2016.
Krausmann, F., Wiedenhofer, D., Lauk, C., Haas, W., Tanikawa, H., Fishman, T., Miatto, A., Schandl, H., and Haberl, H.: Global socioeconomic material stocks rise 23-fold over the 20th century and require half of annual resource use, P. Natl. Acad. Sci. USA, 114, 1880–1885, https://doi.org/10.1073/pnas.1613773114, 2017.
Krausmann, F., Lauk, C., Haas, W., and Wiedenhofer, D.: From resource extraction to outflows of wastes and emissions: The socioeconomic metabolism of the global economy, 1900–2015, Global Environ. Chang., 52, 131–140, https://doi.org/10.1016/j.gloenvcha.2018.07.003, 2018.
Krey, V., Havlik, P., Kishimoto, P. N., Fricko, O., Zilliacus, J., Gidden, M., Strubegger, M., Kartasasmita, G., Ermolieva, T., Forsell, N., Gusti, M., Johnson, N., Kikstra, J., Kindermann, G., Kolp, P., Lovat, F., McCollum, D. L., Min, J., Pachauri, S., Parkinson, S. C., Rao, S., Rogelj, J., Ünlü, G., Valin, H., Wagner, P., Zakeri, B., Obersteiner, M., and Riahi, K.: MESSAGEix-GLOBIOM Documentation – 2020 release, https://doi.org/10.22022/IACC/03-2021.17115, 2020.
Lamb, W. F., Wiedmann, T., Pongratz, J., Andrew, R., Crippa, M., Olivier, J. G. J., Wiedenhofer, D., Mattioli, G., Khourdajie, A. A., House, J., Pachauri, S., Figueroa, M., Saheb, Y., Slade, R., Hubacek, K., Sun, L., Ribeiro, S. K., Khennas, S., De La Rue Du Can, S., Chapungu, L., Davis, S. J., Bashmakov, I., Dai, H., Dhakal, S., Tan, X., Geng, Y., Gu, B., and Minx, J.: A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018, Environ. Res. Lett., 16, 073005, https://doi.org/10.1088/1748-9326/abee4e, 2021.
Lanau, M., Liu, G., Kral, U., Wiedenhofer, D., Keijzer, E., Yu, C., and Ehlert, C.: Taking Stock of Built Environment Stock Studies: Progress and Prospects, Environ. Sci. Technol., 53, 8499–8515, https://doi.org/10.1021/acs.est.8b06652, 2019.
Levi, P. G. and Cullen, J. M.: Mapping Global Flows of Chemicals: From Fossil Fuel Feedstocks to Chemical Products, Envir. Sci. Tech., 52, 1725–1734, https://doi.org/10.1021/acs.est.7b04573, 2018.
Liu, G., and Müller, D. B.: Centennial evolution of aluminum in-use stocks on our aluminized planet, Envir. Sci. Tech., 47, 4882–4888, https://doi.org/10.1021/es305108p, 2013.
Lopez, G., Keiner, D., Fasihi, M., Koiranen, T., and Breyer, C.: From fossil to green chemicals: sustainable pathways and new carbon feedstocks for the global chemical industry, Energ. Environ. Sci., 16, 2879–2909, 2023.
Mastrucci, A., van Ruijven, B., Byers, E., Poblete-Cazenave, M., and Pachauri, S.: Global scenarios of residential heating and cooling energy demand and CO2 emissions, Climatic Change, 168, 14, https://doi.org/10.1007/s10584-021-03229-3, 2021.
Messner, S. and Strubegger, M.: User's Guide for MESSAGE III, http://pure.iiasa.ac.at/id/eprint/4527/1/WP-95-069.pdf (last access: 20 June 2024), 1995.
Methanol Institute: Global Methanol Supply and Demand Balance, https://www.methanol.org/methanol-price-supply-demand/ (last access: 20 December 2023), 2022.
MIDREX: MIDREX NG™ with H2 Addition: Moving from natural gas to hydrogen in decarbonizing ironmaking, https://www.midrex.com/tech-article/moving-from-natural-gas-to-hydrogen-in-decarbonizing-ironmaking/ (last access: 10 July 2024), 2022.
Mission Possible Partnership: Making Net-Zero Steel Possible, https://missionpossiblepartnership.org/wp-content/uploads/2022 (last access: 10 July 2024), 2022.
Müller, A., Harpprecht, C., Sacchi, R., Maes, B., Van Sluisveld, M., Daioglou, V., Šavija, B., and Steubing, B.: Decarbonizing the cement industry: Findings from coupling prospective life cycle assessment of clinker with integrated assessment model scenarios, J. Clean. Prod., 450, 141884, https://doi.org/10.1016/j.jclepro.2024.141884, 2024.
Nakamura, S., Kondo, Y., Kagawa, S., Matsubae, K., Nakajima, K., and Nagasaka, T.: MaTrace: Tracing the Fate of Materials over Time and Across Products in Open-Loop Recycling, Environ. Sci. Technol., 48, 7207–7214, https://doi.org/10.1021/es500820h, 2014.
Neelis, M. L., Patel, M., Gielen, D. J., and Blok, K.: Modeling CO2 emissions from non-energy use with the non-energy use emission accounting tables (NEAT) model, Resour., Conserv. Recy., 45, 226–250, https://doi.org/10.1016/J.RESCONREC.2005.05.003, 2005.
OEC (Observatory of Economic Complexity): Iron and Steel, https://oec.world/en/profile/hs/iron-steel (last access: July 2023), 2022.
Orthofer, C., Huppmann, D., and Krey, V.: South Africa's shale gas resources – chance or challenge?, Frontiers in Energy Research, 7, 20, https://doi.org/10.3389/fenrg.2019.00020, 2019.
Pauliuk, S. and Hertwich, E. G.: Socioeconomic metabolism as paradigm for studying the biophysical basis of human societies, Ecol. Econ., 119, 83–93, https://doi.org/10.1016/j.ecolecon.2015.08.012, 2015.
Pauliuk, S., Wang, T., and Müller, D. B.: Steel all over the world: Estimating in-use stocks of iron for 200 countries, Resources, Conserv. Recycling, 71, 22–30, https://doi.org/10.1016/j.resconrec.2012.11.008, 2013.
Pauliuk, S., Arvesen, A., Stadler, K., and Hertwich, E. G.: Industrial ecology in integrated assessment models, Nat. Clim. Change, 7, 13–20, https://doi.org/10.1038/nclimate3148, 2017.
Plank, B., Streeck, J., Virág, D., Krausmann, F., Haberl, H., and Wiedenhofer, D.: From resource extraction to manufacturing and construction: flows of stock-building materials in 177 countries from 1900 to 2016, Resources, Conserv. Recycling, 179, 106122, https://doi.org/10.1016/j.resconrec.2021.106122, 2022.
Rao, N. D. and Min, J.: Decent Living Standards: Material Prerequisites for Human Wellbeing, Soc. Indic. Res., 138, 225–244, https://doi.org/10.1007/s11205-017-1650-0, 2018.
Riahi, K., Bertram, C., Huppmann, D., Rogelj, J., Bosetti, V., Cabardos, A.-M., Deppermann, A., Drouet, L., Frank, S., Fricko, O., Fujimori, S., Harmsen, M., Hasegawa, T., Krey, V., Luderer, G., Paroussos, L., Schaeffer, R., Weitzel, M., van der Zwaan, B., Vrontisi, Z., Longa, F. D., Després, J., Fosse, F., Fragkiadakis, K., Gusti, M., Humpenöder, F., Keramidas, K., Kishimoto, P., Kriegler, E., Meinshausen, M., Nogueira, L. P., Oshiro, K., Popp, A., Rochedo, P. R. R., Ünlü, G., van Ruijven, B., Takakura, J., Tavoni, M., van Vuuren, D., and Zakeri, B.: Cost and attainability of meeting stringent climate targets without overshoot, Nat. Clim. Change, 11, 1063–1069, https://doi.org/10.1038/s41558-021-01215-2, 2021.
Rochedo, P.: Development of a global integrated energy model to evaluate the Brazilian role in climate change mitigation scenarios, DS Thesis, Universidade Federal do Rio de Janeiro, Brazil, 2016.
Scrivener, K. L., John, V. M., and Gartner, E. M.: Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry, Cement Concrete Res., 114, 2–26, https://doi.org/10.1016/j.cemconres.2018.03.015, 2018.
Stegmann, P., Daioglou, V., Londo, M., van Vuuren, D. P., and Junginger, M.: Plastic futures and their CO2 emissions, Nature, 612, 272–276, https://doi.org/10.1038/s41586-022-05422-5, 2022.
Stern, D. I.: The role of energy in economic growth, Ecol. Econ. Reviews, 1219, 26–51, https://doi.org/10.1111/j.1749-6632.2010.05921.x, 2011.
Streeck, J.: Triangulation of stock-flow indicators of material cycles from MESSAGEix and industrial ecology, YSSP Report, IIASA, Energy Climate and Environment Programme, Laxenburg, Austria, https://pure.iiasa.ac.at/18280 (last access: 29 July 2024), 2022.
Sugiyama, M., Wilson, C., Wiedenhofer, D., Boza-Kiss, B., Cao, T., Chatterjee, J. S., Chatterjee, S., Hara, T., Hayashi, A., Ju, Y., Krey, V., Godoy León, M. F., Martinez, L., Masanet, E., Mastrucci, A., Min, J., Niamir, L., Pelz, S., Roy, J., Saheb, Y., Schaeffer, R., Ürge-Vorsatz, D., van Ruijven, B., Shimoda, Y., Verdolini, E., Wiese, F., Yamaguchi, Y., Zell-Ziegler, C., and Zimm, C.: High with low: Harnessing the power of demand-side solutions for high wellbeing with low energy and material demand, Joule, 8, 1–6, https://doi.org/10.1016/j.joule.2023.12.014, 2024.
UNEP (United Nations Environment Programme): The use of natural resources in the economy: a global manual on economy wide material flow accounting, https://wedocs.unep.org/20.500.11822/36253 (last access: 12 July 2024), 2023.
UNEP (United Nations Environment Programme) and IRP (International Resource Panel): Global Material Flows Database, UNEP (United Nations Environment Programme) and IRP (International Resource Panel): Global Material Flows Database [data set], https://www.resourcepanel.org/global-material-flows-database (last access: 29 July 2024), 2023.
Ünlü, G., Maczek, F., Min, J., Frank, S., Fridolin, G., Kishimoto, P. N., Streeck, J., Eisenmenger, N., Wiedenhofer, D., and Krey, V.: MESSAGEix-Materials (1.1.0), Zenodo [code and data set], https://doi.org/10.5281/zenodo.13121819, 2024.
van Ruijven, B. J., van Vuuren, D. P., Boskaljon, W., Neelis, M. L., Saygin, D., and Patel, M. K.: Long-term model-based projections of energy use and CO2 emissions from the global steel and cement industries, Resources, Conserv. Recycling, 112, 15–36, https://doi.org/10.1016/j.resconrec.2016.04.016, 2016.
van Sluisveld, M. A. E., de Boer, H. S., Daioglou, V., Hof, A. F., and van Vuuren, D. P.: A race to zero – Assessing the position of heavy industry in a global net-zero CO2 emissions context, Energy and Climate Change, 2, 100051, https://doi.org/10.1016/j.egycc.2021.100051, 2021.
Vélez-Henao, J. A. and Pauliuk, S.: Material Requirements of Decent Living Standards, Environ. Sci. Technol., 57, 14206–14217, https://doi.org/10.1021/acs.est.3c03957, 2023.
Viebahn, P., Nitsch, J., Fischedick, M., Esken, A., Schüwer, D., Supersberger, N., Zuberbühler, U., and Edenhofer, O.: Comparison of carbon capture and storage with renewable energy technologies regarding structural, economic, and ecological aspects in Germany, Int. J. Greenh. Gas Con., 1, 121–133, https://doi.org/10.1016/S1750-5836(07)00024-2, 2007.
Virág, D., Wiedenhofer, D., Baumgart, A., Matej, S., Krausmann, F., Min, J., Rao, N. D., and Haberl, H.: How much infrastructure is required to support decent mobility for all? An exploratory assessment, Ecol. Econ., 200, 107511, https://doi.org/10.1016/j.ecolecon.2022.107511, 2022.
Watari, T., Cao, Z., Hata, S., and Nansai, K.: Efficient use of cement and concrete to reduce reliance on supply-side technologies for net-zero emissions, Nat. Commun., 13, 4158, https://doi.org/10.1038/s41467-022-31806-2, 2022.
Wiedenhofer, D., Fishman, T., Lauk, C., Haas, W., and Krausmann, F.: Integrating Material Stock Dynamics Into Economy-Wide Material Flow Accounting: Concepts, Modeling, and Global Application for 1900–2050, Ecol. Econ., 156, 121–133, https://doi.org/10.1016/j.ecolecon.2018.09.010, 2019.
Wiedenhofer, D., Streeck, J., Wiese, F., Verdolini, E., Mastrucci, A., Ju, Y., Boza-kiss, B., Min, J., Norman, J., Wieland, H., Bento, N., Fernanda, M., León, G., Magalar, L., Mayer, A., Gingrich, S., Hayashi, A., Jupesta, J., Ünlü, G., Niamir, L., Cao, T., Zanon-zotin, M., Plank, B., Vélez-henao, J., Masanet, E., and Krey, V.: Industry Transformations for High Service Provisioning with Lower Energy and Material Demand: A Review of Models and Scenarios, 249–279, 2024a.
Wiedenhofer, D., Streeck, J., Wieland, H., Grammer, B., Baumgart, A., Plank, B., Helbig, C., Pauliuk, S., Haberl, H., and Krausmann, F.: From Extraction to End-uses and Waste Management: Modelling Economy-wide Material Cycles and Stock Dynamics Around the World, J. Ind. Ecol., 1–17, https://doi.org/10.2139/ssrn.4794611, 2024b.
World Steel Association: World Steel in Figures, https://www.worldsteel.org/steel-by-topic/statistics/World-Steel-in-Figures.html (last access: 26 January 2021), 2020.
Worrell, E., Allwood, J., and Gutowski, T.: The Role of Material Efficiency in Environmental Stewardship, Annu. Rev. Environ. Resour., 41, 575–598, https://doi.org/10.1146/annurev-environ-110615-085737, 2016.
Yara: Fertilizer Industry Handbook, https://www.yara.com/siteassets/investors/057-reports-and-presentations/other/2018/fertilizer-industry-handbook-2018.pdf/ (last access: 12 July 2024), 2018.
Zhou, W., McCollum, D. L., Fricko, O., Gidden, M., Huppmann, D., Krey, V., and Riahi, K.: A comparison of low carbon investment needs between China and Europe in stringent climate policy scenarios, Environ. Res. Lett., 14, 054017, https://doi.org/10.1088/1748-9326/ab0dd8, 2019.
Short summary
Extraction and processing of raw materials constitute a significant source of CO2 emissions in industry and so are contributors to climate change. We develop an open-source tool to assess different industry decarbonization pathways in integrated assessment models (IAMs) with a representation of material flows and stocks. We highlight the importance of expanding the scope of climate change mitigation options to include circular-economy and material efficiency measures in IAM scenario analysis.
Extraction and processing of raw materials constitute a significant source of CO2 emissions in...