Articles | Volume 17, issue 14
https://doi.org/10.5194/gmd-17-5587-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-17-5587-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
GCAM–GLORY v1.0: representing global reservoir water storage in a multi-sector human–Earth system model
Pacific Northwest National Laboratory, Richland, WA 99354, USA
Thomas B. Wild
Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park, MD 20740, USA
Neal T. Graham
Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park, MD 20740, USA
Son H. Kim
Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park, MD 20740, USA
Matthew Binsted
Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park, MD 20740, USA
A. F. M. Kamal Chowdhury
Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20740, USA
Siwa Msangi
Economic Research Service, U.S. Department of Agriculture, Washington, DC 20250, USA
Pralit L. Patel
Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park, MD 20740, USA
Chris R. Vernon
Pacific Northwest National Laboratory, Richland, WA 99354, USA
Hassan Niazi
Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park, MD 20740, USA
Hong-Yi Li
Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77204, USA
Guta W. Abeshu
Pacific Northwest National Laboratory, Richland, WA 99354, USA
Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77204, USA
Related authors
Guta Wakbulcho Abeshu, Fuqiang Tian, Thomas Wild, Mengqi Zhao, Sean Turner, A. F. M. Kamal Chowdhury, Chris R. Vernon, Hongchang Hu, Yuan Zhuang, Mohamad Hejazi, and Hong-Yi Li
Geosci. Model Dev., 16, 5449–5472, https://doi.org/10.5194/gmd-16-5449-2023, https://doi.org/10.5194/gmd-16-5449-2023, 2023
Short summary
Short summary
Most existing global hydrologic models do not explicitly represent hydropower reservoirs. We are introducing a new water management module to Xanthos that distinguishes between the operational characteristics of irrigation, hydropower, and flood control reservoirs. We show that this explicit representation of hydropower reservoirs can lead to a significantly more realistic simulation of reservoir storage and releases in over 44 % of the hydropower reservoirs included in this study.
Dongyu Feng, Zeli Tan, Darren Engwirda, Jonathan D. Wolfe, Donghui Xu, Chang Liao, Gautam Bisht, James J. Benedict, Tian Zhou, Mithun Deb, Hong-Yi Li, and L. Ruby Leung
Nat. Hazards Earth Syst. Sci., 25, 3619–3639, https://doi.org/10.5194/nhess-25-3619-2025, https://doi.org/10.5194/nhess-25-3619-2025, 2025
Short summary
Short summary
Our study explores how riverine and coastal flooding during hurricanes is influenced by the interaction of atmosphere, land, river, and ocean conditions. Using an advanced Earth system model, we simulate Hurricane Irene to evaluate how meteorological and hydrological uncertainties affect flood modeling. Our findings reveal the importance of a multi-component modeling system, how hydrological conditions play critical roles in flood modeling, and greater flood risks if multiple factors are present.
Lingbo Li, Hong-Yi Li, Guta Abeshu, Jinyun Tang, L. Ruby Leung, Chang Liao, Zeli Tan, Hanqin Tian, Peter Thornton, and Xiaojuan Yang
Earth Syst. Sci. Data, 17, 2713–2733, https://doi.org/10.5194/essd-17-2713-2025, https://doi.org/10.5194/essd-17-2713-2025, 2025
Short summary
Short summary
We have developed new maps that reveal how organic carbon from soil leaches into headwater streams over the contiguous United States. We use advanced artificial intelligence techniques and a massive amount of data, including observations at over 2500 gauges and a wealth of climate and environmental information. The maps are a critical step in understanding and predicting how carbon moves through our environment, hence making them a useful tool for tackling climate challenges.
Guta Wakbulcho Abeshu, Hong-Yi Li, Mingjie Shi, and L. Ruby Leung
Hydrol. Earth Syst. Sci., 29, 1847–1864, https://doi.org/10.5194/hess-29-1847-2025, https://doi.org/10.5194/hess-29-1847-2025, 2025
Short summary
Short summary
This study examined how water availability, climate dryness, and plant productivity interact at the catchment scale. Using various indices and statistical methods, we found a 0–2-month lag in these interactions. Strong correlations during peak-productivity months were observed, with a notable hysteresis effect in vegetation response to changes in water availability and climate dryness. The findings help better understand catchment responses to climate variability.
Hassan Niazi, Stephen B. Ferencz, Neal T. Graham, Jim Yoon, Thomas B. Wild, Mohamad Hejazi, David J. Watson, and Chris R. Vernon
Geosci. Model Dev., 18, 1737–1767, https://doi.org/10.5194/gmd-18-1737-2025, https://doi.org/10.5194/gmd-18-1737-2025, 2025
Short summary
Short summary
Superwell is a physics-based hydro-economic model that estimates the production costs and availability of groundwater worldwide. It calculates how much groundwater can be extracted and at what cost, using detailed maps and data of the Earth's properties. Through these estimates, and by using them with other models, Superwell facilitates exploration of coupled human–environmental system challenges, such as future water supply sustainability or multi-sectoral energy–water–land feedbacks.
Donghui Xu, Gautam Bisht, Zeli Tan, Chang Liao, Tian Zhou, Hong-Yi Li, and L. Ruby Leung
Geosci. Model Dev., 17, 1197–1215, https://doi.org/10.5194/gmd-17-1197-2024, https://doi.org/10.5194/gmd-17-1197-2024, 2024
Short summary
Short summary
We aim to disentangle the hydrological and hydraulic controls on streamflow variability in a fully coupled earth system model. We found that calibrating only one process (i.e., traditional calibration procedure) will result in unrealistic parameter values and poor performance of the water cycle, while the simulated streamflow is improved. To address this issue, we further proposed a two-step calibration procedure to reconcile the impacts from hydrological and hydraulic processes on streamflow.
Guta Wakbulcho Abeshu, Fuqiang Tian, Thomas Wild, Mengqi Zhao, Sean Turner, A. F. M. Kamal Chowdhury, Chris R. Vernon, Hongchang Hu, Yuan Zhuang, Mohamad Hejazi, and Hong-Yi Li
Geosci. Model Dev., 16, 5449–5472, https://doi.org/10.5194/gmd-16-5449-2023, https://doi.org/10.5194/gmd-16-5449-2023, 2023
Short summary
Short summary
Most existing global hydrologic models do not explicitly represent hydropower reservoirs. We are introducing a new water management module to Xanthos that distinguishes between the operational characteristics of irrigation, hydropower, and flood control reservoirs. We show that this explicit representation of hydropower reservoirs can lead to a significantly more realistic simulation of reservoir storage and releases in over 44 % of the hydropower reservoirs included in this study.
Qi Tang, Jean-Christophe Golaz, Luke P. Van Roekel, Mark A. Taylor, Wuyin Lin, Benjamin R. Hillman, Paul A. Ullrich, Andrew M. Bradley, Oksana Guba, Jonathan D. Wolfe, Tian Zhou, Kai Zhang, Xue Zheng, Yunyan Zhang, Meng Zhang, Mingxuan Wu, Hailong Wang, Cheng Tao, Balwinder Singh, Alan M. Rhoades, Yi Qin, Hong-Yi Li, Yan Feng, Yuying Zhang, Chengzhu Zhang, Charles S. Zender, Shaocheng Xie, Erika L. Roesler, Andrew F. Roberts, Azamat Mametjanov, Mathew E. Maltrud, Noel D. Keen, Robert L. Jacob, Christiane Jablonowski, Owen K. Hughes, Ryan M. Forsyth, Alan V. Di Vittorio, Peter M. Caldwell, Gautam Bisht, Renata B. McCoy, L. Ruby Leung, and David C. Bader
Geosci. Model Dev., 16, 3953–3995, https://doi.org/10.5194/gmd-16-3953-2023, https://doi.org/10.5194/gmd-16-3953-2023, 2023
Short summary
Short summary
High-resolution simulations are superior to low-resolution ones in capturing regional climate changes and climate extremes. However, uniformly reducing the grid size of a global Earth system model is too computationally expensive. We provide an overview of the fully coupled regionally refined model (RRM) of E3SMv2 and document a first-of-its-kind set of climate production simulations using RRM at an economic cost. The key to this success is our innovative hybrid time step method.
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Short summary
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e. two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
Dongyu Feng, Zeli Tan, Darren Engwirda, Chang Liao, Donghui Xu, Gautam Bisht, Tian Zhou, Hong-Yi Li, and L. Ruby Leung
Hydrol. Earth Syst. Sci., 26, 5473–5491, https://doi.org/10.5194/hess-26-5473-2022, https://doi.org/10.5194/hess-26-5473-2022, 2022
Short summary
Short summary
Sea level rise, storm surge and river discharge can cause coastal backwater effects in downstream sections of rivers, creating critical flood risks. This study simulates the backwater effects using a large-scale river model on a coastal-refined computational mesh. By decomposing the backwater drivers, we revealed their relative importance and long-term variations. Our analysis highlights the increasing strength of backwater effects due to sea level rise and more frequent storm surge.
Taher Chegini and Hong-Yi Li
Hydrol. Earth Syst. Sci., 26, 4279–4300, https://doi.org/10.5194/hess-26-4279-2022, https://doi.org/10.5194/hess-26-4279-2022, 2022
Short summary
Short summary
Belowground urban stormwater networks (BUSNs) play a critical and irreplaceable role in preventing or mitigating urban floods. However, they are often not available for urban flood modeling at regional or larger scales. We develop a novel algorithm to estimate existing BUSNs using ubiquitously available aboveground data at large scales based on graph theory. The algorithm has been validated in different urban areas; thus, it is well transferable.
Matthew Binsted, Gokul Iyer, Pralit Patel, Neal T. Graham, Yang Ou, Zarrar Khan, Nazar Kholod, Kanishka Narayan, Mohamad Hejazi, Son Kim, Katherine Calvin, and Marshall Wise
Geosci. Model Dev., 15, 2533–2559, https://doi.org/10.5194/gmd-15-2533-2022, https://doi.org/10.5194/gmd-15-2533-2022, 2022
Short summary
Short summary
GCAM-USA v5.3_water_dispatch is an open-source model that represents key interactions across economic, energy, water, and land systems in a global framework, with subnational detail in the United States. GCAM-USA can be used to explore future changes in demand for (and production of) energy, water, and crops at the state and regional level in the US. This paper describes GCAM-USA and provides four illustrative scenarios to demonstrate the model's capabilities and potential applications.
Guta Wakbulcho Abeshu, Hong-Yi Li, Zhenduo Zhu, Zeli Tan, and L. Ruby Leung
Earth Syst. Sci. Data, 14, 929–942, https://doi.org/10.5194/essd-14-929-2022, https://doi.org/10.5194/essd-14-929-2022, 2022
Short summary
Short summary
Existing riverbed sediment particle size data are sparsely available at individual sites. We develop a continuous map of median riverbed sediment particle size over the contiguous US corresponding to millions of river segments based on the existing observations and machine learning methods. This map is useful for research in large-scale river sediment using model- and data-driven approaches, teaching environmental and earth system sciences, planning and managing floodplain zones, etc.
Hong-Yi Li, Zeli Tan, Hongbo Ma, Zhenduo Zhu, Guta Wakbulcho Abeshu, Senlin Zhu, Sagy Cohen, Tian Zhou, Donghui Xu, and L. Ruby Leung
Hydrol. Earth Syst. Sci., 26, 665–688, https://doi.org/10.5194/hess-26-665-2022, https://doi.org/10.5194/hess-26-665-2022, 2022
Short summary
Short summary
We introduce a new multi-process river sediment module for Earth system models. Application and validation over the contiguous US indicate a satisfactory model performance over large river systems, including those heavily regulated by reservoirs. This new sediment module enables future modeling of the transportation and transformation of carbon and nutrients carried by the fine sediment along the river–ocean continuum to close the global carbon and nutrient cycles.
Cited articles
Abbott, B. W., Bishop, K., Zarnetske, J. P., Hannah, D. M., Frei, R. J., Minaudo, C., Chapin III, F. S., Krause, S., Conner, L., Ellison, D., Godsey, S. E., Plont, S., Marçais, J., Kolbe, T., Huebner, A., Hampton, T., Gu, S., Buhman, M., Sayedi, S. S., Ursache, O., Chapin, M., Henderson, K. D., and Pinay, G.: A water cycle for the Anthropocene, Hydrol. Process., 33, 3046–3052, https://doi.org/10.1002/hyp.13544, 2019.
Abeshu, G. W., Tian, F., Wild, T., Zhao, M., Turner, S., Chowdhury, A. F. M. K., Vernon, C. R., Hu, H., Zhuang, Y., Hejazi, M., and Li, H.-Y.: Enhancing the representation of water management in global hydrological models, Geosci. Model Dev., 16, 5449–5472, https://doi.org/10.5194/gmd-16-5449-2023, 2023.
Bell, A., Zhu, T., Xie, H., and Ringler, C.: Climate–water interactions – Challenges for improved representation in integrated assessment models, Energy Econom., 46, 510–521, https://doi.org/10.1016/j.eneco.2013.12.016, 2014.
Biemans, H., Haddeland, I., Kabat, P., Ludwig, F., Hutjes, R. W. A., Heinke, J., von Bloh, W., and Gerten, D.: Impact of reservoirs on river discharge and irrigation water supply during the 20th century, Water Resour. Res., 47, W03509, https://doi.org/10.1029/2009WR008929, 2011.
Birnbaum, A., Lamontagne, J., Wild, T., Dolan, F., and Yarlagadda, B.: Drivers of Future Physical Water Scarcity and Its Economic Impacts in Latin America and the Caribbean, Earth's Future, 10, e2022EF002764, https://doi.org/10.1029/2022EF002764, 2022.
Bond-Lamberty, B., Dorheim, K., Cui, R., Horowitz, R., Snyder, A., Calvin, K., Feng, L., Hoesly, R., Horing, J., Kyle, G. P., Link, R., Patel, P., Roney, C., Staniszewski, A., Turner, S., Chen, M., Feijoo, F., Hartin, C., Hejazi, M., Iyer, G., Kim, S., Liu, Y., Lynch, C., McJeon, H., Smith, S., Waldhoff, S., Wise, M., and Clarke, L.: gcamdata: An R Package for Preparation, Synthesis, and Tracking of Input Data for the GCAM Integrated Human-Earth Systems Model, J. Open Res. Softw., 7, 6, https://doi.org/10.5334/jors.232, 2019.
Bruinsma J.: The resource outlook to 2050: by how much do land, water, and crop yields need to increase by 2050? FAO Expert Meeting on How to Feed the World in 2050, Food and Agriculture Organization of the United Nations, Rome, Italy, 2009.
Calvin, K. and Bond-Lamberty, B.: Integrated human-earth system modeling – state of the science and future directions, Environ. Res. Lett., 13, 063006, https://doi.org/10.1088/1748-9326/aac642, 2011.
Calvin, K., Patel, P., Clarke, L., Asrar, G., Bond-Lamberty, B., Cui, R. Y., Di Vittorio, A., Dorheim, K., Edmonds, J., Hartin, C., Hejazi, M., Horowitz, R., Iyer, G., Kyle, P., Kim, S., Link, R., McJeon, H., Smith, S. J., Snyder, A., Waldhoff, S., and Wise, M.: GCAM v5.1: representing the linkages between energy, water, land, climate, and economic systems, Geosci. Model Dev., 12, 677–698, https://doi.org/10.5194/gmd-12-677-2019, 2019.
Chaturvedi, V., Hejazi, M., Edmonds, J., Clarke, L., Kyle, P., Davies, E., and Wise, M.: Climate mitigation policy implications for global irrigation water demand, Mitig Adapt Strateg Glob Change, 20, 389–407, https://doi.org/10.1007/s11027-013-9497-4, 2015.
Chen, M., Vernon, C. R., Huang, M., Calvin, K. V., and Kraucunas, I. P.: Calibration and analysis of the uncertainty in downscaling global land use and land cover projections from GCAM using Demeter (v1.0.0), Geosci. Model Dev., 12, 1753–1764, https://doi.org/10.5194/gmd-12-1753-2019, 2019.
Cui, R. Y., Calvin, K., Clarke, L., Hejazi, M., Kim, S., Kyle, P., Patel, P., Turner, S., and Wise, M.: Regional responses to future, demand-driven water scarcity, Environ. Res. Lett., 13, 094006, https://doi.org/10.1088/1748-9326/aad8f7, 2018.
Dolan, F., Lamontagne, J., Link, R., Hejazi, M., Reed, P., and Edmonds, J.: Evaluating the economic impact of water scarcity in a changing world, Nat. Commun., 12, 1915, https://doi.org/10.1038/s41467-021-22194-0, 2021.
Döll, P., Müller Schmied, H., Schuh, C., Portmann, F. T., and Eicker, A.: Global-scale assessment of groundwater depletion and related groundwater abstractions: Combining hydrological modeling with information from well observations and GRACE satellites, Water Resour. Res., 50, 5698–5720, https://doi.org/10.1002/2014WR015595, 2014.
Edmonds, J. and Reilly, J. M.: Global energy: assessing the future, Oxford University Press, New York, ISBN 9780195035223, 1985.
Edmonds, J. and Reilly, J.: A long-term global energy- economic model of carbon dioxide release from fossil fuel use, Energy Econom., 5, 74–88, https://doi.org/10.1016/0140-9883(83)90014-2, 1983.
Edmonds, J., Wise, M., Pitcher, H., Richels, R., Wigley, T., and Maccracken, C.: An integrated assessment of climate change and the accelerated introduction of advanced energy technologies-an application of MiniCAM 1.0, Mitigation and adaptation strategies for global change, 1, 311–339, 1997.
Fisher-Vanden, K. and Weyant, J.: The Evolution of Integrated Assessment: Developing the Next Generation of Use-Inspired Integrated Assessment Tools, Annu. Rev. Resour. Econom., 12, 471–487, https://doi.org/10.1146/annurev-resource-110119-030314, 2020.
Frieler, K., Lange, S., Piontek, F., Reyer, C. P. O., Schewe, J., Warszawski, L., Zhao, F., Chini, L., Denvil, S., Emanuel, K., Geiger, T., Halladay, K., Hurtt, G., Mengel, M., Murakami, D., Ostberg, S., Popp, A., Riva, R., Stevanovic, M., Suzuki, T., Volkholz, J., Burke, E., Ciais, P., Ebi, K., Eddy, T. D., Elliott, J., Galbraith, E., Gosling, S. N., Hattermann, F., Hickler, T., Hinkel, J., Hof, C., Huber, V., Jägermeyr, J., Krysanova, V., Marcé, R., Müller Schmied, H., Mouratiadou, I., Pierson, D., Tittensor, D. P., Vautard, R., van Vliet, M., Biber, M. F., Betts, R. A., Bodirsky, B. L., Deryng, D., Frolking, S., Jones, C. D., Lotze, H. K., Lotze-Campen, H., Sahajpal, R., Thonicke, K., Tian, H., and Yamagata, Y.: Assessing the impacts of 1.5 °C global warming – simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b), Geosci. Model Dev., 10, 4321–4345, https://doi.org/10.5194/gmd-10-4321-2017, 2017.
Gaupp, F., Hall, J., and Dadson, S.: The role of storage capacity in coping with intra- and inter-annual water variability in large river basins, Environ. Res. Lett., 10, 125001, https://doi.org/10.1088/1748-9326/10/12/125001, 2015.
Ghiggi, G., Humphrey, V., Seneviratne, S. I., and Gudmundsson, L.: GRUN: an observation-based global gridded runoff dataset from 1902 to 2014, Earth Syst. Sci. Data, 11, 1655–1674, https://doi.org/10.5194/essd-11-1655-2019, 2019.
Giuliani, M., Lamontagne, J. R., Hejazi, M. I., Reed, P. M., and Castelletti, A.: Unintended consequences of climate change mitigation for African river basins, Nat. Clim. Chang., 12, 187–192, https://doi.org/10.1038/s41558-021-01262-9, 2022.
Graham, N. T., Hejazi, M. I., Kim, S. H., Davies, E. G. R., Edmonds, J. A., and Miralles-Wilhelm, F.: Future changes in the trading of virtual water, Nat. Commun., 11, 3632, https://doi.org/10.1038/s41467-020-17400-4, 2020.
Graham, N. T., Iyer, G., Wild, T. B., Dolan, F., Lamontagne, J., and Calvin, K.: Agricultural market integration preserves future global water resources, One Earth, 6, 1235–1245, https://doi.org/10.1016/j.oneear.2023.08.003, 2023.
Grill, G., Lehner, B., Thieme, M., Geenen, B., Tickner, D., Antonelli, F., Babu, S., Borrelli, P., Cheng, L., Crochetiere, H., Ehalt Macedo, H., Filgueiras, R., Goichot, M., Higgins, J., Hogan, Z., Lip, B., McClain, M. E., Meng, J., Mulligan, M., Nilsson, C., Olden, J. D., Opperman, J. J., Petry, P., Reidy Liermann, C., Sáenz, L., Salinas-Rodríguez, S., Schelle, P., Schmitt, R. J. P., Snider, J., Tan, F., Tockner, K., Valdujo, P. H., van Soesbergen, A., and Zarfl, C.: Mapping the world's free-flowing rivers, Nature, 569, 215–221, https://doi.org/10.1038/s41586-019-1111-9, 2019.
Haddeland, I., Skaugen, T., and Lettenmaier, D. P.: Anthropogenic impacts on continental surface water fluxes, Geophys. Res. Lett., 33, L08406, https://doi.org/10.1029/2006GL026047, 2006.
Hanasaki, N., Kanae, S., Oki, T., Masuda, K., Motoya, K., Shirakawa, N., Shen, Y., and Tanaka, K.: An integrated model for the assessment of global water resources – Part 2: Applications and assessments, Hydrol. Earth Syst. Sci., 12, 1027–1037, https://doi.org/10.5194/hess-12-1027-2008, 2008.
Hartin, C., Link, R., Patel, P., Mundra, A., Horowitz, R., Dorheim, K., and Clarke, L.: Integrated modeling of human-earth system interactions: An application of GCAM-fusion, Energy Econom., 103, 105566, https://doi.org/10.1016/j.eneco.2021.105566, 2021.
He, C., Liu, Z., Wu, J., Pan, X., Fang, Z., Li, J., and Bryan, B. A.: Future global urban water scarcity and potential solutions, Nat. Commun., 12, 4667, https://doi.org/10.1038/s41467-021-25026-3, 2021.
Heidari, H., Arabi, M., Ghanbari, M., and Warziniack, T.: A Probabilistic Approach for Characterization of Sub-Annual Socioeconomic Drought Intensity-Duration-Frequency (IDF) Relationships in a Changing Environment, Water, 12, 1522, https://doi.org/10.3390/w12061522, 2020.
Hejazi, M. I., Edmonds, J., Clarke, L., Kyle, P., Davies, E., Chaturvedi, V., Wise, M., Patel, P., Eom, J., and Calvin, K.: Integrated assessment of global water scarcity over the 21st century under multiple climate change mitigation policies, Hydrol. Earth Syst. Sci., 18, 2859–2883, https://doi.org/10.5194/hess-18-2859-2014, 2014a.
Hejazi, M., Edmonds, J., Clarke, L., Kyle, P., Davies, E., Chaturvedi, V., Wise, M., Patel, P., Eom, J., Calvin, K., Moss, R., and Kim, S.: Long-term global water projections using six socioeconomic scenarios in an integrated assessment modeling framework, Technol. Forecast. Soc., 81, 205–226, https://doi.org/10.1016/j.techfore.2013.05.006, 2014b.
Hoekstra, A. Y., Mekonnen, M. M., Chapagain, A. K., Mathews, R. E., and Richter, B. D.: Global Monthly Water Scarcity: Blue Water Footprints versus Blue Water Availability, PLOS ONE, 7, e32688, https://doi.org/10.1371/journal.pone.0032688, 2012.
Hou, J., van Dijk, A. I. J. M., Beck, H. E., Renzullo, L. J., and Wada, Y.: Remotely sensed reservoir water storage dynamics (1984–2015) and the influence of climate variability and management at a global scale, Hydrol. Earth Syst. Sci., 26, 3785–3803, https://doi.org/10.5194/hess-26-3785-2022, 2022.
Huang, Z., Hejazi, M., Li, X., Tang, Q., Vernon, C., Leng, G., Liu, Y., Döll, P., Eisner, S., Gerten, D., Hanasaki, N., and Wada, Y.: Reconstruction of global gridded monthly sectoral water withdrawals for 1971–2010 and analysis of their spatiotemporal patterns, Hydrol. Earth Syst. Sci., 22, 2117–2133, https://doi.org/10.5194/hess-22-2117-2018, 2018.
International Commission on Large Dams World Register of Dams (ICOLD WRD): World Register of Dams: General Synthesis, https://www.icold-cigb.org/GB/world_register/general_synthesis.asp (last access: 18 January 2023), 2020.
Joint Global Change Research Institute: GCAM Documentation (Version 7.0), GitHub [software], https://github.com/JGCRI/gcam-doc, last access: December 2023.
Jones, B., O'Neill, B. C., and Gao, J.: Global One-Eighth Degree Population Base Year and Projection Grids for the Shared Socioeconomic Pathways (SSPs), v1.01 (2000–2100), NASA [data set], https://doi.org/10.7927/M30P-J498, 2020.
Keller, A. A., Sakthivadivel, R., and Seckler, D. W.: Water scarcity and the role of storage in development, International Water Management Institute, Indonesia, ISBN 9789290903994, 2000.
Keppo, I., Butnar, I., Bauer, N., Caspani, M., Edelenbosch, O., Emmerling, J., Fragkos, P., Guivarch, C., Harmsen, M., Lefèvre, J., Gallic, T. L., Leimbach, M., McDowall, W., Mercure, J.-F., Schaeffer, R., Trutnevyte, E., and Wagner, F.: Exploring the possibility space: taking stock of the diverse capabilities and gaps in integrated assessment models, Environ. Res. Lett., 16, 053006, https://doi.org/10.1088/1748-9326/abe5d8, 2021.
Khan, Z., Thompson, I., and Vernon, C. R.: JGCRI/tethys: v2.0.0, Zenodo [code], https://doi.org/10.5281/zenodo.8070886, 2023.
Kim, S. H., Edmonds, J., Lurz, J., Smith, S. J., and Wise, M.: The ObjECTS framework for integrated assessment: hybrid modeling of transportation, Energy J., 27, 63–91, https://doi.org/10.5547/ISSN0195-6574-EJ-VolSI2006-NoSI2-4, 2006.
Kim, S. H., Hejazi, M., Liu, L., Calvin, K., Clarke, L., Edmonds, J., Kyle, P., Patel, P., Wise, M., and Davies, E.: Balancing global water availability and use at basin scale in an integrated assessment model, Clim. Change, 136, 217–231, https://doi.org/10.1007/s10584-016-1604-6, 2016.
Lehner, B. and Döll, P.: Development and validation of a global database of lakes, reservoirs and wetlands, J. Hydrol., 296, 1–22, https://doi.org/10.1016/j.jhydrol.2004.03.028, 2004.
Lehner, B., Liermann, C. R., Revenga, C., Vörösmarty, C., Fekete, B., Crouzet, P., Döll, P., Endejan, M., Frenken, K., Magome, J., Nilsson, C., Robertson, J. C., Rödel, R., Sindorf, N., and Wisser, D.: High-resolution mapping of the world's reservoirs and dams for sustainable river-flow management, Front. Ecology Environ., 9, 494–502, https://doi.org/10.1890/100125, 2011.
Liu, L., Parkinson, S., Gidden, M., Byers, E., Satoh, Y., Riahi, K., and Forman, B.: Quantifying the potential for reservoirs to secure future surface water yields in the world's largest river basins, Environ. Res. Lett., 13, 044026, https://doi.org/10.1088/1748-9326/aab2b5, 2018.
Liu, Y., Hejazi, M., Li, H., Zhang, X., and Leng, G.: A hydrological emulator for global applications – HE v1.0.0, Geosci. Model Dev., 11, 1077–1092, https://doi.org/10.5194/gmd-11-1077-2018, 2018.
Liu, Y., Liu, R., and Shang, R.: GLOBMAP SWF: a global annual surface water cover frequency dataset during 2000–2020, Earth Syst. Sci. Data, 14, 4505–4523, https://doi.org/10.5194/essd-14-4505-2022, 2022.
Loucks, D. P. and van Beek, E.: Water resource systems planning and management: an introduction to methods, models, and applications, Springer International Publishing, Germany, ISBN 9783319442341, 2017.
Mekonnen, M. M. and Hoekstra, A. Y.: The green, blue and grey water footprint of crops and derived crop products, Hydrol. Earth Syst. Sci., 15, 1577–1600, https://doi.org/10.5194/hess-15-1577-2011, 2011.
Nilsson, C., Reidy, C. A., Dynesius, M., and Revenga, C.: Fragmentation and Flow Regulation of the World's Large River Systems, Science, 308, 405–408, https://doi.org/10.1126/science.1107887, 2005.
Oki, T. and Kanae, S.: Global Hydrological Cycles and World Water Resources, Science, 313, 1068–1072, https://doi.org/10.1126/science.1128845, 2006.
O'Neill, B. C., Kriegler, E., Ebi, K. L., Kemp-Benedict, E., Riahi, K., Rothman, D. S., van Ruijven, B. J., van Vuuren, D. P., Birkmann, J., Kok, K., Levy, M., and Solecki, W.: The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century, Global Environ. Change, 42, 169–180, https://doi.org/10.1016/j.gloenvcha.2015.01.004, 2017.
Pan American Health Organization: Global water supply and sanitation assessment : 2000 report, https://iris.paho.org/handle/10665.2/45503 (last access: May 2023), 2000.
Petheram, C. and McMahon, T. A.: Dams, dam costs and damnable cost overruns, J. Hydrol. X, 3, 100026, https://doi.org/10.1016/j.hydroa.2019.100026, 2019.
Postel, S. L., Daily, G. C., and Ehrlich, P. R.: Human appropriation of renewable fresh water, Science, 271, 785–788, 1996.
Reed, P. M., Hadjimichael, A., Moss, R. H., Brelsford, C., Burleyson, C. D., Cohen, S., Dyreson, A., Gold, D. F., Gupta, R. S., Keller, K., Konar, M., Monier, E., Morris, J., Srikrishnan, V., Voisin, N., and Yoon, J.: Multisector Dynamics: Advancing the Science of Complex Adaptive Human-Earth Systems, Earth's Future, 10, e2021EF002621, https://doi.org/10.1029/2021EF002621, 2022.
Rising, J.: Decision-making and integrated assessment models of the water-energy-food nexus, Water Security, 9, 100056, https://doi.org/10.1016/j.wasec.2019.100056, 2020.
Robinson, D. T., Di Vittorio, A., Alexander, P., Arneth, A., Barton, C. M., Brown, D. G., Kettner, A., Lemmen, C., O'Neill, B. C., Janssen, M., Pugh, T. A. M., Rabin, S. S., Rounsevell, M., Syvitski, J. P., Ullah, I., and Verburg, P. H.: Modelling feedbacks between human and natural processes in the land system, Earth Syst. Dynam., 9, 895–914, https://doi.org/10.5194/esd-9-895-2018, 2018.
Salehi, M.: Global water shortage and potable water safety; Today's concern and tomorrow's crisis, Environ. Int., 158, 106936, https://doi.org/10.1016/j.envint.2021.106936, 2022.
Sanmuganathan, K., Frausto, K., Heuperman, A., Hussain, K., Maletta, H., Prinz, D., Anguita Salas, P., and Thakker, H.: Assessment of irrigation options, Cape Town: Final Draft, WCD Thematic Review Options Assessment IV, 2, 2000.
Scanlon, B. R., Zhang, Z., Save, H., Sun, A. Y., Müller Schmied, H., Van Beek, L. P. H., Wiese, D. N., Wada, Y., Long, D., Reedy, R. C., Longuevergne, L., Döll, P., and Bierkens, M. F. P.: Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data, P. Natl. Acad. Sci. USA, 115, E1080–E1089, https://doi.org/10.1073/pnas.1704665115, 2018.
Schmitt, R. J. P., Rosa, L., and Daily, G. C.: Global expansion of sustainable irrigation limited by water storage, P. Natl. Acad. Sci. USA, 119, e2214291119, https://doi.org/10.1073/pnas.2214291119, 2022.
Scott, M. J., Daly, D. S., Hejazi, M. I., Kyle, G. P., Liu, L., McJeon, H. C., Mundra, A., Patel, P. L., Rice, J. S., and Voisin, N.: Sensitivity of future U.S. Water shortages to socioeconomic and climate drivers: a case study in Georgia using an integrated human-earth system modeling framework, Clim. Change, 136, 233–246, https://doi.org/10.1007/s10584-016-1602-8, 2016.
Steyaert, J. C., Condon, L. E., Turner, W. D. S., and Voisin, N.: ResOpsUS, a dataset of historical reservoir operations in the contiguous United States, Sci. Data, 9, 34, https://doi.org/10.1038/s41597-022-01134-7, 2022.
Turner, S. W. D., Hejazi, M., Yonkofski, C., Kim, S. H., and Kyle, P.: Influence of Groundwater Extraction Costs and Resource Depletion Limits on Simulated Global Nonrenewable Water Withdrawals Over the Twenty-First Century, Earth's Future, 7, 123–135, https://doi.org/10.1029/2018EF001105, 2019.
UNEP-WCMC and IUCN: Protected Planet: The World Database on Protected Areas (WDPA), Cambridge, UK, UNEP-WCMC and IUCN, https://www.protectedplanet.net (last access: 1 January 2023), 2022.
Vanderkelen, I., van Lipzig, N. P. M., Sacks, W. J., Lawrence, D. M., Clark, M. P., Mizukami, N., Pokhrel, Y., and Thiery, W.: Simulating the Impact of Global Reservoir Expansion on the Present-Day Climate, J. Geophys. Res.-Atmos., 126, e2020JD034485, https://doi.org/10.1029/2020JD034485, 2021.
Vernon, C., Patel, P., Calvin, K., and Snyder, A.: Modeling feedbacks of varying scale to the human-Earth system on a per timestep basis using GCAMs Python API, 2021, GC15E-0724, 2021.
Vernon, C. R., Page, Y. L., Chen, M., Huang, M., Calvin, K. V., Kraucunas, I. P., and Braun, C. J.: Demeter – A Land Use and Land Cover Change Disaggregation Model, J. Open Res. Softw., 6, 15, https://doi.org/10.5334/jors.208, 2018.
Vernon, C. R., Hejazi, M. I., Turner, S. W. D., Liu, Y., Braun, C. J., Li, X., and Link, R. P.: A Global Hydrologic Framework to Accelerate Scientific Discovery, J. Open Res. Softw., 7, 1, https://doi.org/10.5334/jors.245, 2019.
Vinca, A., Riahi, K., Rowe, A., and Djilali, N.: Climate-Land-Energy-Water Nexus Models Across Scales: Progress, Gaps and Best Accessibility Practices, Front. Environ. Sci., 9, 691523, https://doi.org/10.3389/fenvs.2021.691523, 2021.
Vizina, A., Vyskoè, P., Peláková, M., Picek, J., Beran, A., and Kožín, R.: Preservation of drinking water demand from water reservoirs in climate change conditions, Vodohospodáøské technicko-ekonomické informace, 63, 4–18, 2021.
Vörösmarty, C. J., Green, P., Salisbury, J., and Lammers, R. B.: Global water resources: Vulnerability from climate change and population growth, Science, 289, 284–288, https://doi.org/10.1126/science.289.5477.284, 2000.
Wada, Y., van Beek, L. P. H., Viviroli, D., Dürr, H. H., Weingartner, R., and Bierkens, M. F. P.: Global monthly water stress: 2. Water demand and severity of water stress, Water Resour. Res., 47, W07518, https://doi.org/10.1029/2010WR009792, 2011.
Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H., Nozawa, T., Kawase, H., Abe, M., Yokohata, T., Ise, T., Sato, H., Kato, E., Takata, K., Emori, S., and Kawamiya, M.: MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments, Geosci. Model Dev., 4, 845–872, https://doi.org/10.5194/gmd-4-845-2011, 2011.
Weedon, G. P., Gomes, S., Viterbo, P., Shuttleworth, W. J., Blyth, E., Österle, H., Adam, J. C., Bellouin, N., Boucher, O., and Best, M.: Creation of the WATCH Forcing Data and Its Use to Assess Global and Regional Reference Crop Evaporation over Land during the Twentieth Century, J. Hydrometeorol., 12, 823–848, https://doi.org/10.1175/2011JHM1369.1, 2011.
Wiberg, D. and Strzepek, K. M.: Development of Regional Economic Supply Curves for Surface Water Resources and Climate Change Assessments: A Case Study of China, RR-05-001, IIASA, Laxenburg, Austria, 125 pp., 2005.
Wilhite, D. A. and Glantz, M. H.: Understanding: the drought phenomenon: the role of definitions, Water Int., 10, 111–120, 1985.
Wilson, C., Guivarch, C., Kriegler, E., van Ruijven, B., van Vuuren, D. P., Krey, V., Schwanitz, V. J., and Thompson, E. L.: Evaluating process-based integrated assessment models of climate change mitigation, Clim. Change, 166, 3, https://doi.org/10.1007/s10584-021-03099-9, 2021.
Wise, M., Calvin, K., Thomson, A., Clarke, L., Bond-Lamberty, B., Sands, R., Smith, S. J., Janetos, A., and Edmonds, J.: Implications of Limiting CO2 Concentrations for Land Use and Energy, Science, 324, 1183–1186, https://doi.org/10.1126/science.1168475, 2009.
Wollman, N. and Bonem, G. W.: The Outlook for Water-Quality, Quantity, and National Growth, THE JOHNS HOPKINS PRESS, BALTIMORE, MD., 1971, 286 pp., 1971.
World Commission on Dams: Dams and development: A new framework for decision-making: The report of the world commission on dams, Earthscan, ISBN 9781853837982, 2000.
Yoon, J., Romero-Lankao, P., Yang, Y. C. E., Klassert, C., Urban, N., Kaiser, K., Keller, K., Yarlagadda, B., Voisin, N., Reed, P. M., and Moss, R.: A Typology for Characterizing Human Action in MultiSector Dynamics Models, Earth's Future, 10, e2021EF002641, https://doi.org/10.1029/2021EF002641, 2022.
Zajac, Z., Revilla-Romero, B., Salamon, P., Burek, P., Hirpa, F. A., and Beck, H.: The impact of lake and reservoir parameterization on global streamflow simulation, J. Hydrol., 548, 552–568, https://doi.org/10.1016/j.jhydrol.2017.03.022, 2017.
Zhao, M., Wild, T., Graham, N., Kim, S., Binsted, M., Chowdhury, A. F. M. K., Msangi, S., Patel, P., Vernon, C., Niazi, H., Li, H.-Y., and Abeshu, G.: Repository for Zhao et al., 2023 – Geoscientific Model Development (v1.0.0), Zenodo [code and data set], https://doi.org/10.5281/zenodo.10211057, 2023.
Zhao, X., Calvin, K. V., Wise, M. A., Patel, P. L., Snyder, A. C., Waldhoff, S. T., Hejazi, M. I., and Edmonds, J. A.: Global agricultural responses to interannual climate and biophysical variability, Environ. Res. Lett., 16, 104037, https://doi.org/10.1088/1748-9326/ac2965, 2021.
Zhou, T., Nijssen, B., Gao, H., and Lettenmaier, D. P.: The Contribution of Reservoirs to Global Land Surface Water Storage Variations, J. Hydrometeorol., 17, 309–325, https://doi.org/10.1175/JHM-D-15-0002.1, 2016.
Short summary
The Global Change Analysis Model (GCAM) simulates the world’s climate–land–energy–water system interactions , but its reservoir representation is limited. We developed the GLObal Reservoir Yield (GLORY) model to provide GCAM with information on the cost of supplying water based on reservoir construction costs, climate and demand conditions, and reservoir expansion potential. GLORY enhances our understanding of future reservoir capacity needs to meet human demands in a changing climate.
The Global Change Analysis Model (GCAM) simulates the world’s climate–land–energy–water system...