Articles | Volume 17, issue 16
https://doi.org/10.5194/gmd-17-6105-2024
https://doi.org/10.5194/gmd-17-6105-2024
Development and technical paper
 | 
16 Aug 2024
Development and technical paper |  | 16 Aug 2024

Modelling chemical advection during magma ascent

Hugo Dominguez, Nicolas Riel, and Pierre Lanari

Related authors

An unconstrained formulation for complex solution phase minimization
Nicolas Riel, Boris J. P. Kaus, Albert de Montserrat, Evangelos Moulas, Eleanor C. R. Green, and Hugo Dominguez
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-197,https://doi.org/10.5194/gmd-2024-197, 2024
Preprint under review for GMD
Short summary

Related subject area

Numerical methods
The Measurement Error Proxy System Model: MEPSM v0.2
Matt J. Fischer
Geosci. Model Dev., 17, 6745–6760, https://doi.org/10.5194/gmd-17-6745-2024,https://doi.org/10.5194/gmd-17-6745-2024, 2024
Short summary
Numerical stabilization methods for level-set-based ice front migration
Gong Cheng, Mathieu Morlighem, and G. Hilmar Gudmundsson
Geosci. Model Dev., 17, 6227–6247, https://doi.org/10.5194/gmd-17-6227-2024,https://doi.org/10.5194/gmd-17-6227-2024, 2024
Short summary
Consistent point data assimilation in Firedrake and Icepack
Reuben W. Nixon-Hill, Daniel Shapero, Colin J. Cotter, and David A. Ham
Geosci. Model Dev., 17, 5369–5386, https://doi.org/10.5194/gmd-17-5369-2024,https://doi.org/10.5194/gmd-17-5369-2024, 2024
Short summary
A Joint Reconstruction and Model Selection Approach for Large Scale Inverse Modeling
Malena Sabaté Landman, Julianne Chung, Jiahua Jiang, Scot Miller, and Arvind Saibaba
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-90,https://doi.org/10.5194/gmd-2024-90, 2024
Revised manuscript accepted for GMD
Short summary
A computationally efficient parameterization of aerosol, cloud and precipitation pH for application at global and regional scale (EQSAM4Clim-v12)
Swen Metzger, Samuel Rémy, Jason E. Williams, Vincent Huijnen, and Johannes Flemming
Geosci. Model Dev., 17, 5009–5021, https://doi.org/10.5194/gmd-17-5009-2024,https://doi.org/10.5194/gmd-17-5009-2024, 2024
Short summary

Cited articles

Aharonov, E., Whitehead, J. A., Kelemen, P. B., and Spiegelman, M.: Channeling Instability of Upwelling Melt in the Mantle, J. Geophys. Res.-Sol. Ea., 100, 20433–20450, https://doi.org/10.1029/95JB01307, 1995a. a
Aharonov, E., Whitehead, J. A., Kelemen, P. B., and Spiegelman, M.: Channeling Instability of Upwelling Melt in the Mantle, J. Geophys. Res.-Sol. Ea., 100, 20433–20450, https://doi.org/10.1029/95JB01307, 1995b. a
Aharonov, E., Spiegelman, M., and Kelemen, P.: Three-Dimensional Flow and Reaction in Porous Media: Implications for the Earth's Mantle and Sedimentary Basins, J. Geophys. Res.-Sol. Ea., 102, 14821–14833, https://doi.org/10.1029/97JB00996, 1997. a, b
Aitchison, J.: The Statistical Analysis of Compositional Data, J. Roy. Stat. Soc. B, 44, 139–160, https://doi.org/10.1111/j.2517-6161.1982.tb01195.x, 1982. a
Bank, R., Coughran, W., Fichtner, W., Grosse, E., Rose, D., and Smith, R.: Transient Simulation of Silicon Devices and Circuits, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 4, 436–451, https://doi.org/10.1109/TCAD.1985.1270142, 1985. a
Download
Short summary
Predicting the behaviour of magmatic systems is important for understanding Earth's matter and heat transport. Numerical modelling is a technique that can predict complex systems at different scales of space and time by solving equations using various techniques. This study tests four algorithms to find the best way to transport the melt composition. The "weighted essentially non-oscillatory" algorithm emerges as the best choice, minimising errors and preserving system mass well.