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Abstract. Reservoirs play a significant role in modifying the
spatiotemporal availability of surface water to meet multi-
sector human demands, despite representing a relatively
small fraction of the global water budget. Yet the integrated
modeling frameworks that explore the interactions among
climate, land, energy, water, and socioeconomic systems at
a global scale often contain limited representations of wa-
ter storage dynamics that incorporate feedbacks from other
systems. In this study, we implement a representation of wa-
ter storage in the Global Change Analysis Model (GCAM)
to enable the exploration of the future role (e.g., expansion)
of reservoir water storage globally in meeting demands for,
and evolving in response to interactions with, the climate,
land, and energy systems. GCAM represents 235 global wa-
ter basins, operates at 5-year time steps, and uses supply
curves to capture economic competition among renewable
water (now including reservoirs), non-renewable groundwa-
ter, and desalination. Our approach consists of developing
the GLObal Reservoir Yield (GLORY) model, which uses a
linear programming (LP)-based optimization algorithm and
dynamically linking GLORY with GCAM. The new cou-
pled GCAM–GLORY approach improves the representation
of reservoir water storage in GCAM in several ways. First,
the GLORY model identifies the cost of supplying increas-
ing levels of water supply from reservoir storage by consid-
ering regional physical and economic factors, such as evolv-
ing monthly reservoir inflows and demands, and the lev-
eled cost of constructing additional reservoir storage capac-

ity. Second, by passing those costs to GCAM, GLORY en-
ables the exploration of future regional reservoir expansion
pathways and their response to climate and socioeconomic
drivers. To guide the model toward reasonable reservoir ex-
pansion pathways, GLORY applies a diverse array of feasi-
bility constraints related to protected land, population, wa-
ter sources, and cropland. Finally, the GLORY–GCAM feed-
back loop allows evolving water demands from GCAM to
inform GLORY, resulting in an updated supply curve at each
time step, thus enabling GCAM to establish a more meaning-
ful economic value of water. This study improves our under-
standing of the sensitivity of reservoir water supply to mul-
tiple physical and economic dimensions, such as sub-annual
variations in climate conditions and human water demands,
especially for basins experiencing socioeconomic droughts.

1 Introduction

Water exists in relative abundance globally, but its spatiotem-
poral distribution has historically posed challenges for re-
liably meeting humanity’s water demands. For this reason,
over one-third of the world’s growing population already
faces a water shortage for at least 1 month of each year
(Salehi, 2022; Hoekstra et al., 2012; Wada et al., 2011;
Hanasaki et al., 2008; Oki and Kanae, 2006; Vörösmarty
et al., 2000; Pan American Health Organization, 2000). Hu-
mans have traditionally relied in part on surface water stor-
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age infrastructure, such as dams and reservoirs, to man-
age the spatiotemporal misalignment (i.e., scarcity) of wa-
ter supplies and demands and to attenuate the effects of
shocks (e.g., droughts) (Zajac et al., 2017). Regional wa-
ter scarcity can have complex societal consequences that
propagate across sectors of the economy (e.g., by constrain-
ing water available for cooling power plants and growing
crops) and teleconnected regions (e.g., through agricultural
trade) (He et al., 2021). Understanding the current and po-
tential future role of water storage is central to our under-
standing of how future energy, land, and even climate sys-
tems will evolve and, in turn, how they will impact wa-
ter resources (Vanderkelen et al., 2021; Scott et al., 2016).
The emerging transdisciplinary field of multi-sector dynam-
ics (MSDs) is well positioned to explore these interactions
given its focus on modeling complex systems of systems that
deliver services, amenities, and products to society (Reed et
al., 2022). Under the MSD umbrella, a sub-class of mod-
els simulates the integrated human–Earth system with global
coverage by representing the integrated interactions among
energy–water–land–climate–socioeconomic systems. While
global MSD models are well positioned in theory to explore
multi-system interactions, their representation of reservoirs
(especially future reservoir storage expansion) has remained
limited (Bell et al., 2014) (see our review of reservoir rep-
resentation in global MSD models in Table S1 in the Sup-
plement). Here we enhance the representation of reservoir
storage in a global multi-sector model, the Global Change
Analysis Model (GCAM) (Calvin et al., 2019), and demon-
strate the scientific insights that can emerge as a result of this
addition.

Reservoirs represent just a small stock of water within the
total freshwater balance (Abbott et al., 2019), yet they play
an outsized role in satisfying human water demands (Viz-
ina et al., 2021; Biemans et al., 2011). Over the past cen-
tury, more than 6000 large reservoirs and dams (e.g., storage
capacity > 0.1 km3) have been built globally to meet grow-
ing demands for water supply and hydropower (Lehner et al.,
2011). By 2020, there were more than 58 700 registered dams
worldwide, with an aggregated storage capacity of 7714 km3

(ICOLD WRD, 2020), which represents ≈ 20 % of global
annual runoff (Ghiggi et al., 2019). If accounting for im-
poundments with a surface area larger than 100 m2, the es-
timated number of dams and reservoirs adds up to 16.7 mil-
lion, with a total reservoir area of around 30 600 km2 (Lehner
et al., 2011). Although reservoirs only occupy 1.7 % of the
global inland permanent surface water extent (Liu et al.,
2022), reservoirs and dams have affected more than 50 % of
the world’s large river systems through flow regulation, river
fragmentation, and water consumption (Grill et al., 2019;
Nilsson et al., 2005). Despite the limited physical footprint
occupied by reservoirs, approximately 30 % to 40 % of irri-
gated croplands rely on reservoirs (e.g., about 265 km3 yr−1

of storage-fed irrigation estimated by Schmitt et al., 2022),
providing 12 % to 16 % of global food production (Sanmu-

ganathan et al., 2000; World Commission on Dams, 2000).
Strategic usage of reservoir storage can improve future global
sustainable irrigation and avoid the depletion of freshwater
stocks and environmental flows (Schmitt et al., 2022).

Reservoirs can be deployed to serve one or multiple pur-
poses (e.g., flood control, irrigation, and hydropower), and
the distribution of these purposes among and within the
world’s large river basins varies substantially. Approximately
half of the dams and reservoirs registered in the World Reg-
ister of Dams (WRD) database (ICOLD WRD, 2020) serve
a single purpose, while 17.6 % have multiple purposes, leav-
ing the remainder with undefined objectives. Irrigation, hy-
dropower, water supply, and flood control, among other pur-
poses, represent most of the reservoirs. The Global Reser-
voir and Dam (GRanD) database (Lehner et al., 2011) has
served as a pivotal reference, cataloging a vast array of reser-
voirs and dams along with the associated primary purposes.
Figure 1 categorizes reservoirs from the GRanD database as
hydropower and non-hydropower to demonstrate the distri-
bution of the existing storage capacity across global basins.
Global hydropower and non-hydropower reservoirs have a
total storage capacity of 3745 and 2246 km3, respectively.
Non-hydropower reservoirs dominate in the USA, south-
ern and central Europe, southern and eastern Asia, North
Africa, and Australia, while other regions are dominated by
hydropower reservoirs. Regardless of its purpose, the most
distinguishing characteristic of any large reservoir is to use
storage to reshape streamflow variability to make it reliably
available for human use across demand sectors and seasons
(Zhou et al., 2016; Haddeland et al., 2006). Specific op-
erational decisions on the magnitude and timing of water
storage and release are dictated by the reservoir’s purposes,
along with other factors such as hydroclimatic conditions.
Thus, depending on its purposes, a reservoir may create any-
where from multi-year (i.e., inter-annual) storage to within-
year (i.e., sub-annual) redistribution of streamflow (Gaupp et
al., 2015).

Given that reservoirs supply water that drives activity in
multiple sectors of the economy, incorporating reservoirs
into the analysis of future multi-sector interactions among
water, energy, land, and climate systems across spatiotempo-
ral scales can bring substantial insights to our understand-
ing of the future co-evolution of the human–Earth system
(Vinca et al., 2021). Global MSD models (Reed et al., 2022)
or other comparable models (see examples in Table S1) were
developed for exploring inter-sectoral dynamics at the re-
gional scale with global coverage (Yoon et al., 2022; Wil-
son et al., 2021). Many such global MSD models, includ-
ing GCAM (Edmonds and Reilly, 1983), were initially de-
veloped to study the energy system and its emissions impli-
cations, as well as global land allocation dynamics (Keppo
et al., 2021; Fisher-Vanden and Weyant, 2020). Thus, for
many of these models, water has only recently emerged as
central to model dynamics (e.g., for GCAM; see Kim et al.,
2016). Given these models are intended for scenario-based
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Figure 1. Historical reservoir storage capacity (km3) for hydropower and non-hydropower reservoirs across 235 basins globally based on
the GRanD v1.3 database. The yellow and red circles indicate hydropower and non-hydropower reservoir storage, respectively. The size of
the circle indicates the total storage capacity for each of the two reservoir categories within the basin. The background color by which each
basin is shaded quantifies the sum of the storage capacity for both reservoir categories.

analysis of long-term global dynamics and are often used in
stakeholder and uncertainty analysis contexts, naturally they
tend to be less detailed in their representation of water re-
sources management (Rising, 2020). Still, even within this
broad characterization of a “coarse spatiotemporal resolu-
tion”, these models differ widely in their representation of
water resources and reservoir management. While a detailed
review of differences across models in their representation of
water resources broadly is not within the scope of this arti-
cle, a notable gap exists in global MSD models concerning
the role of reservoirs in the co-evolution of human–Earth sys-
tems – a gap we aim to contribute to filling. To tackle this,
we conducted a comparison of key differences in the repre-
sentation of reservoirs across those models (Table S1).

Insight into the role of reservoirs in shaping the co-
evolving energy–water–land–socioeconomic–climate system
with global coverage has strong potential to inform more in-
tegrated, multi-sector strategic planning across a wide range
of stakeholder groups. GCAM has been extensively used to
answer questions across multiple disciplinary domains and
has a long history of development (Calvin et al., 2019; Kim
et al., 2016; Wise et al., 2009; Kim et al., 2006; Edmonds et
al., 1997; Edmonds and Reiley, 1985; Edmonds and Reilly,

1983). Several studies have explored the economic impacts
of water resources using GCAM by conducting uncertainty
and sensitivity analysis experiments using large ensembles
of global hydro-economic futures (Birnbaum et al., 2022;
Dolan et al., 2021). These studies identified that the phys-
ical water scarcity and its economic impacts (e.g., on agri-
cultural prices and revenue) are very sensitive to the repre-
sentation of reservoir storage in GCAM. However, prior to
our study, GCAM has traditionally used an external hydro-
logic model (e.g., Xanthos) to pass water availability infor-
mation one way, as a boundary condition to GCAM, while
overlooking the dynamic role of existing and potential ex-
ploitable reservoir storage capacity in shaping water supply
and demand dynamics. This approach makes representing fu-
ture reservoir storage expansion particularly difficult because
the external model is not responding to the evolving water
demand driven by sectoral interactions in GCAM.

This paper’s objective is to represent reservoir water stor-
age in GCAM. We improve upon GCAM’s representation of
renewable water supply by better accounting for (1) the sup-
ply potential of existing storage capacity, considering sub-
annual streamflow and demand patterns; (2) the expansion
potential of reservoir storage capacity; and (3) the impact
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of socioeconomic change (e.g., demands) and climate condi-
tions (e.g., socioeconomic drought) on long-term water sup-
ply. These improvements address existing research gaps by
focusing on optimizing reservoir water management strate-
gies in response to socioeconomic and climate change im-
pacts at global to regional scales. We explore two scientific
questions that illustrate the advantage of this new approach:
(1) how does the cost of supplying water from reservoir stor-
age vary across global river basins, and to what extent is it
shaped by hydrologic (e.g., reservoir inflows) versus eco-
nomic (e.g., human water demand) characteristics? (2) What
insights and dynamics emerge from the new approach, and
to what extent can they be attributed to human–Earth sys-
tem feedbacks? Through a series of scenarios focused on the
implications of socioeconomic and climate change for future
water demands and reservoir expansion needs, we illuminate
the new line of research questions and a wide range of po-
tential applications our methodological contribution enables,
such as investigating the sensitivity of renewable water sup-
ply to different drivers and identifying potential global reser-
voir expansion pathways across various scenario combina-
tions. Additionally, we highlight challenges and opportuni-
ties in representing reservoir water dynamics within global
multi-sector models.

2 Methodology

In this section, we will elucidate the methodology of our
novel approach for representing reservoir water storage in
GCAM in four distinct sections. Section 2.1 will provide an
overview of our interactive multi-model framework and ex-
amine its degree of coordination, communication frequency,
and automation. In Sect. 2.2, we will delve into the current
representation of water resource supply–demand dynamics in
GCAM and delineate the aspects we intend to enhance in this
study. Section 2.3 will introduce the innovative approach we
have developed for the GLObal Reservoir Yield (GLORY)
model and illuminate the construction of the input data. Sec-
tion 2.4 will outline four scenarios for comparing the current
and our new approach, thus providing a comprehensive il-
lustration of the enhanced representation of water storage in
GCAM from this study.

2.1 Interactive multi-sector dynamic modeling
workflow

2.1.1 Overview

Our core contribution in this paper is GCAM–GLORY v1.0,
an interactive, multi-sector, and dynamic modeling workflow
(Fig. 2) that enables the exploration of future reservoir stor-
age expansion and its multi-sector implications at a global
scale in the context of coupled human–Earth system feed-
backs. This workflow consists of multiple interacting mod-
els that capture different aspects of water resource availabil-

ity, use, and infrastructure (i.e., reservoirs) at variable spa-
tiotemporal and sectoral resolution. GCAM is central to our
workflow, though we only modified inputs to GCAM (rather
than GCAM’s structure) in this paper. The specific utility of
GCAM is to explore the implications of changing water re-
sources availability (modulated by reservoirs) on the evolu-
tion of other systems (e.g., land and energy), and vice versa,
at regional resolution with global coverage. GCAM repre-
sents 235 global water basins; operates at 5-year time steps;
and uses supply curves (i.e., the cost of supplying increasing
volumes of water) to capture economic competition among
three categories of water supply, namely renewable surface
water (e.g., via reservoirs), groundwater, and desalinated wa-
ter. Our contribution here is to develop a new model that is
dynamically linked with GCAM to update GCAM’s renew-
able water supply curves in each model time step to reflect
the impacts of reservoir management on the cost and reli-
ability of water supply. The interactive workflow amplifies
the human–Earth system feedbacks in the context of water
management in GCAM.

The GLORY model, which we introduce for the first time
in this paper, improves the current water supply curves in
GCAM by better representing the cost of delivering wa-
ter supply from non-hydropower reservoirs and the physi-
cal (e.g., hydrologic inflows and reservoir exclusion zones)
and economic (e.g., construction cost) dimensions that in-
fluence the cost of supply. GLORY is a linear programming
(LP)-based model that operates at a monthly time step but
is dynamically linked with GCAM to provide GCAM, in
every 5-year model period, with an updated renewable wa-
ter supply curve for each of 235 global water basins. The
supply curve produced by GLORY specifies the unit cost
of supplying increasing levels of water from reservoir stor-
age. This supply curve establishes the basis for economic
competition among alternative sources of water supply in
GCAM, such as groundwater, which has its own supply curve
for each basin (Turner et al., 2019). The gcamwrapper (Ver-
non et al., 2021) software coordinates interactions between
GLORY and GCAM through a Python API that allows “get”
and “set” operations on GCAM’s internal parameters on a
per period basis. After receiving the updated supply curve
from GLORY (via gcamwrapper), GCAM executes a global
simulation for the current model period and then passes wa-
ter demand outputs back to GLORY to use as input to opti-
mization in GLORY’s subsequent period. This last step ad-
vances coupled human–Earth system science by establishing
interactive, fully automated feedbacks with GCAM. This pa-
per represents the first application of gcamwrapper to explore
human–Earth system feedbacks by coupling GCAM with an
external sectoral model, though previous studies have used
other tools (e.g., GCAM Fusion – a C++-based capability in
GCAM that allows gcamwrapper to access internal parame-
ters) for GCAM two-way coupling (Hartin et al., 2021).
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Figure 2. Interactive modeling framework that improves the representation of reservoirs in the Global Change Analysis Model (GCAM)
by dynamically updating the renewable water supply curve in each time period. The GLObal Reservoir Yield (GLORY) model establishes
the cost of supplying water from reservoirs, receiving feedbacks from GCAM in each time step regarding sectoral water demands. GLORY
ingests a wide variety of data sets, including the hydrologic time series, reservoir construction costs, and land use patterns.

2.1.2 The mechanics of coupled human–Earth system
feedbacks

Multi-model coupling is becoming increasingly important in
exploring human–Earth system interactions (Fisher-Vanden
and Weyant, 2020). There are many dimensions to model
coupling that can impact modeling outcomes. We character-
ize our workflow here with respect to its degree of coordina-
tion, communication frequency (Robinson et al., 2018), and
automation.

The framework in Fig. 2 represents a high degree of
(two-way) coordination, specifically between GCAM and
GLORY. Coordination is the automated or manual arrange-
ment of independently operating components and externally
organized data exchange. In two-way coupling (i.e., high co-
ordination), a software component’s results render an up-
dated state in one or more upstream components, whereas in
one-way coupling (i.e., low coordination), a software compo-
nent only prescribes data to one or more downstream compo-
nents.

The framework in Fig. 2 represents a moderate commu-
nication frequency. The communication frequency relates to
how often one software component gives (or receives) data to

(or from) another component. The communication frequency
ranges from low/none (e.g., setting initial conditions only) to
high (e.g., per time step exchange of data). In our framework,
GLORY passes a new set of supply curves to GCAM, and
GCAM passes water demand and storage capacity data back
to GLORY but only for use in the subsequent time step. The
models do not iterate back and forth within a time step.

The framework in Fig. 2 represents a high degree of au-
tomation. Automation is the replacement of human activity
with systems or devices that enhance efficiency. Automation
ranges from none (strictly manual) to a high degree of au-
tomation in which all data are exchanged virtually and none
manually. The exchange of information in our workflow is
fully automated.

2.2 The Global Change Analysis Model (GCAM) –
current representation of water resource
supply–demand dynamics

2.2.1 Overview

GCAM captures the interactions among climate, land, en-
ergy, water, and socioeconomic systems at a regional resolu-
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tion (e.g., 235 river basins) with global coverage. GCAM is a
multi-sector dynamic model, and the strength of these mod-
els is the consideration of broad sectoral context and interac-
tions, which can strongly shape the future evolution of indi-
vidual systems of interest (e.g., water) (Dolan et al., 2021).
This exploration of broad interactions can require sacrificing
the resolution at which individual systems (e.g., water) can
be explored. This has enabled GCAM’s use to study issues
such as the water resource implications of climate mitigation
(Hejazi et al., 2014a), the economic impacts of global wa-
ter scarcity (Dolan et al., 2021), sectoral responses to water
scarcity (Cui et al., 2018), future virtual water flows (Graham
et al., 2023, 2020), and the regional implications of global
water scarcity (Giuliani et al., 2022).

The water sector in GCAM is represented as markets with
regional detail at the level of 235 large global river basins
(Kim et al., 2016). As with other physical flows, such as elec-
tricity and agricultural commodities, GCAM seeks to solve
for the market prices that equate water supply and demand
in every water basin. The presence of “markets” and “prices”
in GCAM is not intended to reflect literal markets on which
water quantities are traded, though such markets do exist in
some places. Rather, prices (and the markets that set them)
allow the model to establish two key facts. First, different
classes of water users (agriculture, electricity, etc.) experi-
ence different levels of access to water resources. In some
places, this differentiated access is controlled through prices;
for example, the agriculture sector may receive subsidies that
effectively increase its access to affordable water resources,
whereas, in other regions, access may be controlled by com-
plex (and sometimes legally binding) water allocation rules.
GCAM uses markets, and sectorally differentiated pricing
within those markets, as a mechanism to reproduce histori-
cally observed water allocations. Note that, since the water
basin is the smallest unit of analysis for GCAM, water is al-
located not to individual holders of the water rights but to a
highly aggregated class of rights holders (e.g., farmers). Sec-
ond, unsatisfied demands for water have consequences – re-
duced production. The amount of water in use is determined
by the amount physically available. Thus, when demand ex-
ceeds renewable supply in the model, runoff is reduced, and
the amount of water physically available in the basin is re-
duced to a new, lower level. The “shadow price” of water
rises because end-users cannot use more water than there is
in the basin, leading to the exploitation of more expensive
water sources (e.g., deeper groundwater and desalinated wa-
ter), shifts to more water-efficient technologies, a reduction
in crop production, or increases in trade from regions that
have more affordable water supply (e.g., imports). Shadow
prices are close to zero when the renewable water supply
exceeds demand (i.e., when cheaply available surface water
does not pose a binding constraint).

2.2.2 Water demand

Water demand is estimated for six sectors: irrigation, live-
stock, primary energy production and processing, electric-
ity generation, industrial use, and municipal use (Hejazi et
al., 2014a, b). The model includes bottom-up estimates of
demands in most sectors, based on the level of production
and technology mix in each sector, which is in turn driven
by socioeconomic or other factors. Future irrigation wa-
ter demand depends on the evolving share of irrigated land
within a particular basin–region intersection, the individual
crop classes grown on that land and their water require-
ments (i.e., a coefficient that establishes water demand per
unit of output), and the cost for different water sources. Wa-
ter coefficients vary by crop and region. Basin-level irriga-
tion (i.e., blue water) demands are specified for 12 distinct
crop classes (Chaturvedi et al., 2015; Mekonnen and Hoek-
stra, 2011). Water demands per unit crop produced are grad-
ually reduced over the century to reflect projected water effi-
ciency improvements (based on Bruinsma, 2009). Note that
land use regions are subsumed into GCAM’s river basins,
and thus GCAM’s representation of land has similar regional
characters to that of water, operating at the scale of 384
basin–region intersections, which are defined as the intersec-
tions between the model’s 235 water basins and 32 energy–
economy regions. Besides irrigation demands, various cool-
ing technology options are considered with specific water de-
mand coefficients for electricity generation, while primary
energy production estimates consider water demand per unit
energy produced for each fuel. Industrial manufacturing’s
demands encompass self-supplied surface and groundwater,
excluding power generation and municipal use, which are
accounted for in their respective categories. Livestock wa-
ter needs rely on fixed, region-specific coefficients without
a distinction between withdrawals and consumption, while
municipal use depends on population, gross domestic prod-
uct (GDP), and water prices. Further details about water de-
mands are documented in the GCAM documentation (Joint
Global Change Research Institute, 2023).

2.2.3 Water supply and the representation of reservoir
storage

In GCAM, water supply can come from renewable water,
nonrenewable (i.e., fossil) groundwater, and desalinated wa-
ter. Renewable water accessible by humans (through reser-
voirs and canals) is a relatively more affordable source of
water to the human system, as it does not require the sub-
stantial energy input associated with accessing groundwater
and desalinated water. Renewable water supply accounts for
both direct surface water extraction and shallow-groundwater
pumping that draws on recharged groundwater and captured
streamflow. This study focuses on improving GCAM’s re-
newable water supply component only, though, as we will
show, these improvements can ultimately alter future water
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usage behavior in other supply categories. The process for
defining a renewable water supply curve for each basin is not
described in detail in previous publications, so we describe it
in detail here to better contextualize our unique contribution
described in Sect. 2.3.

The current water sector in GCAM (from GCAM v5.0 to
the latest v7.0 at the time of writing this paper) and GCAM’s
data system, gcamdata (Bond-Lamberty et al., 2019), use
three key data points to establish a renewable water supply
curve (Kim et al., 2016) (Fig. 3). First, the model identifies
the maximum possible quantity of water that can be exploited
in a basin and assigns it a fixed steep price (USD 10 m−3; all
dollar amounts are in 1975 values of the USD) to indicate
the unlikelihood of accessing 100 % of the basin’s maximum
renewable water (i.e., max point in Fig. 3). In the absence
of climate change impacts, the long-term mean annual flow
for each basin serves as the upper limit to available renewable
supply. This value is computed using historical annual runoff,
which is computed at gridded 0.5° spatial resolution in Xan-
thos, a global hydrological model (GHM) (Y. Liu et al., 2018;
Vernon et al., 2019). This upper limit represents the max-
imum water supply that could be derived from a fully regu-
lated river basin managed to maximize water yield – meaning
that water users can readily access the mean flow at excess
cost. The high cost associated with accessing this upper limit
reflects the likely high cost associated with extensive reser-
voir deployment but without modeling the unique cost of that
reservoir deployment in each basin.

Only a portion of the maximum basin runoff described
above is available for immediate and relatively inexpensive
use, depending on environmental flow requirements and in-
stalled infrastructure for capturing, transporting, and storing
water. Thus, the second data point (i.e., accessible point in
Fig. 3) on a given basin’s cost curve establishes the quantity
of water that is cheaply accessible, based on annual natu-
ral streamflow, annual baseflow, and existing reservoir stor-
age capacity (Kim et al., 2016). GCAM assigns this second
data point a fixed low price of USD 0.001 m−3. This “acces-
sible” portion of renewable water, defined in Eq. (1) below,
is calculated for the majority of basins as the volume of his-
torical annual runoff that is potentially stable (i.e., available
even in dry years; Postel et al., 1996). This volume is deter-
mined by simulating the effects of both baseflows and in situ
storage reservoirs included in the GRanD inventory (Kim et
al., 2016; Lehner et al., 2011), with an allocation of 10 % of
streamflow for environmental purposes.

QAt
i =max

(
0,min

(
QTt

i −EFRi,QBt
i −EFRi +RSi

))
, (1)

where QAt
i , QTt

i , and QBt
i (in km3 yr−1) represent annual

volumes of accessible renewable water, natural streamflow,
and baseflow, respectively, in basin i and year t ; EFRi is the
environmental flow requirement for each basin, and RSi is
total reservoir storage capacity in each basin i in the base
year (2015 for the version of the model used for this publi-
cation). The term “max” in Eq. (1) makes sure the volume

Figure 3. An example of a renewable freshwater supply curve in
GCAM which captures the cost of supplying increasing quantities
of water. The figure highlights how reservoirs are currently repre-
sented in GCAM to clarify our contribution in this paper to the rep-
resentation of reservoirs.

does not take negative values, while “min” allows using the
lesser of the net accessible streamflow (QTt

i −EFRi) and net
accessible surface water in any situation, including droughts
(QBt

i −EFRi +RSi). Streamflow and baseflow volumes are
produced using Xanthos. The time series of QAt

i values from
Eq. (1) is used to calculate the accessible fraction, which is
defined as the ratio of the historical average annual accessible
water over the historical average annual runoff.

In basins for which estimates of historical groundwater de-
pletion are available, or approximately one-fifth of basins,
the accessible portion of renewable water is estimated with
historical annual water withdrawals (Joint Global Change
Research Institute, 2023; Hejazi et al., 2014b) and groundwa-
ter depletion data (Scanlon et al., 2018), described in Eq. (2).
This back-calculation defines accessible water as the max-
imum annual total water withdrawals from 1990 to 2015
(QWmax

i ), excluding the supply from groundwater deple-
tion (GDi) observed over a historical calibration period. Us-
ing these three points (i.e., USD 0.00001 m−3 for no supply,
USD 0.001 m−3 for the accessible fraction, and USD 10 m−3

for maximum runoff), gcamdata creates a 20-point curve
(shown in Fig. 3), with the accessible fraction being the 10th
point.

QAi = QWmax
i −GDi (2)

Reservoirs are represented in Eq. (1) (and thus in the re-
sulting cost curve in Fig. 3), but there are four aspects of the
existing approach to representing reservoirs that we seek to
improve upon here. First, setting aside baseflow and environ-
mental flow requirements momentarily, Eq. (1) essentially
assumes that the cumulative historical reservoir storage ca-
pacity in each basin represents the annual quantity of cheaply
accessible water that reservoirs provide. However, the quan-
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tity of water that reservoirs effectively supply to meet down-
stream demand (referred to as the “yield”) is not limited to
the maximum physical volume of water that can be stored in
reservoirs themselves (i.e., their capacity); rather, a key value
of storage (in the context of water supply) is the capability to
release a yield for downstream use that can consistently meet
sub-annually varying demand. The yield is strongly affected
by the intra-annual variability in the inflow and diverse de-
mands over a year, in addition to the limit from the reservoir’s
storage capacity. This yield may far exceed the physical stor-
age capacity of the reservoirs in a basin.

Second, and related to the first point, the existing GCAM
approach does not dynamically simulate the capability of
storage to attenuate natural inter- and intra-annual variabil-
ity, including drought events. Our new approach will seek
to overcome this limitation by directly simulating the sub-
annual mass balance of water storage in each time period
to account for the influence of such shocks (and reservoirs’
modulation of them) on reliable water supply. For example,
this allows us to explore how increasingly climate-induced
variability in reservoir inflows in the future may alter the
quantity of water that can be reliably supplied from reser-
voirs.

Third, the existing approach does not account for the cost
of reservoir storage itself, which is critical for establishing
the cost of water supply, particularly as reservoir capacity
expands in the future. Here, we capture the leveled cost of
constructing reservoir storage.

Finally, the existing approach does not account for the
endogenous, cost-based expansion of reservoir storage over
time. Previous papers have explored the implications of po-
tential reservoir expansion pathways (Birnbaum et al., 2022;
Dolan et al., 2021; Turner et al., 2019) but did so by altering
the exogenously assumed accessible water fraction (Eq. 1)
to reflect an increased total storage capacity. Here reservoir
expansion occurs over time based on the cost of supplying
water from reservoirs, and the level of expansion over time
selected by GCAM is tracked by GLORY. We make these
various improvements within the context of GCAM’s water
supply cost curve approach (i.e., without making changes to
GCAM’s code base) using GLORY, which is discussed next.

2.3 GLObal Reservoir Yield (GLORY) model

2.3.1 Overview

Prior to launching an optimization, GLORY processes sev-
eral global input data sets (and model outputs; described in
Sect. 2.3.4 to 2.3.6) related to the hydrologic and economic
characteristics of each global river basin (Fig. 2). These char-
acteristics include reservoir inflows, which can be produced
by a GHM with global coverage over a long-term time hori-
zon (e.g., 2020–2100) to capture climate impacts; land exclu-
sion layers, denoting any grid cells in the world where there
are significant constraints to building reservoirs (e.g., pro-

tected areas); global reservoir data, including the purpose and
capacity of existing reservoirs; the storage–physiography–
cost relationship, indicating the cost of building reservoirs at
different locations; and historical monthly patterns of water
demand, which help to determine whether reservoir release
patterns are producing a yield consistent with the sub-annual
timing of demand. We will cover each of these input data
sets in detail in the following sections. GLORY comes pre-
populated with these data with global coverage, but the user
can substitute their own data sets if desired (e.g., a new hy-
drological model’s output).

Next, GLORY launches an LP-based optimization to pro-
duce a capacity–yield curve (Loucks and Van Beek, 2017)
for each basin that defines the maximum reservoir discharge
(i.e., yield) that increasing levels of reservoir storage capac-
ity can produce. (We use LP, as opposed to another tech-
nique (e.g., dynamic programming), because LP problems
can be solved quickly, and many water resources problems
can be formulated effectively as LP problems (Loucks and
Van Beek, 2017)). Next, GLORY combines the capacity–
yield curve with the leveled cost of building different levels
of reservoir storage (using storage–physiography–cost rela-
tionships) to produce a renewable water supply cost curve
for use by GCAM in the time period. To produce this cost
curve, GLORY runs a single optimization independently for
each basin. GLORY can operate using only the input data
described above; however, it can also be operated in two-
way feedback mode (as we do here), wherein it receives an
additional input – the sectoral water demand outputs from
GCAM. These water demands, to be discussed in more de-
tail shortly, help to quantify (1) any discrepancy that exists in
the timing of monthly reservoir inflows versus demands and
(2) the corresponding storage capacity (through capacity–
yield curve) used or expanded to meet the demands. Ulti-
mately, GCAM uses the supply curve produced by GLORY
as one of several inputs to make decisions on how much sur-
face water, groundwater, and desalinated water to deploy to
meet evolving demands. GLORY’s role is to identify a “pos-
sibility curve” that defines the cost of supplying surface wa-
ter, whereas GCAM ultimately makes the economics-driven
decisions regarding how much storage to deploy because
GCAM considers information that GLORY does not, such
as the cost and availability of other sources of water (e.g.,
nonrenewable groundwater).

2.3.2 Mathematical formulation

GLORY executes 235 unique LP-based optimizations to
identify a capacity–yield curve for each of the 235 global
river basins in each 5-year period, building on the implemen-
tation from L. Liu et al. (2018). It does so by unifying each
basin’s distributed reservoirs into a single “virtual reservoir”
that reflects the cumulative storage capacity of the basin. Im-
portantly, the spatial assumption underlying the concept of
the virtual reservoir does not necessarily position the virtual
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reservoir at the basin’s outlet. Rather, we assume that the vir-
tual reservoir can access the all the water resources within
the basin, enabling collaborative optimization of water sup-
ply to meet demand. Additionally, each basin’s virtual reser-
voir has a fractional sub-annual distribution of inflows and
evaporation that reflects the specific characteristics of exist-
ing distributed reservoirs within that basin. Further details
on the construction of the sub-annual inflow and evaporation
profile are provided in Sect. 2.3.4.

The LP has two primary functions. Instead of seeking to
reproduce historical behavior, it seeks only to sketch out a
capacity–yield possibility curve that reflects how much yield
could be achieved if the system was operated to maximize
yield. Rather than simply maximizing annual yield, the LP
forces the reservoir to adhere to monthly demand patterns.
This produces a capacity–yield curve that defines the maxi-
mum quantity of water that can be annually supplied from a
basin’s virtual reservoir for different levels of virtual reser-
voir storage capacity, K , given the discrepancy between the
sub-annual distribution of inflow and demand. It is this dis-
crepancy between the scale and sub-annual distribution of
reservoir inflow and demand that creates the need for storage
in the first place. However, once the storage capacity reaches
a certain level, expanding storage capacity will not increase
annual yield beyond the mean annual inflow over the 5-year
period.

Key inputs relevant to producing this capacity–yield curve
are (1) the character of the basin hydrology (and thus reser-
voir inflows and evaporation) during the 5-year GCAM time
period and (2) the monthly total water demand patterns for
each basin. The capacity–yield curve is dynamically up-
dated in each GCAM period because, while storage capac-
ity may remain the same over time in a given basin, cli-
mate change or other influences alter hydrology and thus
the renewable supply that can be achieved for a given level
of capacity. GCAM dynamically supplies GLORY with the
most recent (i.e., the previous time period’s) level of sec-
toral demand, which can in turn be translated into an im-
plied GCAM monthly demand pattern for use by the LP (as
discussed later). Next, the capacity–yield curve is combined
with data defining (1) the cost of constructing different lev-
els of reservoir storage capacity and (2) the constraints on
the maximum levels of exploitable storage capacity (e.g., ac-
counting for protected areas) to create an actual cost curve
based on a leveled “overnight cost” (i.e., physical infrastruc-
ture cost). The process for constructing the cost curve will be
introduced shortly, following the introduction of the generic
LP formulation.

The objective of the LP is to maximize the annual water
yield from a given reservoir storage capacity K , subject to a
set of constraints. The LP consists of a monthly virtual reser-
voir mass balance described in Eq. (4), which allows for both
environmental flows EFt , return flow RFt , and spillage Xt , in
addition to the net inflow. Equation (5) ensures a steady-state
reservoir storage, which assumes the monthly hydrologic and

demand patterns repeat each year. Equation (6) ensures reser-
voir storage does not fall below the minimum storage or ex-
ceed the maximum storage capacity. Equations (7) to (9) de-
note the monthly release, inflow, and reservoir evaporation
using the corresponding annual volume and monthly profiles
(Figs. S3, S4) described in Eqs. (12) to (13). Once a virtual
reservoir storage capacity, K , is set as input to the LP, the an-
nual reservoir evaporation Eg can be determined based on the
non-linear relationships between storage capacity and reser-
voir surface area that is derived from the existing reservoirs
in each basin (Fig. S7). Equation (7) indicates that the reser-
voir’s monthly release must exceed the monthly “demand”.
The sum of these monthly releases equals the annual yield
that is being maximized in Eq. (3). Equation (7) reflects that
the goal is not simply to maximize annual yield but to do so
while meeting the historical sub-annual pattern of monthly
demands. Equation (11) allows a limit to be placed on total
reservoir inflow because of the potential for cascade reservoir
systems to re-use water. The yield curve that results from this
exercise is shown in Fig. S6.

YA, (3)

subject to

St+1 = St + It −Et −EFt −Rt +RFt −Xt , (4)
St=13 = St=1, (5)
Smin ≤ St ≤K, (6)
Rt ≥ ftYA, (7)
It = ptIg, (8)
Et = ztEg, (9)
EFt = 0.1It , (10)
RFt =m(Rt +EFt ) , (11)
12∑
t=1

ft = 1, (12)

12∑
t=1

pt = 1, (13)

12∑
t=1

zt = 1, (14)

where YA is the annual amount of water (yield) that can
be provided by a particular virtual reservoir configuration,
which we seek to maximize in this LP; St is virtual reservoir
storage in month t (t = 1, . . . , 12); Rt is the virtual reservoir
release in month t and is the primary decision variable in this
LP; Xt is reservoir spillage, which will not be counted as part
of yield; Et is evaporation from the virtual reservoir surface
in month t , which is a function of total storage capacity; It

is the monthly naturalized inflow (not reflecting alteration by
reservoirs or consumption) to the virtual reservoir in month t ;
EFt is the environmental flow requirement for the reservoir in
month t , defined further in Eq. (10); RFt is the return flow in

https://doi.org/10.5194/gmd-17-5587-2024 Geosci. Model Dev., 17, 5587–5617, 2024



5596 M. Zhao et al.: GCAM–GLORY v1.0

the virtual reservoir in month t , which represents the reusable
part of the release from distributed reservoirs, defined further
in Eq. (11); K is any assumed storage capacity of the virtual
reservoir in the GCAM model period, between 0 and future
potential storage capacity; Ig and Eg are the sum of mean an-
nual basin runoff (km3 yr−1) and the mean annual evapora-
tion (km3 yr−1), respectively, over the GCAM model period
(5 years) of interest (e.g., 2031–2035 for GCAM year 2035)
from all distributed reservoirs that, in total, have a summed
storage capacity K; ft , pt , and zt represent the fraction of
annual water demand, inflow, and evaporation, respectively,
that occur on average in month t over the GCAM model pe-
riod (5 years) of interest, where the fractions must sum to 1
over 12 months; m is the fraction of flow released from dis-
tributed reservoirs (Rt +EFt but not spillage, which is not
reliably available) that is reusable in the river system, based
on consumptive water use relative to demand, assumed to be
0.1 (Döll et al., 2014); Smin is the reservoir minimum stor-
age requirement for functional reservoir operation, assumed
to be 0.

2.3.3 Calibration and validation

GLORY’s overarching purpose is to provide GCAM with
information about the cost of supplying water from reser-
voirs. GCAM balances water supplies and sectoral (e.g., agri-
cultural) demands at the scale of large river basins (e.g.,
the entire Amazon basin). In sketching out the “possibility
space” for renewable water supply, GLORY does not seek
to reproduce the exact water management and release strate-
gies for the current and future reservoir storage installed in
each basin. In fact, observed data to do so at a global scale
do not exist, even for the current stock of global reservoirs
(Abeshu et al., 2023). Instead, our goal here is to identify
how much water could be released from a basin’s cumula-
tive reservoir storage to meet downstream demands (should
the reservoir be operated to maximize yield), given the dif-
ferences in sub-annual timing of reservoir inflows and de-
mands. This provides a reasonable upper bound that helps to
constrain GCAM’s water supply behavior. Rather than cali-
brating GLORY against observations, instead we seek to val-
idate, and/or improve the fidelity of, the input data sets and
constraints that guide the optimization procedure. For exam-
ple, the hydrology model that produces reservoir inflows is
calibrated and validated. We also conduct a form of valida-
tion of GLORY’s capacity–yield curves considering two as-
pects. The first aspect is to check that the level of annual wa-
ter supply achieved with existing reservoir storage capacity
(i.e., historical water demand data) is less than or equal to the
maximum annual release (i.e., yield) that GLORY suggests
for that same volume of the existing historical storage capac-
ity for a given basin. We confirm this finding in Fig. S10a
with global water demand data (Huang et al., 2018), demon-
strating that our approach provides a reasonable upper bound
on the water supply without attempting to represent each

basin’s unique water management behavior. The second as-
pect is to check that the amount of reservoir annual release
from existing reservoir storage capacity (i.e., historical reser-
voir outflows) is within the range of the annual release (same
as yield) that GLORY produces at the same volume of the
existing storage capacity. We confirm this in Fig. S10b with
reservoir outflow data ResOpsUS (Steyaert et al., 2022) for
the US, indicating that our approach estimates a reasonable
release at basin scale.

2.3.4 Input layer: reservoir inflow and demand data

Natural reservoir water fluxes

GLORY requires as input the average monthly profiles of
reservoir inflow, evaporation, and demand. Monthly profiles
are calculated using monthly data as the fraction of the time
series variable value for each month over the sum of all
12 months. Monthly profile of inflows to, and surface po-
tential evaporation from, the virtual reservoir is derived from
the Xanthos model’s monthly streamflow time series output
at grid cells with existing reservoirs for the 5-year GCAM
period of interest. We consider this approach as a middle
ground to address the fine resolution from hydrologic vari-
ables and the coarse resolution from GCAM in terms of two
key aspects. First, the monthly profiles evolve with the inter-
annual and intra-annual variability in the changing climate.
Second, we initialized the inflow and evaporation profiles, fo-
cusing specifically on the grid cells with reservoirs to capture
hydrologic patterns in reservoir-located areas. The monthly
profiles for a virtual reservoir are calculated as the averaged
profiles from these gridded inflows and evaporation.

These future reservoir water flux time series can be gen-
erated for different climate change scenarios simulated us-
ing general circulation models (GCMs) with Representative
Concentration Pathways (RCPs). The specific scenarios we
explore in this paper, to be introduced shortly, include one
example of a climate impact scenario (e.g., MIROC-ESM-
CHEM and RCP 6.0; see more details in Sect. 2.4). The his-
torical water flux is derived from Xanthos outputs forced by
the reanalysis WATer and global CHange (WATCH) histor-
ical climate data set (Weedon et al., 2011). Our simulation
of the mass balance of water in the reservoir (Eq. 4), includ-
ing natural shocks (e.g., droughts) in the sequence of inflows,
enables us to better reflect the occurrence of drought events.

For inflow and evaporation, the monthly profiles over each
5-year window of the GCAM periods are calculated from
2020 to 2050 (using data from 2016 to 2050). To be consis-
tent with the dynamic recursive modeling design of GCAM,
inflow and evaporation values for each month are taken as
the average values over the backward 5-year window of the
GCAM period. For example, January’s runoff is the mean of
five January runoff values over 2021–2025 for the GCAM
period 2025. This captures the general sub-annual pattern
of inflow, along with any evolving inter-annual patterns in
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changing water availability. GCAM is often fed with highly
smoothed data for the purpose of assessing long-term trends
in sectoral interactions, as well as to avoid solution failures
due to its partial equilibrium structural design. Since GLORY
is GCAM-considerate, the inputs and outputs of the GLORY
model are designed to represent the averaged behavior during
each GCAM period. GLORY is certainly capable of being
used to explore more variable inflows and to capture drought
events, but we leave exploration of these dynamics to future
studies. A basin’s optimization for a particular GCAM pe-
riod (e.g., 2050) is executed in the absence of any carryover
of information about reservoir storage levels in the previous
5-year time period (e.g., 2045). (We feel this is a reason-
able assumption as the storage levels for many large reser-
voirs globally are uncorrelated across time lags exceeding
5 years.) The purpose of the method we introduce here is
to avoid reflecting unsustainable dynamics, such as progres-
sive drawdown of reservoir levels during prolonged periods
of drought. Rather, we seek to sketch out the possibility space
that defines how much water could be supplied if the objec-
tive was to sustainably maximize yield.

Reservoir water demands

To execute an optimization in the first model time period
(2015), GLORY requires as input the monthly fractions
of historical total annual water demand that occur in each
month. We use water demand data from 2005 – 2010 for this
purpose (Huang et al., 2018). In future time periods (e.g.,
starting in 2020), the demand profile is updated using the an-
nual sectoral demand from GCAM’s previous time step from
six GCAM sectors, namely irrigation, livestock, municipal,
electricity, industry, and primary energy. To do this, sectoral
monthly water demands are temporally disaggregated from
GCAM’s annual demands for each sector using a histori-
cal monthly demand profile for each sector from Huang et
al. (2018). This allows us to superimpose all sectoral monthly
demand curves on top of one another to generate the total de-
mand profile for the future time period. We then calculate
the fraction of total demand occurring in each month, which
serves as input to the LP optimization. Thus, the raw mag-
nitude of demands is not used by the LP, except in the sense
that they provide a weighted adjustment of the monthly total
water demand profile. For example, if GCAM projects that
the future annual irrigation water withdrawals will dispropor-
tionately increase over time in a particular GCAM scenario
and time period, this information will translate into corre-
sponding disproportionate increase in monthly irrigation wa-
ter demand compared to other sectors. Consequently, the to-
tal monthly demand will be predominately influenced by ir-
rigation water demand. As a result, the profile of monthly
water demand fraction will closely resemble that of monthly
irrigation demand profile. This may increase or decrease the
yield that is possible to achieve with a given level of reservoir
storage, depending on whether sub-annual supplies and de-

mands are misaligned in time. We address this issue in detail
in the following section.

Discrepancy between water demand and surface water
supply

Reservoir storage plays an important role in managing or
buffering the discrepancy between natural water availability
(i.e., supply or inflows) and demands. Our approach captures
the intra-annual supply–demand discrepancies caused by the
hydrological and socioeconomic drivers that previously were
not considered in GCAM and explores the role of reservoir
storage in providing water supply in different regions of the
world. As captured in Eqs. (3)–(14), the capacity of a reser-
voir system to reliably supply water depends on the sub-
annual variations and timing differences between streamflow,
evaporation from the reservoir surface, and demand. Water
deficit often occurs when there is not sufficient reservoir stor-
age in place to spatiotemporally redistribute water and meet
water demand. To quantify the intensity of water deficit that
would exist under a shortage of reservoir storage, and there-
fore identify the regions that could benefit most from storage
capacity expansion, we use a “socioeconomic drought” met-
ric (Wilhite and Glantz, 1985). The socioeconomic drought
intensity (SEDI) is defined as the ratio of total water deficit
within a year (i.e., volume of demand that exceeds supply
when demand > supply) to the duration of the deficit in the
absence of any reservoir storage (Heidari et al., 2020).

Figure 4 shows the average historical (i.e., 2005–2010)
SEDI levels globally, with examples of average monthly wa-
ter deficit and surplus for six basins. In their unregulated
states, most basins have no historical demand deficiency
issues (i.e., 171 basins). However, numerous river basins
around the world experience moderate to high deficit levels
(e.g., 23 basins have log(SEDI) values higher than 1). Most
of the basins with high SEDI values are noticeably clustered
in the Middle East and Asia, though there are some regions
experiencing this in the Americas. For example, in its un-
regulated state, the California basin has a severe water deficit
from June to October because of increased demand for irriga-
tion water, whereas abundant water resources become avail-
able during other times of the year when demands are lower.
(The primary river source of water supply within the Cali-
fornia basin includes the Sacramento River and San Joaquin
River.) This dynamic means that reservoir storage potentially
offers significant value.

2.3.5 Input layer: reservoir storage capacity
exploitable potential (land exclusion zones)

The potential to expand reservoir storage capacity in the fu-
ture in each basin is limited to land areas where reservoirs
can feasibly be constructed. Reservoir storage capacity ex-
ploitable potential, referred to henceforth as “exploitable po-
tential”, is the sum of existing reservoir storage capacity and
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Figure 4. Average surplus and deficit between water supply and demand during historical 2005–2010 period in six selected basins. The
historical demand is from Huang et al. (2018), and the historical inflow is derived from Xanthos runoff driven by WATCH climate forcing
(Weedon et al., 2011). Surplus occurs when demand is lower than inflow (shown in green), and deficit occurs when demand is higher than
inflow (shown in red). The global map shows the socioeconomic drought intensity (SEDI) as the ratio of total water deficit within a year to the
duration (in months) of the deficit. The SEDI is scaled using logarithmic transformation to reduce the variance in the SEDI due to different
magnitudes of water amount across basins. White color indicates there is no socioeconomic drought (supply > demands; i.e., demands are
always met using supply).

future exploitable storage capacity at basin scale. The ex-
ploitable potential serves as a constraint for K in Eq. (6).
We identify the exploitable areas as the overlap among four
different land exclusion layers. Our approach is largely based
on L. Liu et al. (2018), but we also filter out grid cells that
do not contain existing waterbodies suitable for the siting of
reservoirs (i.e., rivers). The exclusion layers include regions
of high population historically (Jones et al., 2020), histori-
cal protected areas (UNEP-WCMC and IUCN, 2022), his-
torical cropland areas, and the absence of waterbodies (e.g.,

rivers and lakes). To ensure consistency with the available
data, we assume that the exclusion layers remain unchanged
from the 2010 historical benchmark. For the population ex-
clusion layer, we use the 0.125° spatial resolution population
trajectory (Jones et al., 2020) from 2010 under Shared So-
cioeconomic Pathway (SSP) 2 “middle of the road” (O’Neill
et al., 2017). To define protected areas, we use the World
Database on Protected Areas (WDPA) which specifies terres-
trial and marine protected areas as polygon shapes. To define
cropland areas, we use 5 arcmin gridded resolution spatial

Geosci. Model Dev., 17, 5587–5617, 2024 https://doi.org/10.5194/gmd-17-5587-2024



M. Zhao et al.: GCAM–GLORY v1.0 5599

land use and land cover projection from Demeter (Vernon et
al., 2018; Chen et al., 2019), which disaggregates GCAM’s
basin-scale land allocation of 2010 to grid scale. Waterbod-
ies are identified using Global Lakes and Wetlands Database
(GLWD) Level 3 (Lehner and Döll, 2004), including land
types 1, 2, and 3 (lakes, reservoirs, and rivers, respectively).
All spatial data, if not already, are rasterized, aggregated or
georeferenced to the same 0.5° resolution. Using these four
layers, we identify grid cells as exclusion cells for reservoirs
(i.e., where no new reservoirs can be built) if any of the fol-
lowing criteria are satisfied (see Fig. S5): (1) population den-
sity for the grid cell is higher than 1244 per capita per kilo-
meter squared, (2) the grid cell has protected land, (3) more
than 10 % of the land cover within the grid cell is crop land,
and (4) no waterbodies exist in the grid cell. Note that the fea-
sibility of constructing reservoirs can be influenced by many
other factors, such as geological and seismic stability, which
we do not consider here. We have chosen to emphasize these
four primary constraints due to the availability of data with
global coverage and our assumption of a more flexible reser-
voir expansion policy.

The viable grid cells that remain (after removing cells that
meet these four exclusion criteria) are grouped into three
grid cell types according to the relative potential of adding
new capacity to existing capacity and are mapped in Fig. 5.
Type 1 (referred to as “exploited”) indicates grid cells with
existing reservoirs (based on the GRanD database), where all
feasible reservoir sites are already exploited. Type 2 (referred
to as “partially exploited”) indicates grid cells that contain
existing reservoirs but where more reservoirs could poten-
tially be built. Type 3 (referred to as “unexploited”) indicates
grid cells with no existing reservoirs but in which new reser-
voirs can potentially be built. The remaining grid cells (i.e.,
around 60 971 transparent grid cells) have no reservoir ex-
ploitable potential. The color in each basin in Fig. 5 shows
the ratio (fraction) of the excluded area to the water surface
area within the basin. The primary category that drives each
basin’s exclusion fraction differs by basin. For example, for
regions with high fractions of excluded area that are also cold
or dry (e.g., Australia or Greenland), the limited availability
of surface waterbodies drives the high rate of exclusion. For
some basins (e.g., Zambezi Basin in Africa), protected areas
dominate. For other basins (e.g., Volga basin in Europe and
Parnaiba Basin in South America), several categories con-
tribute equally to the total excluded area.

Several hotspots emerge (in Fig. 5) that have large num-
bers of grid cells where reservoirs could feasibly be built, in-
cluding in South America (e.g., Orinoco, Amazon, La Plata,
and São Francisco), Africa (e.g., Congo Basin and the Nile),
and North Asia (e.g., Yenisey and Lena). North America,
eastern Europe, Australia, and eastern China are clustered
with existing reservoirs, and feasible exploitable areas are
much fewer. The spatial variation in the exploitable poten-
tial differentiates the supply and demand potential across the

basins, which can affect the long-term development of infras-
tructure.

2.3.6 Input layer: reservoir construction cost

We adopt the methodology introduced by Wiberg and
Strzepek (2005) to estimate the cost of reservoir storage con-
struction in each basin. The cost of reservoir storage is af-
fected by a diversity of factors such as dam and reservoir
size, location, and physiography. Physiographic character-
istics are based on various factors, such as slope, topogra-
phy, vegetation, climate, and soil type. Wollman and Bonem
(1971) developed reservoir storage and cost relationships for
11 reservoir size classes in 10 physiographic zones across the
US. We are not aware of any comparable studies for non-US
regions. To enable applications of the storage capacity–cost
relationship to other regions, Wiberg and Strzepek (2005) de-
veloped a relationship between a physiographic zone and the
average slope of the zone. This generalized relationship en-
ables a form of regionalization in which we can use slope
as the regressor to assign any non-US region to its near-
est corresponding US physiographic zone. In this study, we
apply the positive cost–slope relationship for various reser-
voir size classes (see Table S2) from Wiberg and Strzepek’s
(2005) study to estimate the normalized unit cost of con-
structing reservoir storage in each of the 235 global basins.
The relationships indicate that higher slope and smaller stor-
age size will lead to a higher unit cost. We re-grid slopes onto
0.5° grid resolution using slope data from the Global Multi-
resolution Terrain Elevation Data 2010 (GMTED) data set.
The basin-averaged slope is calculated as the average of the
slopes in the grid cells that fall into grid cell types 1–3 (in
Fig. 5). The size of the new reservoir is estimated based on
existing reservoir sizes within a basin to determine the size
class. The normalized unit cost is then multiplied by the av-
erage value of unit cost for global reservoirs (Keller et al.,
2000) to obtain the scaled units of currency.

To make use of the relationships described in the previ-
ous paragraph (i.e., to translate new reservoir capacity in
each region into an overnight construction cost), we need to
make assumptions about the size of any new increment of
reservoir storage capacity. We assume each new increment
of reservoir storage capacity, referred to henceforth as the
storage expansion increment, is constant in magnitude for a
given basin, therein implying a construction that is identical
in size for each new reservoir. In reality, multiple factors af-
fect decisions surrounding the size of new reservoirs, includ-
ing sub-basin physiography, water sources, economic con-
straints, non-water supply objectives, hazard concerns (e.g.,
vulnerability to earthquakes), policy influences, culture, and
other factors. As a simplification, we assume dams and reser-
voirs need to be built on known waterbodies including exist-
ing reservoirs, rivers, and natural lakes (e.g., based on Hy-
droLAKES). This assumption excludes the sizes of new im-
poundments that result from expanding the upstream surface
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Figure 5. Global existing and exploitable types (0.5° grid cells). Type 1 (exploited) indicates grid cells that contain existing reservoirs and
in which no additional reservoir expansion is possible. Type 2 (partially exploited) indicates grid that have existing reservoirs but in which
more reservoirs can potentially be built. Type 3 (unexploited) indicates grid cells with no existing reservoirs but in which new reservoirs can
potentially be built. All remaining grid cells (not shown in the map) have no reservoir exploitable potential. The color of each basin denotes
the ratio of excluded areas to the basin’s total water surface area.

area when constructing reservoirs across a river or valley.
Thus, the storage expansion increment for a basin is deter-
mined as the average size of the existing reservoirs and lakes
located in the grid cell types 1–3 within the basin. For basins
without any exploitable grids, we calculate a replacement
value as the mean size of all existing lakes, regardless of ex-
pansion zone constraints. Finally, depending on the size class
into which the storage expansion increment falls, we estimate
the normalized unit capital cost (e.g., USD m−3) for storage
construction in each basin using equations from Table S2.
Figure 6 shows the currency-scaled unit cost of reservoir
construction across the global basins. Ultimately, the size of
the storage expansion increment within a basin plays an im-
portant role in determining the curvature of a supply curve,
which we will discuss in Sect. 3.2.

2.3.7 Water supply curve

A supply curve in GCAM describes the relationship between
the quantity of a commodity being supplied (e.g., surface wa-
ter or solar power) and the unit cost of that commodity. The
renewable water supply curve proposed in this study allows
GCAM to grow its reservoir water supply over time through

incremental investments in new reservoir storage capacity.
Just as electricity supply requires capital investments in new
power plants, reliably extracting surface water supply (via
reservoir storage) requires investments in reservoir capacity
that carry substantial leveled costs. Thus far, we have only
described our approach to generating the input elements re-
quired to construct a supply curve, rather than detailing the
construction of the supply curve itself. Specifically, we de-
scribed the generation of a capacity–yield curve in Sect. 2.3.2
and the cost of constructing reservoir storage in Sect. 2.3.6.
In this Sect. 2.3.7, we describe our approach to combining
these two threads of information to construct each basin’s re-
newable water supply curve.

The supply curve covers the entire range of possible sup-
ply quantities and associated prices. The base point of every
supply curve is at (0.0001, 0), meaning there is a small cost
(USD 0.0001 m−3), even if the supply is zero, to account for
externalities that occur in the absence of supply. Beyond this
point, increasing quantities of supply require increasing lev-
eled costs. This is a common characteristic among renewable
resource supply curves (including for electricity technologies
such as wind and solar power). This upward-sloping shape
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Figure 6. Global unit cost estimation of reservoir storage capacity construction in 2020 USD m−3.

reflects that exploitation of the resource becomes more costly
after the best components of the renewable flux (e.g., the best
regions or portions of the flow-duration curve for extracting
flow cheaply) are exhausted. The shape a given basin’s curve
takes depends on the amount of yield gained through reser-
voir expansion at various storage capacity expansion incre-
ments versus the corresponding capital costs of that expan-
sion.

Equations (15)–(18) describe our approach to generating
the set of points that define a renewable water supply cost
curve. The objective, captured by Eq. (18), is to identify a
set of supply curve points (Yj , Pj ) that define the quantity
of water supplied (Yj ) and the cumulative leveled cost (Pj )
to provide that quantity for cumulative increments of storage
capacity (Kj ) expansion. To produce the cost for each new
increment of investment in capacity expansion, we calculate
the leveled cost of the storage capacity (LCOSC) (Eq. 17),
which is given as the ratio of equivalent annual cost (EAC)
(Eq. 15) of each storage expansion increment to the yield
gained from that increment (Eq. 16). The EAC comes from
a capital recovery leveling that accounts for the cost (de-
scribed in Sect. 2.3.6) to build reservoir storage in each basin.
The gain in yield from storage capacity expansion comes
from the non-linear capacity–yield relationships defined in
Sect. 2.3.2. A supply curve is then constructed by accumulat-
ing the yield gain

(
1Yj

)
, as well as the corresponding leveled

cost (LCOSCj ) shown in Eq. (18), until the yield reaches a
preliminary end point where no more supply can be reliably
provided by reservoir storage. This preliminary end point is
determined either as the annual runoff or as the maximum
water yield from the maximum exploitable storage capac-
ity (Kmax is determined in Sect. 2.3.5), whichever is smaller
(Eq. 18). If the maximum water yield is smaller than the an-
nual runoff, the supply curve can still be extended to reach
the annual runoff to indicate the potential for acquiring water
supply through other (i.e., non-reservoir based) means, such
as costly water transfers and transport. To reflect the higher
cost of these additional renewable water supply measures,
we assume the leveled cost for the extended portion on the
supply curve is 5 times the reservoir cost.

EACi =
Ci × r(

1− (1+ r)−n
) +OM, (15)

1Yi = Y (Ki)−Y (Ki−1) , (16)

LCOSCi =
EACi

1Yi

, (17){
Yj =

∑j=i

j=11Yj = Y
(
Kj

)
Pj =

∑j=i

j=1LCOSCj

, Yj ≤min
(
Ig,Y (Kmax)

)
,

(18)

where Ci (billion USD) is the overnight capital cost for the
expansion storage at the expansion stage i; r is the discount

https://doi.org/10.5194/gmd-17-5587-2024 Geosci. Model Dev., 17, 5587–5617, 2024



5602 M. Zhao et al.: GCAM–GLORY v1.0

rate that determines the present value for future cash flows,
assumed to be 0.05; n (years) is the reservoir useful lifetime,
assumed to be 60 years in order to be conservative when con-
sidering factors like sedimentation; OM (billion USD) is the
fixed annual operation and maintenance cost, assumed to be
0.17 % of the capital cost (Petheram and McMahon, 2019); Y

indicates the non-linear relationship between storage capac-
ity and yield; Ki (km3) is the storage capacity at the expan-
sion stage i; 1Yi (km3) is the yield gain when basin storage
capacity increases from Ki−1 to Ki ; LCOSCi (USD m−3)
is the leveled cost of storage capacity when increasing from
Ki−1 to Ki , defined as the average revenue per unit water
used that would be required to recover the costs of building
and operating reservoir facilities during the project lifetime;
Pj (USD m−3) is the water price at stage j ; i indicates the
ith expansion stage, i = 1, . . . , m; m indicates the total num-
ber of expansion stages as the integer quotient of the “storage
capacity exploitable potential” and the “expansion storage”;
and j indicates the j th point on the supply curve, j = 1, . . . ,
i. We show examples of supply curves as part of our results
in Sect. 3.2.

2.4 Scenario design

We designed a set of stylized scenarios (Table 1) to explore
two research questions that highlight the types of science
questions that can be posed with this new GCAM–GLORY
capability: (1) how does the cost of supplying water from
reservoir storage vary across global river basins, and to what
extent is it shaped by hydrologic versus economic charac-
teristics? (2) What insights and dynamics emerge from the
new approach, and to what extent can they be attributed to
human–Earth system feedbacks? Our four scenarios, which
successively build on one another, are designed to high-
light key differences in water supply–demand dynamics that
emerge from our new approach (compared to the existing ap-
proach in GCAM). The first two scenarios use GCAM as it
exists now, while the latter two scenarios use the new capa-
bility presented in this study.

The “Reference” scenario reflects GCAM as it exists now
(i.e., without the advances proposed by our study) and thus
establishes a baseline against which scenarios using our new
approach can be compared. The Reference scenario is a
“business as usual” (BAU) case, representing a future path-
way that extends historical trends for socioeconomics (i.e.,
consistent with SSP2 population and GDP assumptions),
climate (i.e., no climate impacts), technology, and policies
(Calvin et al., 2019). The renewable water supply curve in
the Reference is constructed by implementing the procedure
described in Sect. 2.2.3, which includes establishing the ac-
cessible water fraction (by applying Eq. 1, using historical
hydrologic time series and historical levels of reservoir stor-
age capacity), as well as the supply curve’s maximum value
(refers to the average historical annual runoff) in each basin.

The “Climate Impacts” scenario adds climate change im-
pacts (on water availability only) on top of the Reference
scenario. Specifically, we impose the influence of climate
change impacts on monthly regional water balances with
global coverage using climate forcing from MIROC-ESM-
CHEM (Watanabe et al., 2011) GCM under RCP 6.0 from
the ISIMIP2b (Frieler et al., 2017) simulation round. To build
the renewable water supply curve, we establish the accessi-
ble water fraction in the same way we did in the Reference
(i.e., applying Eq. 1, using historical hydrologic time series
and historical levels of water storage), but the supply curve’s
maximum value is different for each time step and calculated
using smoothed, climate-impacted future runoff time series
in each basin. We do not seek here to conduct a detailed anal-
ysis of the implications of climate change, which we leave to
a future study. Rather, we developed the Climate Impacts sce-
nario because it enables a more harmonized assessment with
our new GLORY-based approach, which explicitly accounts
for climate impacts. Despite the fact that it is perhaps more
representative of reality, we did not label the Climate Impacts
scenario as a Reference because GCAM does not yet account
for climate impacts in its default scenario. All of our scenar-
ios, including Climate Impacts, extend through 2050, which
is approximately when the different RCPs substantially di-
verge in their trajectories. Thus, the forcing level appearing
in our Climate Impacts scenario is reasonably representative
of climate forcing and impacts across different RCPs through
2050.

The latter two scenarios use our new GLORY-based ap-
proach to generating cost curves. Both scenarios are built
by ingesting the very same drivers from the Climate Impacts
scenario, though the climate impacts register differently than
in the first two scenarios because of GLORY’s representa-
tion of reservoir storage dynamics, capacity expansion, and
costs. The “No Feedbacks” scenario develops a new sup-
ply curve and passes it to GCAM in each time period but
does not include demand-based feedbacks from GCAM to
GLORY. In contrast, the “Feedbacks” scenario feeds sec-
toral annual water demand and solved water supply quantity
from GCAM to GLORY in each time step (details described
in Sect. 2.1.1 and 2.3.1). The difference between GLORY-
based scenarios and the Climate Impact scenario offers in-
sight into the incremental effect of our new approach to rep-
resenting reservoir storage in GCAM. Comparison between
the No Feedbacks and Feedbacks scenarios allows us to ex-
plore the sensitivity of the methodology (and its resulting
GCAM outputs) to the representation of feedbacks. The latter
comparison could offer particularly important insight, given
the growing interest in multi-model linkages and feedbacks
in the multi-sector dynamics literature (Calvin and Bond-
Lamberty, 2011; Fisher-Vanden and Weyant, 2020). Imple-
menting such feedback mechanisms takes substantial effort
and computing resources, so it is beneficial to understand the
effects of including feedbacks in diverse MSD modeling con-
texts.
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Table 1. Description of scenario design.

Scenario Modeling approach Description

Reference Existing (i.e., original) GCAM supply
curve approach

Default GCAM scenario without any changes. Includes
historical trends for socioeconomics (i.e., SSP2), cli-
mate (i.e., no climate impacts), technology, and poli-
cies.

Climate Impacts Existing (i.e., original) GCAM supply
curve approach

Builds on the Reference scenario by including climate
impacts on regional water balances (with global cover-
age) using climate forcing from MIROC-ESM-CHEM
GCM under RCP 6.0.

No Feedbacks New GCAM supply curve approach
(i.e., using GLORY), without GCAM–
GLORY feedbacks

Uses the same climate forcing and variables (e.g., tem-
perature and precipitation) from the Climate Impacts
scenario and updates GCAM in each time step with sup-
ply curves generated using GLORY (with no GCAM
water demand feedbacks) in each time period.

Feedbacks New GCAM supply curve approach
(i.e., using GLORY) with GCAM–
GLORY feedbacks

Uses the same climate forcing and variables (e.g., tem-
perature and precipitation) from the Climate Impacts
scenario and updates GCAM in each time step with sup-
ply curves generated using GLORY after receiving wa-
ter demand feedbacks from GCAM in each time period.

3 Results

We begin (in Sect. 3.1) by exploring regional differences
in the capacity–yield relationships that emerge from the
GLORY model. We show results for the highest-fidelity (i.e.,
closest to reality) representation of the two GLORY-based
scenarios from Table 1 (Feedbacks). Section 3.2 evaluates
GCAM cost curves for which capacity–yield relationships
are one input (for GLORY-based scenarios). This section ex-
plores cost curve differences across regions, time periods,
and all scenarios. Section 3.3 focuses on the regional im-
plications of the new cost curves produced by our highest-
fidelity scenario (Feedbacks), focusing on its impact on the
portion of the cost curve that reflects cheaply accessible wa-
ter. Section 3.4 focuses on how GCAM water withdrawal re-
sults change (across surface and groundwater withdrawals)
across scenarios to highlight the implications of the new ap-
proach presented here. Finally, Sect. 3.5 uses bivariate anal-
ysis and system feedback loop analysis to evaluate which as-
pects of our new approach (from economics to hydrology)
are most strongly shaping GCAM water supply and demand
dynamics.

3.1 Implications of the reservoir capacity–yield
relationship

The volumetric yield that can be gained from expanding
reservoir storage capacity varies across basins. To roughly
capture the shape of each basin’s capacity–yield relationship,
we calculate and plot the median slope of each basin’s curve
under the Feedbacks scenario to enable comparison (across

basins) of the relative effectiveness of building reservoirs to
supply water (Fig. 7). The magnitude of the slope is not only
driven by the magnitude of annual runoff but also by the sub-
annual characteristics, as well as the magnitude of expanded
capacity (i.e., where on the capacity–yield curve a basin is
starting). For example, the median slopes in Fig. 7 show
that despite the Amazon basin’s large-magnitude historical
annual runoff (about 5000 km3 yr−1), the Amazon produces
less water supply from building each unit of reservoir storage
capacity in 2050 than the Indus Basin, whose historical an-
nual runoff is an order of magnitude lower (140 km3 yr−1).
This is because water demands in the Amazon are much
lower than total annual runoff, while the Indus experiences
a water deficit for more than half of the year in the ab-
sence of reservoirs (see Fig. 4). Thus, in the Amazon, nat-
ural streamflow (in the absence of reservoirs) provides more
than enough water to reliably meet seasonal demands with-
out the need for any reservoirs to smooth out natural stream-
flow variability; whereas, in the Indus, each increment of new
reservoir storage provides substantial value because demands
are large (and temporally out of sync) relative to runoff. The
amount of supply provided by reservoir regulation is more
meaningful when compared to the magnitude of seasonal
demand. The capacity–yield relationship reveals the effec-
tiveness of reservoir storage capacity in mitigating socioe-
conomic drought by storing the surplus during the water-
abundant seasons and releasing it during the water shortage
seasons.

The effectiveness of expanding reservoir storage capac-
ity in supplying water decreases with continued exploitation
of storage capacity. The non-linearity of the capacity–yield
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Figure 7. A map of 235 global river basins, where the color of each basin reflects the median slope of the capacity–yield curve (i.e., annual
water yield (km3 yr−1) gain per unit increment of reservoir storage capacity (km3)) for each basin under the Feedbacks scenario in 2050.
For each of the six select basins with historical socioeconomic drought concerns (see Fig. 3), a chart plots the capacity–yield curve (black
line). Each of the six charts also shows the slope of the capacity–yield curve at each storage capacity expansion interval (i.e., green area),
representing the changing water yield gain per unit expansion of reservoir storage capacity at different storage capacity expansion stages,
and an orange circle shows GCAM-calculated water supply and its corresponding storage capacity in 2050 in the Feedbacks scenario. The
larger median slope value indicates the potential of gaining more water from reservoir storage capacity expansion.

curve indicates the changing rate of increased water yield for
each unit expansion of storage capacity. The green shapes in
the six sub plots (Fig. 7) show examples of the changing rate
in yield gain versus capacity expansion (i.e., the slope of the
capacity–yield curve) for six selected basins with historical
socioeconomic drought challenges (as established in Fig. 4).
A slope that is initially steep but that flattens out at increasing
capacity characterizes the curve for every basin and is driven
by the optimization formulation (e.g., constraints) described
in Eqs. (3)–(14). We can roughly divide a capacity–yield
curve into three sections based on the magnitude of the slopes
on the curve: (1) the “rapid yield gain” section, where the in-

crease in water availability to the reservoir storage capacity
expansion ratio is the highest when a basin starts building
reservoirs; (2) the “steady improvement” section, where wa-
ter yield keeps increasing with storage capacity expansion,
but the increasing rate is slowing down; and (3) the “reach the
ceiling” section (not shown on the curve), where annual yield
reaches a maximum equal to the annual runoff and stops in-
creasing with increased storage capacity. The specific shape
(e.g., slopes of the three segments described above) taken on
by the curve for a given basin is driven by complex inter-
actions between the input data sets (e.g., the shapes of the
monthly inflow and demand curves) and the LP constraints.
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About 60 % of basins depend on reservoir storage capac-
ity to regulate streamflow enough to satisfy the magnitude
and timing of demands by 2050 (e.g., the six basins high-
lighted in Fig. 7). The rest of the basins’ demands can be
satisfied by the maximum natural yield, which is the volume
of annual water that is naturally supplied (via streamflow) by
the hydrosphere, without the regulation of reservoirs. Meet-
ing demand in excess of the maximum natural yield requires
expanding the reservoir storage capacity to secure additional
water supply that is temporally consistent with the timing
of the demands. Using the water withdrawals calculated by
GCAM, we use the capacity–yield curve to back-calculate
the corresponding minimum storage capacity that is needed
to meet total demand. (Note that the capacity–yield curve
represents the optimum water yield from a given capacity.
Therefore, the back-calculation using GCAM withdrawal in-
dicates minimum storage capacity required.) The orange cir-
cle in each of the six example basins (Fig. 7) shows the
minimum storage capacity needed to provide water for agri-
cultural, domestic, industrial, and other water uses in 2050.
(This orange data point reflects the minimum storage capac-
ity required in any given time period; though if existing stor-
age capacity exceeds this minimum, we retain that storage
capacity in our analysis.) It can be useful to compare, across
basins, the expanded capacity relative to the maximum ex-
ploitable potential, and the corresponding water yield relative
to the maximum potential water yield, which is the highest
yield value on the capacity–yield curve. For example, the In-
dus Basin is relying on 9.2 km3 of storage capacity to provide
about 135 km3 of annual yield in 2050, which is about 96 %
of the maximum yield according to the hydrology and de-
mand patterns for 2050. On the contrary, the California basin
requires only 17 % of the maximum yield in 2050 that can
be provided from about 1.3 km3 of storage capacity. The In-
dus Basin has much higher water yield gain from every unit
of storage capacity expansion than the California basin, and
the former can potentially provide more affordable water. As
a result, the reservoir capacity potential is mostly exploited
in the Indus Basin. The capacity–yield relationship enhances
our understanding of the role of reservoirs across basins by
translating climate and socioeconomic dynamics into quan-
tifiable water supplies.

3.2 Comparison of water supply cost curves

Water supply cost curves produced by the GLORY model
are dynamically updated in each model time period based on
evolving hydroclimatic (e.g., reservoir inflow) and socioeco-
nomic (e.g., water demand) conditions. Figure 8 compares
the supply curves from the default GCAM (in black) with
those from the GLORY model, both from the Feedbacks sce-
nario (in orange) and the No Feedbacks scenario (in green).
To enable a normalized comparison of supply curves across
different basins with different runoff magnitudes, Fig. 8 plots
the supply volume (x axis) as a fraction of mean annual

runoff. (The default GCAM supply curve fractions are cal-
culated using the process described in Sect. 2.2.3.) We only
show the portion of the supply curves for fractions within
0 to 0.8, where water demands for most basins fall. Supply
curves for 2030 and 2050 are highlighted (with thick lines)
in the figure to demonstrate how the shape of the supply
curve evolves over time under our new approach. The de-
fault GCAM supply curve is static for each basin throughout
the simulation periods for both Reference and Climate Im-
pacts scenarios, whereas those from the GLORY model vary
by time and scenario.

The variation over time in the shape of the supply curves
produced by the GLORY model confirms that shifts in sub-
annual climate and demand (e.g., for the Feedbacks scenario)
strongly shape annual reservoir supply yield and cost. This
confirms the added value of our specific focus on discrep-
ancies between sub-annual supply and demand relative to
previous studies of global reservoir supply potential (e.g.,
L. Liu et al., 2018a). For example, the annual runoff for the
Huang He basin only slightly increases 1.7 % (Fig. S2) from
2030 (i.e., 93 km3) to 2050 (i.e., 94.6 km3). However, water
prices in the Huang He basin increase by almost 60 % (from
2030 to 2050) for supplying 70 % of the annual runoff in the
Feedbacks scenario. Higher annual runoff does not guaran-
tee more annual supply because the storage-and-release de-
cisions of reservoirs are constrained by the monthly inflow,
storage capacity, and monthly demands that reservoirs are
optimized to satisfy. The LP optimization maximizes the to-
tal annual water yield subject to monthly demand patterns. In
the case of the Huang He basin, demand will decrease from
2030 to 2050 (see Fig. S2), leading to a lower water yield in
2050 from the same-sized reservoir capacity (Fig. S6). As a
result, the price will be higher in 2050 for the same amount
of water supply to reflect market competition, compared to
2030.

Feedback from GCAM to GLORY (in the form of sectoral
water demand) in each time period affects the prices of water,
especially for basins with high socioeconomic drought inten-
sity. Figure 8 compares supply curves for all simulation time
periods between the Feedbacks and No Feedbacks scenar-
ios. In general, supply curves under the Feedbacks scenario
have higher prices for the same time period compared to the
No Feedbacks scenario. Without feedback from GCAM, both
the annual water demand magnitude and its disaggregation
into monthly fractions are assumed to be fixed at 2020 levels.
Given that the demands are held constant, the shifts among
supply curves between periods in the No Feedbacks scenario
are mainly driven by shifts in monthly runoff patterns due
to evolving climate conditions and the response of reservoir
storage to those changing conditions. In contrast, under the
Feedbacks scenario, GLORY directly ingests demand out-
puts from GCAM, where most supply curves shift up from
the No Feedbacks scenario. For example, water prices in
the California basin almost doubled from the No Feedbacks
to the Feedbacks scenario. With feedback from GCAM in
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Figure 8. Comparison of supply curves under Reference/Climate Impacts (GCAM default), No Feedbacks, and Feedbacks scenarios from
2020 to 2050 in selected example basins. The multiple lines with same color under the Feedbacks and No Feedbacks scenarios indicate
supply curves for each 5-year period from 2020 to 2050. The thick dashed and solid lines in orange and blue are for 2030 and 2050 and the
thin solid lines are for the rest of the periods. The thick black line represents the supply curve for the Reference/Climate Impacts scenarios,
which is created from the existing GCAM supply curve approach described in Sect. 2.2.3. We only show the available fraction from 0–0.8 on
the supply curves to highlight the differences between original and updated curves. The y axis is limited to a certain range to better visualize
the curve variations.

place, monthly demand in the California basin significantly
increased from June to October in all periods when runoff
is typically low (Fig. S3), compared to the fixed 2020 de-
mand level (Fig. S4). The complex relationships between net
inflow and demand drive the release decisions from reser-
voirs, where the California basin experiences a lower wa-
ter yield in the Feedbacks scenario (Fig. S6) due to difficul-
ties in meeting increased demand during irrigation seasons.
The feedback scheme ensures that the model responds corre-
spondingly to the shifts in supply–demand timing. With the
GLORY model, sub-annual climate and socioeconomic dy-

namics are incorporated in reservoir management decisions
to further inform GCAM.

3.3 Available low-cost renewable water

Prior to evaluating the implications of our new method for
GCAM outputs, such as water withdrawals, we discuss the
spatial and temporal changes in the low-cost renewable water
under the Feedbacks scenario. This complements the analy-
sis of Fig. 8 by focusing on just the relatively inexpensive
part of the cost curve and its change over time. Low-cost re-
newable water is a metric that shows the amount of water that
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can be provided by reservoirs at an inexpensive price (i.e.,
assuming USD 0.001 m−3), which corresponds to the acces-
sible point (explained in Sect. 2.2.3) on each basin’s supply
curve. Affordable water prices can indicate that a basin has
not invested and expanded reservoirs much or that the basin
has a well-expanded storage capacity, but the LCOSC is rela-
tively low. Figure 9 shows the fraction of low-cost renewable
water over the total runoff in 2050 (Fig. 9a) and the fractional
change from 2020 to 2050 across global basins (Fig. 9b) un-
der the Feedbacks scenario. We use a fraction, instead of a
volume, in Fig. 9 to normalize the effect of different magni-
tudes of runoff across basins.

Most basins experience a reduction in the fraction of low-
cost renewable water over total runoff from 2020 to 2050
(Fig. 9b), leading to a lack of affordable water in some
basins by 2050. The basins with high reductions are mainly
in North America and eastern Europe, while basins with
medium to low reductions are found among South Amer-
ica, Africa, Asia, western Europe, and Australia. The frac-
tion reduction implies that the supply curve shifts left, which
causes a higher price given the same quantity of water sup-
ply. Increased water cost can have differential impacts on
the production of each demand sector, depending on the wa-
ter consumption rate varied across demand types (e.g., crop,
livestock, and technology), locations (e.g., land types), and
market rules (e.g., trades) in GCAM.

A basin with a lower fraction of low-cost renewable wa-
ter over annual runoff can be caused by (1) higher annual
runoff; (2) higher unit construction cost; and (3) lower gain
in water yield from building reservoirs, depending on sub-
annual hydrologic and demand quantity and their monthly
patterns (see Sect. 3.1). For example, the fraction of low-cost
renewable water in the Amazon basin is low (Fig. 9a), while
the basin is well known for abundant water resources. The
low water demand, compared to the inflow, in the Amazon
basin does not require reservoirs to heavily regulate stream-
flow to complement the demand that is already met by natural
streamflow. Therefore, Amazon’s low fraction of low-cost re-
newable water is mainly driven by low demand quantity and
a large amount of natural runoff. On the contrary, the Califor-
nia basin has a low fraction of low-cost renewable water for a
different reason. The water yield gain for each unit expansion
is low (see Fig. 7) because the water deficit during summer
(see Fig. 4) is difficult to complement with limited reservoir
storage capacity. Therefore, the California basin experiences
high water prices.

3.4 Implications of reservoir storage capacity in
GCAM

GCAM water withdrawals based on the new supply curves
presented in this study better reflect the role of reservoir stor-
age in basins with seasonal socioeconomic droughts. (As de-
fined before, socioeconomic drought occurs when there is
water deficit between demand and runoff in the absence of

reservoir regulation.) Figure 10 shows water withdrawals by
water sources for six example basins under all four scenarios
from GCAM. The Climate Impacts scenario does not have
significant differences from the Reference scenario. Both the
No Feedbacks and Feedbacks scenarios have substantial dif-
ferences from the Climate Impacts and Reference scenarios
in terms of total withdrawals and how the supply share is
partitioned between surface water and groundwater.

With our new GLORY-based method in place in the No
Feedbacks and Feedbacks scenarios, the Huang He basin
experiences lower total water withdrawals, and specifically
lower surface water withdrawals, compared to the Reference
and Climate Impacts scenarios. This occurs because our new
approach captures sub-annual discrepancies between natural
water availability and demand and the cost of storage re-
quired to bridge that gap. More groundwater is pumped to
supplement surface water, which will have downstream im-
plications for associated energy usage and emissions. Mov-
ing to the Indus Basin, water supply will decline by more
than half by 2050 in GLORY-based scenarios (relative to the
original GCAM approach), where a limited reservoir supply
around 100 km3 yr−1 requires a large amount of groundwater
to meet water demands. However, as water prices increase
with groundwater depletion, the affordable groundwater is
exhausted around 2040. High water prices in the Indus Basin
cause considerable decreases in demand. On the contrary,
basins like the African northwest coast experience more wa-
ter yield in scenarios with reservoir storage represented by
the GLORY model.

Establishing feedbacks between GCAM and GLORY can
ultimately impact surface water withdrawals because feed-
backs impact the timing of demands, the level of storage
required to achieve a particular level of water supply yield,
and thus ultimately the prices to supply water. The Califor-
nia basin uses less surface water and less total water through
2050 in the Feedbacks scenario than in the No Feedbacks
scenario. We also note that the surface water withdrawals do
not share the same trend as either annual runoff or annual
demand. For example, the overall annual runoff in the Cali-
fornia basin shows a smooth decreasing trend from 2020 to
2050, and the annual demand increases about 10 % by 2040
and drops 15 % from 2040 to 2050 (see Fig. S2). Rather,
the surface water withdrawals go up and down in each time
period. This is because the annual runoff and demand are
not the only drivers to determine the amount of supply. In-
stead, their intra-annual patterns play a more important role
in determining monthly release so that reservoirs are the most
reliable. With feedbacks in place, monthly demand patterns
can be better captured in the GLORY model to optimize the
monthly release.
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Figure 9. (a) Fraction of low-cost (USD 0.001 m−3) renewable water over total runoff for 2050. (b) Changes in the low-cost fraction from
2020 to 2050 under the Feedback scenario. The fraction of low-cost renewable water is affected by runoff amount, reservoir unit construction
cost, and reservoir yield characteristics. Changes in the fraction of low-cost renewable water represent shifts in the supply curve concerning
the water price at USD 0.001 m−3.

3.5 The compounding influences of drivers on GCAM
supply–demand dynamics

The previous sections illustrated the direct and indirect im-
pacts of drivers on capacity–yield relationships and water
supply curves from GLORY and water sector dynamics from
GCAM for a few example basins. This section advances our

understanding of compounding influences of drivers on the
supply and demand dynamics across the global 235 basins
using bivariate analysis and system feedback loop analysis.
These analyses are essential for two reasons: (1) they offer
diagnostic insights to ensure the model operates as expected,
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Figure 10. Water withdrawals by source for Reference, Climate Impacts, No Feedbacks, and Feedbacks scenarios in six selected basins.

and (2) they identify dominant model processes that merit
further enhancement.

Figure 11 shows the paired correlation (above diagonal)
and joint density (below diagonal) between each combina-
tion of paired variables and the marginal distribution (diag-
onal) of each variable for global basins in 2050. We select
three main drivers (i.e., expansion cost, median water gain
per unit storage expansion, and socioeconomic drought in-
tensity) and two metrics (i.e., water prices and water with-

drawals) to explore cause–effect relationships. Water with-
drawals can be treated as a driver for the GLORY model un-
der the Feedbacks scenario. Note that all the variables are
normalized using log transformation to reduce the high vari-
ance in the data due to different characteristics of basins
and to better compare the changes between scenarios. For
pairs involving socioeconomic drought intensity, we ex-
cluded cases when values are not applicable to log transfor-
mation, such as zeros, in the linear regression analysis (last
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column in Fig. 11). The exclusion of zeros also enabled us
to focus on the basins using reservoirs as supply sources be-
cause socioeconomic drought intensity at 0 means demand
can be met by natural runoff. The basins included in this case
have water deficit issues and require reservoirs to regulate
water to improve water supply, which yield 70 and 63 basins
for the Feedbacks and No Feedbacks scenarios, respectively.

Our results reveal that multiple drivers combine to in-
fluence supply–demand dynamics in combination, rather
than demonstrating the presence of a single dominant driver
(Fig. 11). Between drivers and metrics, socioeconomic
drought intensity and water withdrawals show the high-
est correlation among all paired variables. The socioeco-
nomic drought intensity increases with increasing water
withdrawals. Different from hydrologic drought, socioeco-
nomic drought considers both hydrologic and socioeconomic
aspects in identifying drought level regarding water supply.
Higher demand means there will be more water deficit oc-
curring for months with low inflow, leading to a direct im-
pact on the storage capacity–yield relationship calculated in
the LP model. Water withdrawals and water prices also share
strong positive correlations because of the non-linear renew-
able water cost curves embedded within GCAM. Expansion
cost is positively correlated with water prices, confirming the
model’s skill in demonstrating that constructing reservoirs
in basins with less ideal climate and physiographic features
could lead to more expensive water supply. In addition, the
positive correlation between expansion cost and surface wa-
ter withdrawals indicates that larger reservoirs (which may
be required on larger rivers) may have a higher expansion
cost but can also be more reliable in supplying water.

The feedback from GCAM to GLORY forms a balancing
loop revolving around the demand dynamics of the integrated
water, energy, and land sectors (see Fig. S8). The bivari-
ate analysis shows the positive or negative linkages between
drivers and metrics that can transform into a causality chain.
A full causal loop is closed with feedback from GCAM to
GLORY, where the balancing loop attempts to seek equilib-
rium status over time. For example, in Fig. S8, although the
water demand can increase because of the development of the
agriculture and energy sectors, this increase in demand can in
turn reduce the impact of change (e.g., expanding reservoirs
to supply more water) over time due to water affordability.
The feedback also increases the sensitivity of water prices to
socioeconomic drought intensity (compared to the No Feed-
backs scenario), as their correlation is stronger in Fig. 11.
The feedback would have greater impacts in the long-term
view, as evolving demand due to activities from other sec-
tors will propagate to decisions on reservoir expansion path-
ways. For example, Fig. S9 shows alternative pathways of the
minimum reservoir storage capacity expansion, for example,
for basins from the No Feedbacks to Feedbacks scenario. To
meet the dynamically growing demand in the Feedbacks sce-
nario, the California basin needs double the storage capacity
required in the No Feedbacks scenario in 2050. Interestingly,

the doubled storage capacity in the Feedbacks scenario pro-
vides less surface water than the No Feedbacks scenario (see
Fig. 10). This is because the evolving demand signal in the
Feedbacks scenario almost doubled compared to demand in
the No Feedbacks scenario in 2045 (see Fig. S4), leading to
higher projected socioeconomic drought intensity that even-
tually raises water prices. As the California basin expands its
reservoir storage capacity, the ability of reservoirs to supply
low-cost water is inevitably reduced by the compounding in-
fluences of the climate and socioeconomic change.

4 Conclusions

We introduce a new multi-model approach to representing
the impacts of reservoirs on the cost of supplying surface
water, and the resulting demand for that water, using the dy-
namically linked Global Reservoir Yield (GLORY) model
and Global Change Analysis Model (GCAM). GCAM is a
multi-sector model of global climate–land–energy–water dy-
namics that has recently been extensively used to explore sci-
ence questions about the future of regional and global wa-
ter resources, such as the economic impacts of global wa-
ter scarcity (Dolan et al., 2021), sectoral responses to water
scarcity (Cui et al., 2018), future virtual water flows (Gra-
ham et al., 2020), and the regional implications of global wa-
ter scarcity (Giuliani et al., 2022), among others. The repre-
sentation of reservoir water storage in GCAM has remained
limited, and recent large-ensemble sensitivity analysis stud-
ies have noted the sensitivity of future global water scarcity
(and its economic impacts) to GCAM’s assumptions about
reservoir water storage (Birnbaum et al., 2022; Dolan et al.,
2021; Turner et al., 2019).

Here we develop a new model, the GLORY model, that
determines (for each of the 235 global river basins) the re-
lationship between reservoir water yield and reservoir stor-
age capacity by combining multiple physical and economic
dimensions, such as sub-annual variations in hydroclimatic
conditions and human water demands. The GLORY model
then develops a “supply curve” that defines the unit cost of
supplying increasing volumetric quantities of water by com-
bining the capacity–yield relationship with data on the cost of
building reservoir storage and limitations to reservoir expan-
sion (i.e., viable reservoir sites). GLORY passes updated sup-
ply curves to GCAM in each model time period and receives
water demand information back from GCAM in a delayed
two-way feedback loop. We design four scenarios to compare
our newly developed water supply curves to GCAM’s origi-
nal supply curves and their impacts on GCAM outputs. Our
results show that our multi-model framework has a marked
effect on GCAM dynamics (compared to GCAM as it exists
now), including on surface water withdrawals (and, as a re-
sult, on groundwater withdrawals) in many basins. This is be-
cause our approach captures key sub-annual dynamics, such
as the temporal discrepancy between streamflow and water

Geosci. Model Dev., 17, 5587–5617, 2024 https://doi.org/10.5194/gmd-17-5587-2024



M. Zhao et al.: GCAM–GLORY v1.0 5611

Figure 11. Paired density plots (lower half) and Pearson correlation plots (upper half) among drivers and GCAM outputs in 2050 under
Feedbacks and No Feedbacks scenarios for selected basins. Drivers include the cost for incremental expansion storage, median water gain
per unit storage capacity expansion at GCAM solved supply level, and socioeconomic drought intensity. GCAM outputs include water prices
and water withdrawals (or demands). The orange and blue colors denote Feedback and No Feedback scenarios, respectively. The asterisks
indicate the level of correlation (e.g., three asterisks mean strong correlation). Basins are included for the linear regression for water gain per
unit expansion and socioeconomic drought intensity if the water supply is above the maximum natural yield and there is a deficit between
sub-annual demand and natural runoff. The maximum natural yield is the amount of natural water that can be provided without any reservoir
regulation. All variables are normalized with log transformation, and both axes are unitless.

demand in each basin, and regional heterogeneity in the cost
of building reservoirs.

Our new method makes three core contributions to the
literature. First, it advances the current representation of
reservoir water storage in a widely used model (GCAM)
by accounting for the various physical and economic di-
mensions that impact reservoir water supply potential. The
strong temporal correlation between precipitation, stream-

flow, and reservoir storage dynamics (Hou et al., 2022) in-
dicates the importance of considering annual and sub-annual
variations in the climate conditions in managing water sup-
ply. A large annual runoff volume may not guarantee that
all demands can be met if the timing of supply and demand
do not overlap. Therefore, in this study, we emphasize the
importance of exploring the effect of timing and quantity
differences between streamflow and demand (i.e., socioeco-
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nomic drought) on reservoir water supply. Our results show
a strong impact of socioeconomic drought on demands and
water prices calculated from GCAM. Considering additional
physical dimensions, we also constrain the reservoir storage
capacity expansion potential by population, protected areas,
croplands, and existing surface water networks. With regard
to economic dimensions, we account for reservoir construc-
tion costs based on the reservoir storage capacity size and
physiographic features to differentiate spatial variations in
water prices.

Second, to our knowledge, our new approach now repre-
sents the only existing global integrated model of climate–
land–energy–water dynamics that accounts for future reser-
voir storage expansion pathways and their potential multi-
system impacts. Expansion of reservoir storage capacity in
GCAM–GLORY results indicates that more investment is re-
quired in reservoir infrastructure and maintenance for certain
basins, which increases the leveled cost of storage capacity.
On the other hand, through the feedback effect we introduced
in this study, the rising water prices will slow down the reser-
voir capacity expansion for basins with limited expansion po-
tential and low-water yield return from expansion. The long-
term pathways of reservoir storage capacity expansion that
now emerge from GCAM–GLORY analyses can help inform
analyses of water resources infrastructure investments, dis-
aggregation of regional storage capacity into gridded storage
capacity (e.g., as is done for water demands through Tethys
(Khan et al., 2023) and land allocation through Demeter (Ver-
non et al., 2018)), adaptive water resources planning, and po-
tential inter-basin transfers under climate and socioeconomic
changes.

Third, we advance the state of the science on human–
Earth system feedbacks by deploying multi-model feedback
linkages, which is a growing area of importance in multi-
sector dynamics research. We also perform an initial assess-
ment of the benefits of including feedbacks via Feedbacks
and No Feedbacks scenarios. Our results show that water de-
mand feedbacks have substantial impacts on surface water
withdrawals in basins with persistent socioeconomic drought
problems. Water scarcity issues are more sensitive and better
captured under the Feedbacks scenario, where higher water
prices are seen due to inadequate surface water resources or
increased demand driven by the energy and land sectors. For
instance, the California basin experiences a 20 % reduction
in surface water withdrawals in the Feedbacks scenario com-
pared to the No Feedbacks scenario in 2050. Other than feed-
back from water demand, future work can include feedback
from land use change that informs the estimation of storage
capacity expansion potential.

While this study improves the reservoir storage represen-
tation in GCAM for global basins, there are future opportu-
nities to enhance GCAM–GLORY, including but not limited
to the following.

1. We currently aggregate the distributed reservoirs’ stor-
age capacity within a basin into a single virtual reser-
voir and simplify the reservoir network. This simplifi-
cation is reasonable in the context of GCAM because
of its coarse spatial (basin) and temporal (5-year) res-
olution. However, the timing and magnitude of inflow
and demand vary spatially, and the release of upstream
reservoirs to downstream reservoirs can alter the inflow
shape, especially with reservoir expansion in the fu-
ture. Integrating GLORY with a global distributed hy-
drologic model can potentially improve the representa-
tion of spatially distributed reservoirs and enable analy-
sis at a finer resolution.

2. More feedbacks can be represented using the GLORY
framework; for example, land use change projected
from GCAM can be used to inform the constraint layers
in GLORY to update reservoir exploitable potential.

3. The reservoir unit cost for each basin plays an impor-
tant role in determining prices on the supply curves. The
reservoir unit cost for each basin can be scaled by the
local currency of reservoir capital cost (although data
are usually limited) or regional GDP to improve the re-
gional economic representation rather than using a glob-
ally averaged capital cost.

4. GCAM is technically capable of operating at a 1-year
time step (Zhao et al., 2021); thus, improving the tem-
poral resolution for the interactions between GLORY
and GCAM will enhance our ability to capture extreme
events and allow us to create a continuous representa-
tion of reservoir storage dynamics through time.

5. Our study explores a very limited sampling of hydro-
logic uncertainty (i.e., that which is embedded in the
historical record and in a single future projection of cli-
mate impacts on runoff). It would be of value to de-
velop capacity–yield and supply curve relationships in
GLORY corresponding to differing levels of reliable
yield (Loucks and van Beek, 2017), as increasingly re-
liable yields (e.g., moving from 90 % to 99 %) will re-
quire much higher levels of storage investment (and thus
costs) to meet demands at those corresponding levels of
reliability.

In summary, enhancing the explicit representation of feed-
backs between reservoir water supply and demand sector in
GCAM is important for a better understanding of the role of
future reservoir storage pathways in shaping the co-evolution
of climate–land–energy–water systems. As more regions ex-
perience water scarcity issues in the future, reservoirs could
play an important role in mitigating drought impacts and
improving water security. Representing the role of reservoir
storage in the context of hydrology and economics will en-
able us to develop a more comprehensive understanding of

Geosci. Model Dev., 17, 5587–5617, 2024 https://doi.org/10.5194/gmd-17-5587-2024



M. Zhao et al.: GCAM–GLORY v1.0 5613

demand and supply dynamics in a global multi-sector dy-
namic model.
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